

The Function of Natural Science in Lecturer Performance at Measurement at IAIN Curup - Bengkulu

Ratih Komala Dewi^{1*}, Citra Puspa Permata¹

¹ IAIN Curup, Bengkulu, Indonesia

Received: December 28, 2024

Revised: February 05, 2025

Accepted: March 25, 2025

Published: March 31, 2025

Corresponding Author:

Ratih Komala Dewi

ratih.komala@iaincurup.ac.id

DOI: [10.29303/jppipa.v11i3.10797](https://doi.org/10.29303/jppipa.v11i3.10797)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: The use of digital technology for lecturer performance management at IAIN Curup is elementary. Natural sciences – particularly psychology – can be applied to better understand human behavior, cognitive processes, stress responses, and other factors influencing workplace dynamics and employee well-being. In other aspects, to measure the performance of lecturers, in principle, it is reflected in the productivity in carrying out education and teaching, research, and community service, known as the *Tri Dharma* of Higher Education. It aims to formulate theories and laws that explain the natural world and predict future outcomes. The emergence of college management has transformed the landscape of Human Resource Management (HRM) by introducing advanced technologies, including artificial intelligence (AI), machine learning, and big data analytics. These innovations have enhanced HRM processes such as recruitment, training, performance evaluation, and employee engagement. This research is expected to provide information that natural and computer sciences play a role in managing the performance of lecturers at *Institut Agama Islam Negeri* Curup. Natural sciences play a critical role in understanding the dynamics of these technological advancements, offering insights into human behavior, cognitive processes, and organizational ecosystems. This article explores how principles of natural science integrate with modern HRM practices in university. Through a qualitative approach, we examine case studies to illustrate the application of natural science in human resources strategies at university, highlighting the advantages and challenges of adopting a scientifically-informed HRM framework.

Keywords: Function, Natural Science, Lecturer, Performance

Introduction

Natural sciences and human resources (HR) intersect in ways that bring deeper insights into human behavior, cognitive processes, and physiological responses, enriching HR practices and strategies (Abhayaguanrathna & Bhagyani, 2024; Cooke, 2018). Lecturer performance management is one of the crucial aspects in maintaining the quality of higher education (Handayani & Hidayat, 2024). Lecturers have important

roles as educators, researchers, and community servants. However, the complexity of lecturers' responsibilities often makes it difficult to manage performance manually. With the advancement of digital technology, various solutions have emerged to overcome this challenge and build employee trust (Calitz et al., 2017).

Digitalization of lecturer performance management offers better efficiency, transparency, and accuracy compared to conventional methods (Aithal & Aithal,

How to Cite:

Dewi, R. . K., & Permata, C. P. The Function of Natural Science in Lecturer Performance at Measurement at IAIN Curup - Bengkulu. *Jurnal Penelitian Pendidikan IPA*, 11(3), 349-354. <https://doi.org/10.29303/jppipa.v11i3.10797>

2023). This article will discuss the importance of digitizing lecturer performance management, the resulting benefits, key components, as well as challenges and solutions. While natural sciences are typically associated with understanding the physical world and living organisms, their principles can also be applied to improve various aspects of HR management (Jia et al., 2018).

While technology is at the forefront of these changes, the role of natural sciences in HRM has become increasingly relevant (Haratua et al., 2025; Sutrasna, 2023). Disciplines such as biology, psychology, and neuroscience offer valuable insights into human behavior and organizational dynamics. For example, understanding the biological mechanisms of stress and motivation can enhance employee well-being programs, while psychological theories of learning inform the design of more effective training programs. The purpose of this study is to explore how the integration of natural science principles into HRM can create a more holistic and effective approach to managing people in the 4.0 era.

Performance is the result of achievements in the form of both outputs and outcomes from the implementation of work programs in accordance with organizational goals that are oriented towards the vision and mission and strategic goals of an organization (Masbukhin et al., 2024; Susilowati, 2023). Lecturer performance is a summary of all activities carried out by lecturers to complete their duties. In more detail, the duties of lecturers are regulated in Law No. 14 of 2005 and Presidential Decree No. 37 of 2009, namely implementing the tri dharma of higher education (Cao et al., 2021).

