

Effectiveness of Innovative Learning Models to Improve Scientific Reasoning on Physics Topics: A Literature Review

Rafa' Anugrah Putri^{1*}, Parno¹, Ahmad Taufiq²

¹ Physics Education Study Program, Universitas Negeri Malang, Indonesia.

² Physics Study Program, Universitas Negeri Malang, Indonesia.

Received: December 26, 2024

Revised: February 25, 2025

Accepted: March 25, 2025

Published: March 31, 2025

Corresponding Author:

Rafa' Anugrah Putri

rafaanugrahputri25@gmail.com

DOI: [10.29303/jppipa.v11i3.10197](https://doi.org/10.29303/jppipa.v11i3.10197)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Students' scientific reasoning ability in physics learning remains a significant challenge. This study aims to evaluate the effectiveness of innovative learning models in improving students' scientific reasoning based on indicators such as control, correlation, probability, deductive hypothesis, and conservation. The method used is systematic literature review with PRISMA framework. The results showed that innovative learning models, such as Problem-Based Learning, Project-Based Learning, and Inquiry-Based Learning, have a positive impact on students' scientific reasoning. However, each model has weaknesses in improving certain indicators, especially probability and deductive hypothesis. Therefore, this study recommends the development of a learning model that integrates an authentic problem-based approach with STEAM and cognitive conflict strategies to improve students' scientific reasoning. This research provides insights for educators and researchers in designing more effective and relevant learning strategies.

Keywords: Innovative learning models; Physics; Scientific reasoning

Introduction

Physics is the basic science for engineering and technology, making physics important to learn in schools (Assem et al., 2023). Physics is considered difficult by students compared to other subjects (Haryadi et al., 2021). Physics teaches students about experiential learning, so students are asked to observe and experiment as well as solve problems and find solutions (Assem et al., 2023; Price et al., 2019; Thohir et al., 2024). Physics is not only about mathematics but also understanding and applying concepts in everyday life. In previous studies, students still lacked a complete understanding of the concept so that they could not connect one concept with another (Huda et al., 2022). Students who experience concept difficulties have low concept mastery, according to Herayanti et al. (2022) research, students still have not mastered the concepts given before the stimulus in the form of phenomena.

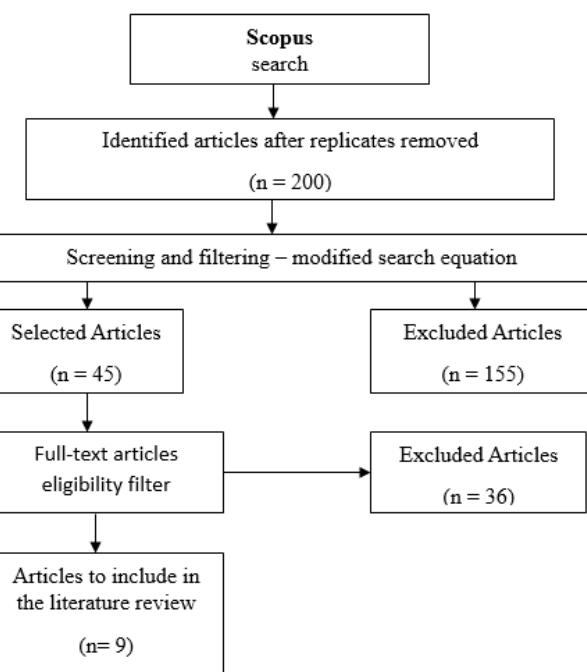
Scientific reasoning skills are very important for students because they can improve students' abilities, especially in physics material (Pascaeka et al., 2023). Scientific reasoning itself is characterized by students having the ability to ask questions, make hypotheses, conduct experiments, and draw conclusions (Kamaluddin et al., 2023). Scientific reasoning enables students to understand natural phenomena, analyze data, and make rational evidence-based decisions (Abate et al., 2020; Aziz et al., 2023; Muchoyimah et al., 2019). This proves that scientific reasoning ability has a very important role in helping students to have a deeper understanding of scientific concepts (Kamaluddin et al., 2023). Some studies state that students' scientific reasoning skills are still relatively low, especially the indicator of controlling variables (Lorensia et al., 2024) and proportional (Atqiya et al., 2021).

