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Abstract: Estimation of photovoltaic cell parameters from experimental data
is an important part of photovoltaic system performance modeling and
optimization. This study aims to estimate the parameters of photovoltaic
cells. The photovoltaic models used are the one-diode model (ODM) and the
two-diode model (TDM). Optimization is performed using the moth-flame
optimization (MFO) algorithm. The root mean square error (RMSE) method
is applied to determine the accuracy of the estimated parameters.
Experimental results show that the MFO algorithm is able to obtain
photovoltaic cell parameters with a high level of accuracy, both in ODM and
TDM. The current-voltage (I-V) and power-voltage (P-V) curves between the
measured and estimated data also show a very good match. In addition, the
optimization algorithm outperforms most metaheuristic algorithms applied
in photovoltaic cell parameter determination. Thus, the MFO algorithm is
suitable to be applied in determining the photovoltaic cell parameters.

Keywords: Metaheuristic algorithm; One-diode model; Photovoltaic

parameters; Two-diode model.

Introduction

Solar energy has emerged as a cornerstone of global
efforts to transition toward sustainable energy systems
due to its abundance, renewability, and low
environmental impact (Jannah et al., 2024). The design
of solar power plants typically begins with
computational analysis and simulation, where precise
photovoltaic (PV) cell modeling serves as a critical initial
step to optimize plant performance. This process relies
on mathematical models to derive PV parameters,
enabling the generation of current-voltage (I-V) and
power-voltage (P-V) characteristics that align with the
operational behavior of the cells. However, PV cell
modeling is inherently complex due to its nonlinear
nature and significant sensitivity to environmental
variables, including temperature fluctuations and
variations in solar irradiance (Bdldceanu et al., 2024;
Nfaoui et al., 2024). These factors necessitate robust
modeling frameworks to ensure accuracy across diverse
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operating conditions. These sensitivities necessitate the
development of robust and flexible modeling
frameworks that maintain accuracy across diverse
environmental conditions.

Mathematical models for I-V —and P-V
characterization involve numerous unknown variables,
yet the one-diode and two-diode models are widely
adopted for their ability to generate accurate results
(Tifidat et al., 2022). The one-diode model, requiring
only five parameters, offers simplicity and
computational efficiency. However, its accuracy
diminishes under low irradiance conditions due to the
neglect of recombination losses (Lin et al., 2024). In
contrast, the two-diode model incorporates seven
parameters, addressing this limitation by reintroducing
recombination effects through an additional diode. This
enhancement improves reliability in scenarios with
variable solar radiation, positioning the two-diode
model as a superior choice for high-precision PV system
design and optimization.
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Regardless of the model selected, the accuracy of
PV modeling heavily depends on the proper estimation
of its parameters, which define the shape and accuracy
of the I-V and P-V curves. These parameters are not
directly measurable and must be inferred through
optimization techniques. However, due to the highly
nonlinear and multimodal nature of the objective
function, identifying optimal parameters presents a
complex and computationally intensive challenge. This
makes parameter estimation a critical focus in PV
research, as even slight inaccuracies can lead to
substantial deviations in performance predictions.

The determination of parameters in the one-diode
and two-diode models constitutes an optimization
challenge requiring advanced computational solutions.
Three primary approaches are employed to address this
issue: analytical methods, numerical methods, and
metaheuristic algorithms. Analytical techniques, such as
the Padé approximation (Wang et al., 2024), Taylor series
expansion (ElI Ainaoui et al.,, 2023), and Lambert W
function (Abdel-Basset et al., 2024; Pindado et al., 2021),
offer rapid computational efficiency and reasonable
accuracy for parameter extraction. However, their
applicability diminishes for complex or large-scale
problems due to inherent limitations in handling
nonlinearities and excessive computational demands.