The integration of natural sciences into HRM offers a more comprehensive understanding of employees' needs, behaviors, and well-being (Artha et al., 2024; Hadiyatno et al., 2024). By leveraging insights from biology, psychology, neuroscience, and environmental science, HR professionals can develop more effective strategies for recruitment, training, employee well-being, and overall organizational culture. As the workplace continues to evolve with the demands of Industry 4.0, incorporating natural science principles into HR practices can help create healthier, more productive, and more engaged workforces. This interdisciplinary approach is becoming increasingly crucial for organizations aiming to remain competitive in a rapidly changing world.

Method

The research method uses actual and factual situation analysis, as well as considerations based on literature. In this case, it will be possible to find the latest

problems on the research topic raised this time, with the literature review method it will get some knowledge that can add insight for researchers. The method used in this research descriptive qualitative research is a literature review and actual and factual situation analysis (Sugiono, 2021).

In this second stage, we find a problem. The problem raised in this research is how to implement a smart consumer loyalty system with a chatbot based on web methods and internet media. The initial stage in Natural Language Processing is Text Preprocessing, which is the first step in the model-building process (Sihombing, 2022).

In this last section, the author conducts research based on data that has been collected through previous research studies, and researchers' research so that the reset can produce data and the data can be a proposal for a new system, which will be used in the future by conducting research. Then the problem raised can be solved and a solution can be found. The study used unobtrusive research techniques to analyze objectively the impact of AI (Mhlanga, 2020).

This research uses qualitative methods, including reading previous research, exploring journals that conduct similar research, and reading many books that discuss research like this. The author also conducts discussions with various parties who understand this research. Then, the author designs the models according to the flow of thinking as shown in Figure 1.

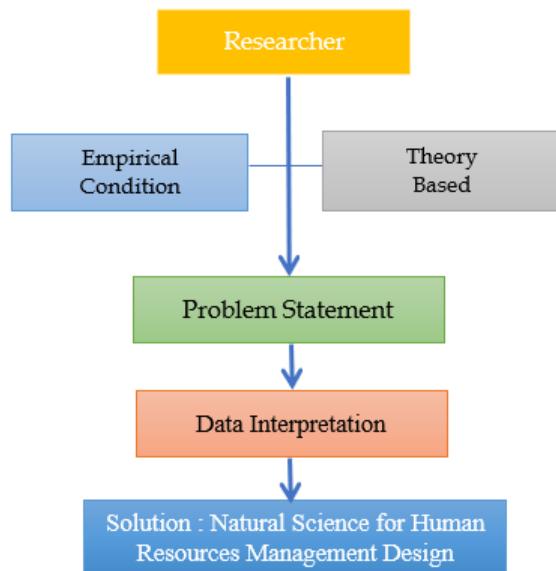


Figure 1. Research Logic Flow

Result and Discussion

Enhanced Recruitment Processes in HR and the Role of Natural Science

The recruitment process in Human Resource Management (HRM) has evolved significantly with the advent of advanced technology and scientific understanding. Natural sciences, particularly psychology, cognitive science, and biology, have played a critical role in enhancing recruitment practices by offering deeper insights into human behavior, personality traits, and cognitive abilities.

Psychological principles and assessments have become central in modern recruitment. Tools like psychometric tests and personality assessments (e.g., Myers-Briggs Type Indicator, Big Five Personality Traits) are used to evaluate a candidate's suitability for a specific role. These assessments measure traits such as openness, conscientiousness, extraversion, and emotional stability.

By understanding the psychological profile of candidates, HR professionals can ensure that new hires align with the organization's culture and values, and have the cognitive and emotional traits necessary for success in the role. For example, a sales position might require a high level of extraversion and emotional resilience, while a research role might favor individuals who score high in traits like openness and conscientiousness. A technology company used psychometric assessments to identify software engineers who are not only technically proficient but also have high levels of adaptability and teamwork, ensuring a better cultural fit and improved long-term retention.