Several innovative learning models have been implemented to improve students' scientific reasoning skills, such as the guided-inquiry learning model

How to Cite:

Putri, R. A., Parno, & Taufiq, A. (2025). Effectiveness of Innovative Learning Models to Improve Scientific Reasoning on Physics Topics: A Literature Review. *Jurnal Penelitian Pendidikan IPA*, 11(3), 19-22. <https://doi.org/10.29303/jppipa.v11i3.10197>

(Pascaeka et al., 2023), pjbl-stem (Bakri et al., 2023; Koes-H et al., 2021; Lorensia et al., 2024), problem based learning (Ningrum et al., 2024), ADI-stem (Atqiyah et al., 2021), and others that are used on physics topics. These innovative learning models help students to explore concepts through experiments, group discussions and real-world problem solving (Ridwan, 2022). Since physics is closely related to natural phenomena and technology, it provides a great opportunity for the implementation of innovative learning models. Along with the development of innovative learning approaches, various strategies have been developed to improve students' scientific reasoning. Therefore, to find out new strategies that have the potential to improve scientific reasoning, a review through literature study on the effect of innovative learning models on scientific reasoning on physics topics is needed.


Method

This study uses the systematic literature review (SLR) method with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework guide. This method was chosen to provide a systematic and structured analysis of relevant literature. The data presented are research results on innovative learning models on scientific reasoning on physics topics. The studies reviewed were publications within the last 5 years, focused on students at the high school or college level, and involved innovative learning models on scientific reasoning.

Table 1. Articles on Innovative Learning Models for Scientific Reasoning on the topic of Physics in the Last 5 Years

Author	Innovative Learning Models	Physics topic	Research result
(Pascaeka et al., 2023)	Guided inquiry with vee map	Temperature and heat	In this study, the result was 87.91 in the experimental class.
(Koes-H et al., 2021)	Pjbl-STEM	Fluid	In this study, the average result was 77.92
(Lorensia et al., 2024)	Pjbl-STEM	Dynamic Fluid	In this study, the results obtained on the probabilistic reasoning indicator were 44% and the hypothesis-deductive reasoning indicator was 43% with a very good category.
(Syarqiy et al., 2023)	Phenomenon Based - ADI	Newton's law	In this study, the n-gain value was 0.46.
(Ningrum et al., 2024)	Problem Based Learning	Static Fluid	In this study, the average result was 82.8
(Atqiyah et al., 2021)	ADI - STEM	Newton's law	In this study, the average result on the correlation indicator was 89.47, probabilistic was 53.63, proportional was 32.70.
(Viyanti et al., 2023)	PjBL - worksheet	Renewable Energy	In this study, the n-gain value was 0.72.
(Ayuni et al., 2022)	LKPD based PjBL-STEM	Renewable Energy	In this study, the result was 73.7 in the experimental class.
(Mochsif et al., 2021)	ADI - STEM - EFA	Temperature and heat	In this study, the n-gain value was 0.34

The results of the study show that innovative learning models have a positive impact on students' scientific reasoning skills. This is in accordance with research Ridwan (2022) which states that innovative

Figure 1. Systematic literature review methodology PRISMA flow diagram

Result and Discussion

Based on the search results regarding articles on innovative learning models in improving scientific reasoning on physics topics that have been published in the last 5 years can be seen in table 1.

learning models are able to help students explore concepts through experiments, group discussions, and real problem solving. Based on several previous studies, results based on scientific reasoning indicators such as

proportional, controlling, probabilistic, correlational, hypothesis-deductive, and conservation (Ayuni et al., 2022; Ningrum et al., 2024). In research Ayuni et al. (2022) and Ningrum et al. (2024) measured 5 indicators of scientific reasoning namely proportional, controlling, probabilistic, correlational, hypothesis-deductive, and conservation. In the study Ningrum et al. (2024) stated that further research was needed on probabilistic and hypothesis-deductive because in his research the two indicators were still low, especially in the hypothesis-deductive indicator. Meanwhile, in research Ayuni et al. (2022) the indicator that is still low is the controlling, correlational, and hypothesis deductive indicator.