Numerical methods, including Newton-Raphson
(Abdulrazzaq et al., 2022; Adak et al., 2023) and Gauss-
Seidel (Sakthivel et al., 2023) iterations, enhance
accuracy by leveraging comprehensive curve data
points. While these methods outperform analytical
approaches in precision, they are hindered by high
computational resource requirements, susceptibility to
non-convergence, and a tendency to stagnate at local
optima (Tifidat et al.,, 2023). In contrast, metaheuristic
algorithms have gained prominence for their robustness
in resolving intricate optimization problems. These
algorithms eliminate dependencies on strict convexity,
continuity, or differentiability of objective functions and
constraints, enabling superior performance in accuracy,
reliability, and convergence speed compared to
traditional methods (Bakir, 2023). By deploying
randomized search agents across the solution space,
metaheuristic strategies effectively circumvent local
optima, ensuring global optimization potential (Kwakye
et al.,, 2024). This adaptability makes them particularly
advantageous for photovoltaic parameter identification
in scenarios demanding high precision and
computational stability.

Numerous metaheuristic algorithms have been
developed and utilized for photovoltaic parameter
estimation to derive current-voltage (I-V) characteristics.
A notable example is the genetic algorithm (GA)
(Durango-Flérez et al., 2022; Saadaoui et al., 2021), which
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mitigates the risk of convergence at local optima by
performing search operations across multiple points
simultaneously. Despite its ability to explore diverse
solutions, GA exhibits a slow convergence rate, limiting
its efficiency. Alternative approaches, such as the
differential evolution (DE) algorithm (Yuan et al., 2023),
particle swarm optimization (PSO) algorithm (Lo et al.,
2024), and simulated annealing (SA) algorithm (Dkhichi,
2023), have been employed to enhance the precision of
parameter estimation. Comparative studies indicate that
DE, PSO, and SA demonstrate superior accuracy over
GA in identifying photovoltaic parameters.

While DE is recognized for its robustness in solving
optimization problems, its effectiveness heavily
depends on appropriate parameter configurations [18].
In contrast, PSO offers rapid convergence but is prone to
stagnation in local optima, particularly in high-
dimensional search spaces (Lo et al, 2024). SA,
renowned for its adaptability and global optimization
capabilities, often demands extensive computational
resources and time to achieve optimal solutions
(Dkhichi, 2023). These trade-offs highlight the need for
algorithm selection based on specific requirements,
balancing accuracy, computational efficiency, and
problem dimensionality in photovoltaic parameter
estimation.

This study introduces a metaheuristic moth-flame
optimization (MFO) algorithm designed to enhance the
accuracy and efficiency of photovoltaic parameter
estimation in both single-diode and double-diode
models. The proposed MFO algorithm demonstrates
superior performance compared to conventional
optimization methods, addressing critical challenges in
parameter extraction while precisely generating current-
voltage (I-V) and power-voltage (P-V) characteristics of
photovoltaic cells. By leveraging the algorithm's robust
search mechanisms, this approach achieves higher
precision in modeling photovoltaic behavior, offering a
reliable solution for optimizing energy output
predictions in solar energy systems.

Method

Photovoltaic cell behavior is commonly modeled
through equivalent circuit representations, which
integrate key electrical components such as a
photogenerated current source, diode configurations (in
series or parallel), series resistance, and shunt resistance.
Among the established modeling frameworks, two
predominant configurations are widely adopted: one-
diode model (ODM) and two-diode model (TDM).

The ODM simplifies the photovoltaic cell’s
electrical characteristics using a single diode to simulate
recombination losses in the depletion region. In contrast,
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the TDM incorporates an additional diode to account for
recombination effects in both the neutral and depletion
regions, enhancing modeling accuracy under varying
operating conditions. These models serve as
foundational tools for simulating current-voltage (I-V)
and power-voltage (P-V) curves, enabling precise
parameter extraction critical for optimizing photovoltaic
system performance.

One-Diode Model (ODM)

The equivalent circuit of the ODM for photovoltaic
cells is depicted in Figure 1. This model comprises four
primary components: a photogenerated current source
(Ipy), a diode, a series resistance (Rs), and a shunt
resistance (Rp). The current source represents the
photogenerated current, which arises from the
conversion of incident solar energy into electrical energy
through electron-hole pair generation. The diode
accounts for carrier recombination dynamics, with the
diode current (I) corresponding to the diffusion current
produced by majority carriers under forward bias
(Morcillo et al., 2022).