Deep learning is a specific field of machine learning that teaches computers to learn and think like humans. Deep learning involves neural networks consisting of data processing nodes that resemble the operation of the human brain. With deep learning, computers recognize, classify, and correlate complex patterns in input data. When introducing deep learning into asset management, there are major issues to be aware of (Kato, 2020).

Cognitive Science in Predictive Analytics for Recruitment

The role of Cognitive Science is to give insights from cognitive science are applied in recruitment processes to understand how candidates process information, solve problems, and make decisions. Cognitive ability tests, like problem-solving assessments, numerical reasoning, and critical thinking tests, help gauge a candidate's ability to learn and adapt to new information. Cognitive ability is one of the best predictors of job performance across various roles. These tests help HR managers identify candidates with strong analytical skills and high learning potential, crucial for roles that require constant adaptation and critical thinking.

A finance firm integrated cognitive ability assessments into its recruitment process, allowing them to select analysts who excel in complex problem-solving and data analysis, leading to better performance in roles that require quick and accurate decision-making.

This research aims to build a Chatbot to maximise the automation of FAQs at PT SRI by using the NLP method and applied to chat messenger on the website. So that the chatbot that has been built can contribute to improving services that can answer questions automatically (Bock & Garnsey, 2008).

There are strong implications for all businesses, particularly large businesses in competitive industries, where failure to deploy AI in the face of competition from firms who have deployed AI to improve their decision-making could be dangerous (Stone et al., 2020). Neuroscience research on how the brain learns and adapts has influenced recruitment by providing insights into a candidate's learning capacity and adaptability. Understanding neural processes related to learning helps HR managers predict how quickly a candidate can acquire new skills and adapt to changes in the workplace.

Using Natural Science in Recruitment

Imagine a large company that produces many products every Complexity of Assessments: Implementing scientifically-based assessments can be complex, requiring HR professionals to be trained in interpreting results accurately. Using biological or psychological assessments in recruitment raises concerns about fairness, privacy, and potential bias. It's important to ensure transparency and obtain candidate consent when using such methods. Some scientifically-based tools, such as AI-powered cognitive tests or neuroscience-based assessments, can be expensive, potentially limiting their use to larger organizations.



Figure 2. Natural Science for HRM Design

Cognitive science is the interdisciplinary study of the mind and its processes, including how people think, learn, remember, and solve problems (Adji et al., 2023). It draws from psychology, neuroscience, artificial intelligence, linguistics, and other fields to understand how cognitive functions shape human behavior. In the context of Human Resource Management (HRM), cognitive science plays a crucial role in predictive analytics, particularly in recruitment, where understanding a candidate's cognitive abilities can significantly improve the process of identifying the best fit for a role (Murni, 2024).

Predictive analytics involves using data, statistical algorithms, and machine learning techniques to identify the likelihood of future outcomes based on historical data. When combined with insights from cognitive science, predictive analytics in recruitment helps HR professionals make data-driven decisions, ensuring a better match between job candidates and roles.

Cognitive ability tests as predictors of job performance. Cognitive science role: Cognitive science provides insights into how individuals process information, solve problems, and learn new concepts (Amanulloh et al., 2024). In recruitment, these insights are translated into cognitive ability tests that measure candidates' skills in areas like numerical reasoning, verbal reasoning, logical reasoning, and problem-solving.

Application in Predictive Analytics: Data from cognitive ability tests can be used to predict job performance. Research has shown that cognitive ability is one of the best predictors of job performance across various industries. Predictive models can analyze test results alongside historical performance data from current employees in similar roles to identify candidates who are likely to excel.

A software company may use numerical reasoning and logical reasoning tests as part of their recruitment process. By feeding the test scores into predictive analytics models that correlate test scores with high performance in previous hires, the company can predict which candidates are likely to excel in problem-solving tasks required for the job.