However, the study Pascaeka et al. (2023) only measured three indicators of scientific reasoning, namely control, correlation and conservation, in which the correlation indicator received the lowest score compared to the other two indicators. This is because students still cannot determine the relationship between variables (Pascaeka et al., 2023). In research Atqiya et al. (2021) also measured 3 indicators of scientific reasoning, namely proportional, probabilistic, and correlation, where the results showed that proportional and probability indicators were still low compared to other indicators. This is because students' self-confidence and feelings when learning are another factor in the low probability reasoning of students (Atqiya et al., 2021).

Based on the research results of the study of innovative learning models used, it can be concluded that there are innovative learning models that are able to improve students' scientific reasoning abilities, but there are still indicators that are still low obtained with different models. Previous research also only measured some indicators of scientific reasoning so that it could not find out whether the innovative learning model was able to improve students' scientific reasoning skills as a whole. Therefore, an innovative learning model is needed that implements authentic problems, determines between one concept and another and designs solutions in the form of miniature technology. In this case, the learning that can be used is authentic problem-based learning integrated with STEAM and cognitive conflict strategy.

Conclusion

The results show that innovative learning models have a positive impact on students' scientific reasoning skills. However, not all innovative learning models are able to improve all scientific reasoning indicators equally. Some indicators, such as probability and deductive hypothesis, often show lower results than others. Therefore, it is necessary to develop innovative learning models that can integrate authentic problems,

relationships between concepts, and technology-based solutions. An authentic problem-based learning approach integrated with STEAM and cognitive conflict strategies is an alternative that can be used.

Acknowledgments

Thank you to all parties who have helped in this research so that this article can be published.

Author Contributions

All authors contributed to writing this article.

Funding

No external funding.

Conflicts of Interest

No conflict interest.

References

Abate, T., Michael, K., & Angell, C. (2020). Assessment of Scientific Reasoning: Development and Validation of Scientific Reasoning Assessment Tool. *Eurasia Journal of Mathematics, Science and Technology Education*, 16(12), em1927. <https://doi.org/10.29333/ejmste/9353>

Assem, H. D., Nartey, L., Appiah, E., & Aidoo, J. K. (2023). A Review of Students' Academic Performance in Physics: Attitude, Instructional Methods, Misconceptions and Teachers Qualification. *European Journal of Education and Pedagogy*, 4(1), 84-92. <https://doi.org/10.24018/ejedu.2023.4.1.551>

Atqiya, N., Yulianti, L., & Diantoro, M. (2021). Argument-driven inquiry for STEM education in physics: Changes in students' scientific reasoning patterns. *AIP Conference Proceedings*, 2330(March). <https://doi.org/10.1063/5.0043636>

Ayuni, M. S., Distrik, I. W., & Viyanti, V. (2022). The Effect of E-LKPD Assisted PJBL-STEM Learning Model on Scientific Reasoning Ability and Argumentation Performance of Class XII Science Students in Renewable Energy Materials. *Physics Education Research Journal*, 4(1), 79-86. <https://doi.org/10.21580/perj.2022.4.2.12634>

Aziz, A. A., & Johari, M. (2023). The Effect of Argumentation about Socio-Scientific Issues on Secondary Students' Reasoning Pattern and Quality. *Research in Science Education*, 53(4), 771-789. <https://doi.org/10.1007/s11165-023-10099-5>

Bakri, F. P., Budi, E., & Rahmawati, Y. (2023). The integration of mobile learning in STEM-PjBL for Physics learning: a systematic literature review. *Journal of Physics: Conference Series*, 2596(1), 012065. <https://doi.org/10.1088/1742-6596/2596/1/012065>

Haryadi, R., & Yusifa, A. (2021). Metode Hypnoteaching Terhadap Pembelajaran Fisika. *Alpen: Jurnal Pendidikan Dasar*, 5(1), 50-61. <https://doi.org/10.24929/alpen.v5i1.70>

Herayanti, L., Habibi, H., & Sukroyanti, B. A. (2022). Development of Inquiry-Based Teaching Materials to Improve Physics Teacher's Conceptual Understanding. *Jurnal Penelitian Pendidikan IPA*, 8(6), 3110-3116. <https://doi.org/10.29303/jppipa.v8i6.2543>