The series resistance quantifies the internal resistive
losses within the semiconductor material and metallic
contacts, leading to voltage and power dissipation as
current flows through the cell. Conversely, the shunt
resistance models leakage currents across the p-n
junction, which degrade the cell’s efficiency under non-
ideal conditions. The diffusion current is governed by
the diode equation:

In=1, {exp [w] - 1} @

AVry

Based on the equivalent circuit in Figure 1, the
output current of the photovoltaic cell by the ODM can
be expressed as follows:

V+IRg

o’ @)

I'=1Ipy —1Ip—

In equations (1) and (2), Ipy is the photogeneration
current, I, is the reverse saturation current, A is the
ideality factor of the diode, V is the photovoltaic output
voltage, I is the photovoltaic output current, and Vry is
the thermal voltage. Thermal voltage is defined as
follows:

NgkT

VTH = T (3)

The thermal stress Vyy depends on Ng (number of
photovoltaic cells connected in series), k (Boltzmann
constant = 1.38x10-2 ]J/K), g (electron charge = 1.6x10-1°
C), and T (absolute temperature of the photovoltaic cell
measured in Kelvin). Thus, in the ODM there are five
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parameters namely: Ipy, Iy, Rs, Rp, and A, as unknown
parameters.

>
Ipy Ip Ip R, I T
T> D Ry \%

Figure 1. One-diode model circuit

Two-Diode Model (TDM)

The equivalent circuit of the TDM for photovoltaic
cells, illustrated in Figure 2, incorporates two diodes to
enhance the representation of carrier dynamics,
contrasting with the simplified TDM. This configuration
explicitly accounts for recombination losses in both the
depletion and neutral regions of the p-n junction,
addressing limitations of the TDM in capturing non-
ideal behaviors under diverse operating conditions
(Celik et al., 2025). The first diode models the diffusion
current (Ip,) arising from majority carrier transport,
while the second diode represents the recombination
current (Ip,) associated with minority carrier dynamics,
enabling a more comprehensive characterization of
photovoltaic cell performance. The diffusion current and
recombination current are governed by distinct diode
equations:

Ip; = Ipy {exp (Z:;:;)] - 1} (4)
Ipy = Iop; {exp (Z;:;)] - 1} ©)

In equations (4) and (5), Ip; and Iy, are the reverse
saturation currents due to diffusion and recombination
phenomena, respectively. The ideality factors of
diffusion and recombination are denoted by 4; and 4,,
respectively. Thus, the output current is as follows:

V+IRg

~ R ©)

[ =Ipy —Ipy —Ip;

For the TDM there are seven unknown parameters,
namely: Ipy, Iy, Rs, Rp, Ajand A,.

-
Ipy Ipil In2l Ip Rg I T
D1¥ D2 Rp \Y

Figure 2. Two-diode model circuit
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Problem Formulation

The optimization framework in this study is
formulated as an optimization problem defined by a
specific objective function. To quantify the accuracy of
parameter estimation, the root mean square error
(RMSE) method (Calasan et al., 2024) is employed as the
objective function. RMSE serves as a statistical metric to
evaluate the deviation between experimentally
measured current-voltage (I-V) data and the
corresponding values estimated by the photovoltaic
model. This approach ensures rigorous minimization of
discrepancies, enabling precise calibration of model
parameters to match empirical observations.

The objective function for the photovoltaic

parameter estimation problem is mathematically
expressed as:
RMSE = \/%ZMfk(V.I, ®))? 7)

In equation (7), N is the number of measurement
data, V and [ are the photovoltaic output voltage and
current (measurement results) and @ is a vector
containing the parameters to be calculated. For the ODM
the function f;,(V, 1, ) is:

V+IRg

fk(V'Iv(D):IPV_ID_ Rp -1 (8)

While for MDD the function f;,(V, 1, @) is:

V+IRg

fk(V'Iv(D): Ipy —Ipy — Ipz — Rp -1 (9)

The vector @ for the ODM contains @ = {Ipy, Iy, Rs,
Rp, A} and for the TDM contains @ = {Ipy, Iy, Rs, Rp, A4,
AZ}.

Moth-Flame Optimization Algorithm

The moth-flame optimization (MFO) algorithm
operates within a structured metaheuristic framework,
comprising six sequential phases: parameter
initialization, population generation, fitness evaluation,
iterative updating, position refinement, and solution
selection [24]. In this methodology, moths act as search
agents navigating a multidimensional solution space,
while flames represent the optimal positions identified
during the exploration process. Each moth dynamically
adjusts its position relative to the nearest flame,
iteratively refining its trajectory to converge toward
regions of higher fitness, thereby balancing global
exploration and local exploitation.