Measuring Learning Agility for Future Potential. Cognitive Science Role: Cognitive science helps HR understand learning agility, which is the ability of an individual to learn quickly from new experiences and apply that learning to new situations. It involves skills like critical thinking, adaptability, and the capacity to quickly acquire new skills.

Application in Predictive Analytics: Learning agility is critical for roles that require ongoing adaptation, such as those in technology, where tools and methodologies change rapidly. Predictive analytics

models can use assessments of learning agility, combining them with data about past job changes and career trajectories, to predict how well a candidate might adapt to new challenges and learn new skills.

A consulting firm uses a series of cognitive tests designed to measure adaptability, combined with machine learning algorithms that analyze past performance data of current employees. The predictive model identifies candidates who have a high likelihood of thriving in an environment that demands constant problem-solving and adapting to client needs.

Data-Driven Behavioral Analysis and Problem-Solving Skills. Cognitive Science Role: Understanding cognitive processes such as decision-making, pattern recognition, and problem-solving helps recruiters assess how candidates might behave in job-related scenarios. Cognitive science insights are used to design situational judgment tests and simulation exercises that reveal how candidates think through complex situations.

Application in Predictive Analytics: Predictive analytics uses data from these behavioral and cognitive assessments to identify candidates who demonstrate the ability to solve problems in ways that align with the role's requirements. By combining cognitive test scores with data on how candidates performed in specific job scenarios, predictive models can forecast their performance in real job settings.

A financial services firm uses simulation exercises that replicate typical job challenges, such as analyzing market trends or making investment decisions. The data from these simulations are used in predictive models to evaluate how candidates approach problem-solving, which is then matched against the success profiles of high-performing analysts in the firm.

Natural Language Processing (NLP) is the processing of language, such as spoken and language processing, such as spoken and written by humans in everyday conversations through computer. The computational process for processing language processing, must be represented into a series of symbols that fulfil certain rules. In the process, NLP will make computers understand any commands or standard language that is commonly written or performed by humans. The output of the standard answers entered by the user beforehand is already based on the summarized meaning of the input (Puspitasari et al., 2024).

Behavioral science combines insights from psychology and other natural sciences to understand and predict human behavior. HR departments use behavioral data to identify patterns in candidate behaviors during the recruitment process, using AI and predictive analytics to determine the likelihood of a candidate's success in a role. The application of chatbot can be applied in the form of Natural Language

Processing which is one of the fields of Artificial Intelligence) to study communication that is by humans with computers through natural language (Radhian, 2019).

System and software design is the stage of describing and designing the system and interface display, both the letters used and the background as the appearance of the virtual customer services chatbot application (Mulyatun et al., 2021). This approach allows for a more personalized recruitment process, where decisions are based on empirical data rather than subjective judgments. By analyzing candidates' responses to various behavioral scenarios, HR can predict future job performance and cultural fit more accurately.

The use of artificial intelligence on this chatbot system lies in the pre-processing process, specifically using natural language processing. NLP is a branch of AI concerned with enabling computers to understand words in much the same way as human. The preprocessing process includes tokenization and lemmatization. This method is applied to the process of preparing a bag of words for chatbot training based on the pattern and response file (Christian & Erlene, 2022).

A multinational corporation uses AI-based platforms that analyze video interviews for non-verbal cues such as facial expressions and tone of voice, combined with behavioral science theories. This helps them gauge candidates' confidence, empathy, and communication skills, leading to better hiring decisions. Thereafter, this method is applied for processing the user's response in advance of doing the pattern matching to find the answer (Christian & Erlene, 2022).

Conclusion

There are several things that have been done and can be concluded as follows: in this research has been achieved analysis, design, implementation, testing and publication; analysis and design in this research using an object-oriented approach. Diagrams for design and modelling using UML; customer Service can be facilitated in respond to questions from visitors or customers who ask without having to answer them manually; and natural Language Processing approach In the customer services application, conversations and discussion occur as if it were done between humans and humans.