Huda, C., Ma'ani, A. L., & Kaltsum, U. (2022). Analysis of Student Misconceptions Using Digital Four-Tier Diagnostics Test on Newton's Law. *Physics Education Research Journal*, 4(1), 17-22. <https://doi.org/10.21580/perj.2022.4.1.8631>

Kamaluddin, K., Sani, N. K., Darmadi, I. W., & Nurgan, N. (2023). Analysis of Students Scientific Reasoning Ability and the Correlation to Students Cognitive Ability in Physics Learning. *Jurnal Penelitian Pendidikan IPA*, 9(11), 10173-10179. <https://doi.org/10.29303/jppipa.v9i11.5657>

Koes-H, S., & Putri, N. D. (2021). The Effect of Project-Based Learning in STEM on Students' Scientific Reasoning. *Journal of Physics: Conference Series*, 1835(1). <https://doi.org/10.1088/1742-6596/1835/1/012006>

Lorensia, S. L., Handayani, R. D., & Lesmono, A. D. (2024). Analisis Scientific Reasoning Siswa dalam Pembelajaran Fluida Dinamis dengan Model STEM-PjBL. *SAP (Susunan Artikel Pendidikan)*, 9(1), 165. <https://doi.org/10.30998/sap.v9i1.22167>

Mochsif, N. D. A., Parno, P., & Yuliati, L. (2021). Pengaruh Model Argument-Driven Inquiry-STEM-EFA terhadap Peningkatan Scientific Reasoning Skills Siswa. *Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan*, 6(12), 1861. <https://doi.org/10.17977/jptpp.v6i12.15160>

Muchoyimah, S., Kusairi, S., & Mufti, N. (2019). Korelasi Penalaran Ilmiah pada Topik Usaha dan Energi. *Jurnal Riset Pendidikan Fisika*, 4(2), 104-109. <https://doi.org/10.17977/um058v4i2p104-109>

Ningrum, T. W., Handayani, R. D., & Maryani, M. (2024). Investigasi Kemampuan Bernalar Ilmiah Siswa Melalui Implementasi Model Problem Based Learning Materi Fisika Fluida Statis. *Jurnal Pendidikan Fisika*, 12(1), 68. <https://doi.org/10.24127/jpf.v12i1.9433>

Pascaeka, L., Bektiarso, S., & Harijanto, A. (2023). Scientific Reasoning Skills and Scientific Attitudes of Students in Learning Physics Using Guided Inquiry Model with Vee Map. *Jurnal Penelitian Pendidikan IPA*, 9(11), 9610-9618. <https://doi.org/10.29303/jppipa.v9i11.4467>

Price, C. B., & Price-Mohr, R. (2019). PhysLab: a 3D virtual physics laboratory of simulated experiments for advanced physics learning. *Physics Education*, 54(3), 035006. <https://doi.org/10.1088/1361-6552/ab0005>

Ridwan, M. hasbullah. (2022). Penerapan Model Pembelajaran Inovatif Untuk Meningkatkan Kompetensi Siswa. *Jurnal Tarbiyatuna: Jurnal Kajian Pendidikan, Pemikiran Dan Pengembangan Pendidikan Islam*, 2(2), 149-163. <https://doi.org/10.30739/tarbiyatuna.v2i2.1363>

Syarqiy, D., Yuliati, L., & Taufiq, A. (2023). Exploration of Argumentation and Scientific Reasoning Ability in Phenomenon-Based Argument-Driven Inquiry Learning in Newton's Law Material. *Jurnal Penelitian Pendidikan IPA*, 9(9), 7264-7272. <https://doi.org/10.29303/jppipa.v9i9.4589>

Thohir, M. A., Dina, H. R., April, Y. F., & Habibi. (2024). Experiential learning model for physics virtual reality design: A case study of pre-service elementary school teachers. *Journal of Physics: Conference Series*, 2900(1), 012012. <https://doi.org/10.1088/1742-6596/2900/1/012012>

Viyanti, Widayastuti, Suyatna, A., Nurulsari, N., & Dinantikan, H. K. (2023). Scientific Reasoning Analysis on the Implementation of PjBL-Worksheet on Renewable Energy Topic in High School Physics Learning. *Proceedings of the 4th International Conference on Progressive Education 2022 (ICOPE 2022)*, 1, 491-502. https://doi.org/10.2991/978-2-38476-060-2_46