Critical algorithmic parameters include the
population size (N), dimensionality of the problem,
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lower (Ib) and upper bounds (ub) of the search space,
and the maximum iteration count (Max). The bounds Ib
and (ub) constrain the solution domain, ensuring
feasible parameter ranges for photovoltaic models.
These boundaries are mathematically defined as:

lb; = [lby b,

1bp] (10)

ub; = [ub; ub, ubp] (11)

In the MFO algorithm, the moth population is
randomly generated using equations:

M; ;"= = 1b; + rand;. (ub; — lb;) (12)

Furthermore, the moth population can be presented in
matrix form as follows:

M1,1 M1,2 M1,D
M2,1 Mz,z Mz,D

Mi,j(l) = M3,1 M3,2 M3,D (13)
MN,1 MN,z MN,D

In equations (12) and (13), the valuesof i =1, 2, 3, ..., N
andj=1,23,..D.

The process to find the fitness value of the moth is
done using the equation:

MFi(l=1) = f(Mi‘j(I=1)) (14)

Furthermore, the fitness value can be presented in
matrix form as follows:

MF,
MF,
MF,® = | MF,

MF,

In equations (14) and (15), the valuesof i =1, 2,3, ..., N
andj=1,23,..,D.

The flame fitness values (at I = 1) are the initial
fitness values of the sorted moths, while the flames are
then sorted based on their match values. The flame
fitness values are sorted from best to worst, as follows:

FF, 0

FF,
FF," = sorted(MF,"’) = | FF, (16)
FFy
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Fiy Fp o Fp®
Fop Fop = Fpp
Fi,j(l) = F3,1 F3,2 F3,D (17)
Fyi Fyp Fyp
Updating the moth population is using a

logarithmic spiral model, in which the movement of
moths will converge to the flame based on the
formulation:

Mi'j(I'H) = Si']-(l). e®t), cos(2mt) + Fi'j(l) (18)

where S is the distance between the moth and the flame,
b is the shape constant of the spiral path (-1 <b<1), tis
the control parameter to keep and adjust the distance
between the moth and the flame to always be in the
spiral path (r < t < 1), and r is the convergence constant
that moves down from -1 to -2 to make the forecast value
of the control parameter.

Furthermore, the distance between the moth and
the flame is defined as follows:

Si’j(l) = abS(Fi,]'(I) — Ml',]'(l)) (19)

The r and t values are respectively expressed as follows:

r=—(1+--) (20)
t=rand.(r —1)+1 (20

The updated position of the moth may sometimes
become worse after going through the iteration process.
To ensure that the moth can find the flame, the moth
must always update its position with respect to the flame
at each final step of the iteration process. Therefore, the
control parameters required for this mechanism are:

FN = round (N - M)

Max

(21)

Finally, based on (22), the process of moth population
renewal becomes:

Mi,j(1+1) = Si'j(l). e(bt). COS(ZT[t) + Fi'j(l) ) lf I <FN (23)
M = 5,,0.e®0 cos(2nt) + Fey ;O if | > FN (24)
Next, the flame update is done using the equation:
MF (I+1)
FF,0*D = sorted| (25)
FF,®

The position of the flames in order of their fitness value
becomes:
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Fii Fipow Fp|®™?
Fon Fap Fzp

Fi,j(Hl) = (F1 F2  Fap (26)
Fyi o FEnp Fy,p

The best position of the moth and its fitness value are
selected here, as follows:

FFbest(1+1) — FF1(1+1)
Fbest(1+1) — F]_’j(1+1)

(27)
(28)

The process of updating moths and flames can then be

carried out again until F Fbest(’ D reaches the
predetermined criterion value and/or I = Max.