Acknowledgments

The author would like to thank the parties who have played a role in this research activity, so that this research can be carried out well.

Author Contributions

This research was supported by equal distribution of roles and contributions of all authors, because each stage was always discussed together.

Funding

This research is an empirical research funded by the authors.

Conflicts of Interest

In this research, there is no interest and or hidden interests among the researchers

References

Abhayaguanrathna, W., & Bhagyani, A. A. B. (2024). Conceptualizing the impact of green HRM practices on organizational investment decisions: Theoretical insights into the mediating role of employee green behavior. *20th International Conference on Business Management (ICBM)*. Retrieved from <http://dr.lib.sjp.ac.lk/handle/123456789/13018>

Adji, S. S., Sukmayadi, D., & others. (2023). Development of Test Instruments Based on Cognitive Processes and Knowledge Dimensions on Environmental Chemistry. *Jurnal Penelitian Pendidikan IPA*, 9(12), 12104-12115. <https://doi.org/10.29303/jppipa.v9i12.4853>

Aithal, P. S., & Aithal, S. (2023). How to empower educators through digital pedagogies and faculty development strategies. *International Journal of Applied Engineering and Management Letters (IJAEML)*, 7(4), 139-183. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4674876

Amanulloh, M. J. A., Marbun, M., Sobri, A. Y., & Ubaidillah, A. F. (2024). 21st Century Skills Development in Secondary Schools: A Systematic Literature Review. *Education and Human Development Journal*, 9(3), 212-225. <https://doi.org/10.33086/ehdj.v9i3.5522>

Artha, B., Kurniyati, N. N., Ratnawati, E. T. R., & others. (2024). Artificial Intelligence: A New Paradigm in Human Resource Management. *Jurnal Penelitian Pendidikan IPA*, 10(SpecialIssue), 372-376. <https://doi.org/10.29303/jppipa.v10iSpecialIssue.8609>

Bock, K., & Garnsey, S. M. (2008). Language Processing. *A Companion to Cognitive Science*, 5(1), 226-234. <https://doi.org/10.1002/9781405164535.ch14>

Calitz, A. P., Poisat, P., & Cullen, M. (2017). The future African workplace: The use of collaborative robots in manufacturing. *SA Journal of Human Resource Management*, 1(2), 1-11. <https://doi.org/10.4102/sajhrm.v15i0.901>

Cao, L., Yang, Q., & Yu, P. S. (2021). Data science and AI

in FinTech: an overview. *International Journal of Data Science and Analytics*, 12(2), 81-99. <https://doi.org/10.1007/s41060-021-00278-w>

Christian, Y., & Erline, M. (2022). Web-Based Chatbot With Natural Language Processing and Knuth-Morris-Pratt (Case Study: Universitas Internasional Batam). *JST (Jurnal Sains Dan Teknologi)*, 11(1), 132-141. <https://doi.org/10.23887/jstundiksha.v11i1.4325>

Cooke, F. L. (2018). Concepts, contexts, and mindsets: Putting human resource management research in perspectives. *Human Resource Management Journal*, 28(1), 1-13. <https://doi.org/10.1111/1748-8583.12163>

Hadiyatno, D., Rohman, D. T., Yuliani, T., & Saraswati, W. (2024). The Role of Natural Science in HRM at Industry 4.0 Era. *Jurnal Penelitian Pendidikan IPA*, 10(12), 10278-10283. <https://doi.org/10.29303/jppipa.v10i12.9557>

Handayani, Y., & Hidayat, N. (2024). Strategi Peningkatan Kinerja Dosen dalam Mewujudkan Perguruan Tinggi Berakreditasi Unggul. *JIIP-Jurnal Ilmiah Ilmu Pendidikan*, 7(12), 14003-14008. <https://doi.org/10.54371/jiip.v7i12.6426>