Result and Discussion

The experimental current-voltage (I-V)
characteristics of the RTC-France photovoltaic cell,
measured under standard test conditions (33°C, 1000
W/m? irradiance), are summarized in Table 1. For
parameter estimation, the one-diode model (ODM)
involves five unknown variables: the photogenerated
current, diode reverse saturation current, ideality factor,
series resistance), and shunt resistance. MFO agorithm is
applied to estimate these parameters within the
following constrained search intervals:Ip, = {0, 1} A, Iy =
{0, 1} A, A={1, 2}, Rs = {0, 0,5} Q, and R, = {0, 100} Q.
Meanwhile, the TDM has seven unknown parameters to
be estimated with the MFO design interval: I, = {0, 1}
A, Ip; ={0, 1} nA, Ip; ={0, 1} pA, A; = {1, 2}, A, ={1, 2},
Rg =1{0,0,5} Q, and Rp = {0, 100} Q.

Table 1. RTC-France Photovoltaic Cell Data

Item Measured Data

V (Volt) I (Ampere) P (Watt)
1 -0.2157 0.7640 -0.1572
2 -0.1291 0.7620 -0.0984
3 -0.0588 0.7605 -0.0447
4 0.0057 0.7605 0.0043
5 0.0646 0.7600 0.0491
6 0.1185 0.7590 0.0899
7 0.1678 0.7570 0.1270
8 0.2132 0.7570 0.1614
9 0.2545 0.7555 0.1923
10 0.2924 0.7540 0.2205
11 0.3269 0.7505 0.2453
12 0.3585 0.7465 0.2676
13 0.3873 0.7385 0.2860
14 0.4137 0.7280 0.3012
15 0.4373 0.7065 0.3090
16 0.4590 0.6755 0.3101
17 0.4784 0.6320 0.3023
18 0.4960 0.5730 0.2842

783



Jurnal Penelitian Pendidikan IPA (JPPIPA)

Item Measured Data

V (Volt) I (Ampere) P (Watt)
19 0.5119 0.4990 0.2554
20 0.5265 0.4130 0.2174
21 0.5398 0.3165 0.1708
22 0.5521 0.2120 0.1170
23 0.5633 0.1035 0.0583
24 0.5736 -0.0100 -0.0057
25 0.5833 -0.1230 -0.0717
26 0.5900 -0.2100 -0.1239
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optimization (SDO), PGJAYA, parallelized sunflower
optimization (pSFS), improved crow search algorithm
(ImCSA), modified adaptive differential evolution
(MADE), chaotic whale optimization algorithm
(CWOA), and Nelder-Mead-modified moth-flame
optimization (NM-MPSO) in TDM-based parameter
estimation. These results validate the MFO algorithm’s
robustness and precision in navigating complex, high-
dimensional search spaces, positioning it as a
competitive tool for photovoltaic system optimization.

Table 2 presents the estimated parameters and the
RMSE for ODM and TDM of RTC-France photovoltaic
cells using the MFO algorithm.

Table 2. Estimation Results Using the MFO Algorithm

Parameters ODM TDM
Ipv (A) 0.7608 0.7608
Io1 (hA) 0.3230 0.7493
Io2 (LA) - 0.2260
Rs (Q) 0.0364 0.0367
Rp (Q) 53.7185 55.4854
A1 1.4812 2.0000
A - 1.4510
RMSE 9.8602x10-04 9.8248x10-04

The RMSE values obtained using the MFO
algorithm for the RTC-France photovoltaic cell are
presented in Table 2, with 9.8602x10-%4 for the ODM and
9.8344x10% for the two-diode model (TDM). These
results indicate that the TDM achieves marginally higher
accuracy in parameter estimation compared to the
ODM, attributed to its enhanced capability to model
recombination losses through the inclusion of a second
diode. The reduced RMSE of the TDM underscores its
suitability =~ for applications requiring precise
photovoltaic characterization under varying operational
conditions.

A comparative analysis of photovoltaic parameter
estimation methods, as summarized in Table 3, reveals
that the MFO algorithm exhibits accuracy comparable to
advanced techniques such as teaching-learning-based
optimization with triple-phase learning (TPTLBO),
improved teaching-learning-based optimization
(ITLBO), improved symbiotic organisms search (ISCE),
and hybrid firefly and pattern search (HFAPS) for the
TDM. For the ODM, the MFO algorithm surpasses the
accuracy of symbiotic organisms search (SOS), modified
salp swarm optimization (MSSO), and modified
artificial bee colony (MABC) algorithms. Furthermore,
the MFO algorithm demonstrates superior performance
over methods such as supply-demand-based

Table 3. Comparison of RMSE Results of RTC-France
Photovoltaic Parameter Estimation of Various Algorithms

Algorithms RMSE
ODM TDM
MFO 9.8602x10-04  9.8248x10-04
SDO (Xiong et al., 2019) 9.8602x10-04  9.8250x10-04
SOS (Xiong et al., 2018) 9.8609x10-04  9.8518x10-04
TPTLBO (Liao et al., 2020) 9.8602x10-04  9.8248x10-04
ITLBO (Li et al., 2019) 9.8602x10-04  9.8248x10-04
PGJAYA (Yu et al., 2019) 9.8602x10-04  9.8263x10-04
PSFS (Chen et al., 2019) 9.8602x10-04  9.8255x10-04
ImCSA (Kang et al., 2018) 9.8602x10-04  9.8249x10-04
ISCE (Gao et al., 2018) 9.8602x10-04  9.8248x10-04
MSSO (Lin et al., 2017) 9.8607x10-04  9.8281x10-04
MABC (Jamadi et al., 2016) 9.8610x10-04  9.8276x10-04
MADE (Li et al., 2019) 9.8602x10-04  9.8261x10-04
HFAPS (Beigi & Maroosi, 9.8602x10-04  9.8248x10-04
2018)
CWOA (Oliva et al., 2017) 9.8602x10-04  9.8272x10-04
NM-MPSO (Hamid et al., 9.8602x10-04  9.8250x10-04

2016)

Furthermore, to rigorously validate the accuracy of
the MFO algorithm in determining photovoltaic
parameters, the current-voltage (I-V) and power-voltage
(P-V) curves derived from the measured and estimated
datasets were systematically compared. Figures 3(a) and
3(b) illustrate the I-V and P-V characteristics,
respectively, for the ODM, while Figures 4(a) and 4(b)
depict the corresponding curves for the TDM. A striking
congruence between the measured and estimated curves
is evident across all figures, with negligible deviations
observed in both the I-V and P-V profiles. This close
alignment underscores the MFO algorithm’s capability
to accurately replicate the electrical behavior of
photovoltaic systems under both ODM and TDM
configurations. The consistent overlap of experimental
and simulated curves further substantiates the
algorithm’s robustness in parameter identification,
reinforcing its reliability for high-precision photovoltaic
modeling and analysis.
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Figure 3. One-diode model: (a) I-V curve, (b) P-V curve

By comparing the measured data with the
estimated results, the average current errors for both the
ODM and TDM are found to be below 0,0025 A, while
the average power errors for these models remain under
0,0015 W. These results demonstrate that the MFO
algorithm achieves photovoltaic parameter estimation
with exceptional accuracy, as evidenced by the minimal

0.8

0.6 -

04 r

I (Ampere)
(=}
[}

deviations observed for both the ODM and TDM
configurations. The consistently low errors across
current and power measurements highlight the
robustness of the MFO algorithm in delivering precise
parameter identification, reinforcing its suitability for
modeling complex photovoltaic systems under varying
operational conditions.

0.4 T T

O P: measured
——P: estimated

0.3 r

0.2 0 0.2 0.4 0.6
V (Volt)

(b)

Figure 4. Two-diode model: (a) I-V curve, (b) P-V curve

0 L
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V (Volt)
(@)
Conclusion

The MFO algorithm achieves root mean square
error (RMSE) values of 9.8602 x 10* and 9.8344 x 10 for
photovoltaic parameter estimation under the ODM and
TDM, respectively. Notably, the marginally lower RMSE
of the TDM underscores its superior accuracy over the
ODM. Furthermore, comparative analysis demonstrates
that the MFO algorithm significantly outperforms
existing metaheuristic algorithms including SDO, SOS,
MSSO, PGJAYA, pSFS, ImCSA, MABC, MADE, CWOA,
and NM-MPSO in terms of estimation precision. Beyond

its exceptional accuracy in parameter identification, the
MFO algorithm exhibits remarkable fidelity in
reconstructing the I-V and P-V curves, aligning closely
with empirical measurements. Additionally, the
algorithm’s robustness and adaptability suggest its
broader applicability for optimizing parameters in
diverse = photovoltaic  technologies, including
monocrystalline and polycrystalline solar panels,
thereby holding significant promise for advancing
photovoltaic modeling and system design.
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