Haratua, C. S., Lestari, A., Abdul, R. C., Haryanti, W. D., Suratno, S., & Ardiansyah, T. (2025). Peran Matematika dan Ilmu Pengetahuan Alam dalam Menghadapi Tantangan SDM di Society 5.0. *JIIP-Jurnal Ilmiah Ilmu Pendidikan*, 8(1), 218-224. <https://doi.org/10.54371/jiip.v8i1.6635>

Jia, Q., Guo, Y., Li, R., Li, Y., & Chen, Y. (2018). A conceptual artificial intelligence application framework in human resource management. *Proceedings of the International Conference on Electronic Business (ICEB)*, 106-114. Retrieved from <https://aisel.aisnet.org/iceb2018/91/>

Kato, Y. (2020). AI/Fintech and Asset Management Businesses. *Public Policy Review*, 16(4), 1-28. Retrieved from https://ideas.repec.org/a/mof/journl/ppr16_04_04.html

Masbukhin, F. A. A., Wathi, A. F. D., Suciana, D., Sausan, I., & Basyari, A. (2024). Assessing the Work Performance of Vocational High School Teachers in Gunung Kidul: A Survey. *JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan)*, 9(1), 747-761. <https://doi.org/10.31851/jmksp.v9i1.15002>

Mhlanga, D. (2020). Industry 4.0 in finance: the impact of artificial intelligence (ai) on digital financial inclusion. *International Journal of Financial Studies*, 8(3), 1-14. <https://doi.org/10.3390/ijfs8030045>

Mulyatun, S., Utama, H., & Mustopa, A. (2021). Pendekatan Natural Language Processing Pada Aplikasi Sistem Informasi Universitas Amikom Yogyakarta. *Jurnal of Information System Management*, 2(1), 12-17. Retrieved from <https://jurnal.amikom.ac.id/index.php/joism/article/view/404>

Murni, H. N. C. (2024). Educational environment management in the perspective of climate change in indonesia. *Jurnal Penelitian Pendidikan IPA*, 10(7), 3697-3705. <https://doi.org/10.29303/jppipa.v10i7.7305>

Puspitasari, A., Paradhita, A. N., Tineka, Y. W., Sulistyowati, V., Noriska, N. K. S., & others. (2024). Natural Language Processing (NLP) Technology for Chatbot Website. *Jurnal Penelitian Pendidikan IPA*, 10(SpecialIssue), 319-324. <https://doi.org/10.29303/jppipa.v10iSpecialIssue.8241>

Radhian, D. (2019). *Pembangunan Aplikasi Chatbot Sebagai Media Pencarian Informasi Dalam Bidang Peternakan* [Thesis: Program Studi Teknik Informatika Komputer Indonesia]. Retrieved from <https://elibrary.unikom.ac.id/id/eprint/901/>

Sihombing, D. O. (2022). Implementasi Natural Language Processing (NLP) dan Algoritma Cosine Similarity dalam Penilaian Ujian Esai Otomatis. *Jurnal Sistem Komputer Dan Informatika (JSON)*, 4(2), 396. <https://doi.org/10.30865/json.v4i2.5374>

Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J., & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. *The Bottom Line*, 33(2), 183-200. <https://doi.org/10.1108/BL-03-2020-0022>

Sugiono, S. (2021). Pemanfaatan Chatbot Pada Masa Pandemi COVID-19: Kajian Fenomena Society 5.0. *Jurnal Penelitian Komunikasi Dan Pembangunan*, 22(2), 133-148. Retrieved from <https://shorturl.asia/pC0Zc>

Susilowati, R. (2023). Partnership strategy of course and training institutions in guaranteeing the quality of education with the world of work industry: a review. *Jurnal Penelitian Pendidikan IPA*, 9(12), 1316-1322. <https://doi.org/10.29303/jppipa.v9i12.6020>

Sutrasna, Y. (2023). *Manajemen Sumber Daya Manusia: Disrupsi Teknologi Dan Kesenjangan Generasi*. CV Jejak Publisher.