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Abstract: Estimation of photovoltaic cell parameters from experimental data 
is an important part of photovoltaic system performance modeling and 
optimization. This study aims to estimate the parameters of photovoltaic 
cells. The photovoltaic models used are the one-diode model (ODM) and the 
two-diode model (TDM). Optimization is performed using the moth-flame 
optimization (MFO) algorithm. The root mean square error (RMSE) method 
is applied to determine the accuracy of the estimated parameters. 
Experimental results show that the MFO algorithm is able to obtain 
photovoltaic cell parameters with a high level of accuracy, both in ODM and 
TDM. The current-voltage (I-V) and power-voltage (P-V) curves between the 
measured and estimated data also show a very good match. In addition, the 
optimization algorithm outperforms most metaheuristic algorithms applied 
in photovoltaic cell parameter determination. Thus, the MFO algorithm is 
suitable to be applied in determining the photovoltaic cell parameters.  
 
Keywords: Metaheuristic algorithm; One-diode model; Photovoltaic 

parameters; Two-diode model. 

  

Introduction  
 
Solar energy has emerged as a cornerstone of global 

efforts to transition toward sustainable energy systems 
due to its abundance, renewability, and low 
environmental impact  (Jannah et al., 2024). The design 
of solar power plants typically begins with 
computational analysis and simulation, where precise 
photovoltaic (PV) cell modeling serves as a critical initial 
step to optimize plant performance. This process relies 
on mathematical models to derive PV parameters, 
enabling the generation of current-voltage (I-V) and 
power-voltage (P-V) characteristics that align with the 
operational behavior of the cells. However, PV cell 
modeling is inherently complex due to its nonlinear 
nature and significant sensitivity to environmental 
variables, including temperature fluctuations and 
variations in solar irradiance (Bălăceanu et al., 2024; 
Nfaoui et al., 2024). These factors necessitate robust 
modeling frameworks to ensure accuracy across diverse 

operating conditions. These sensitivities necessitate the 
development of robust and flexible modeling 
frameworks that maintain accuracy across diverse 
environmental conditions. 

Mathematical models for I-V and P-V 
characterization involve numerous unknown variables, 
yet the one-diode and two-diode models are widely 
adopted for their ability to generate accurate results 
(Tifidat et al., 2022). The one-diode model, requiring 
only five parameters, offers simplicity and 
computational efficiency. However, its accuracy 
diminishes under low irradiance conditions due to the 
neglect of recombination losses (Lin et al., 2024). In 
contrast, the two-diode model incorporates seven 
parameters, addressing this limitation by reintroducing 
recombination effects through an additional diode. This 
enhancement improves reliability in scenarios with 
variable solar radiation, positioning the two-diode 
model as a superior choice for high-precision PV system 
design and optimization.  

https://doi.org/10.29303/jppipa.v11i7.10892
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Regardless of the model selected, the accuracy of 
PV modeling heavily depends on the proper estimation 
of its parameters, which define the shape and accuracy 
of the I-V and P-V curves. These parameters are not 
directly measurable and must be inferred through 
optimization techniques. However, due to the highly 
nonlinear and multimodal nature of the objective 
function, identifying optimal parameters presents a 
complex and computationally intensive challenge. This 
makes parameter estimation a critical focus in PV 
research, as even slight inaccuracies can lead to 
substantial deviations in performance predictions. 

The determination of parameters in the one-diode 
and two-diode models constitutes an optimization 
challenge requiring advanced computational solutions. 
Three primary approaches are employed to address this 
issue: analytical methods, numerical methods, and 
metaheuristic algorithms. Analytical techniques, such as 
the Padé approximation (Wang et al., 2024), Taylor series 
expansion (El Ainaoui et al., 2023), and Lambert W 
function (Abdel-Basset et al., 2024; Pindado et al., 2021), 
offer rapid computational efficiency and reasonable 
accuracy for parameter extraction. However, their 
applicability diminishes for complex or large-scale 
problems due to inherent limitations in handling 
nonlinearities and excessive computational demands. 

Numerical methods, including Newton-Raphson 
(Abdulrazzaq et al., 2022; Adak et al., 2023) and Gauss-
Seidel (Sakthivel et al., 2023) iterations, enhance 
accuracy by leveraging comprehensive curve data 
points. While these methods outperform analytical 
approaches in precision, they are hindered by high 
computational resource requirements, susceptibility to 
non-convergence, and a tendency to stagnate at local 
optima (Tifidat et al., 2023). In contrast, metaheuristic 
algorithms have gained prominence for their robustness 
in resolving intricate optimization problems. These 
algorithms eliminate dependencies on strict convexity, 
continuity, or differentiability of objective functions and 
constraints, enabling superior performance in accuracy, 
reliability, and convergence speed compared to 
traditional methods (Bakır, 2023). By deploying 
randomized search agents across the solution space, 
metaheuristic strategies effectively circumvent local 
optima, ensuring global optimization potential (Kwakye 
et al., 2024). This adaptability makes them particularly 
advantageous for photovoltaic parameter identification 
in scenarios demanding high precision and 
computational stability. 

Numerous metaheuristic algorithms have been 
developed and utilized for photovoltaic parameter 
estimation to derive current-voltage (I-V) characteristics. 
A notable example is the genetic algorithm (GA) 
(Durango-Flórez et al., 2022; Saadaoui et al., 2021), which 

mitigates the risk of convergence at local optima by 
performing search operations across multiple points 
simultaneously. Despite its ability to explore diverse 
solutions, GA exhibits a slow convergence rate, limiting 
its efficiency. Alternative approaches, such as the 
differential evolution (DE) algorithm (Yuan et al., 2023), 
particle swarm optimization (PSO) algorithm (Lo et al., 
2024), and simulated annealing (SA) algorithm (Dkhichi, 
2023), have been employed to enhance the precision of 
parameter estimation. Comparative studies indicate that 
DE, PSO, and SA demonstrate superior accuracy over 
GA in identifying photovoltaic parameters. 

While DE is recognized for its robustness in solving 
optimization problems, its effectiveness heavily 
depends on appropriate parameter configurations [18]. 
In contrast, PSO offers rapid convergence but is prone to 
stagnation in local optima, particularly in high-
dimensional search spaces (Lo et al., 2024). SA, 
renowned for its adaptability and global optimization 
capabilities, often demands extensive computational 
resources and time to achieve optimal solutions 
(Dkhichi, 2023). These trade-offs highlight the need for 
algorithm selection based on specific requirements, 
balancing accuracy, computational efficiency, and 
problem dimensionality in photovoltaic parameter 
estimation. 

This study introduces a metaheuristic moth-flame 
optimization (MFO) algorithm designed to enhance the 
accuracy and efficiency of photovoltaic parameter 
estimation in both single-diode and double-diode 
models. The proposed MFO algorithm demonstrates 
superior performance compared to conventional 
optimization methods, addressing critical challenges in 
parameter extraction while precisely generating current-
voltage (I-V) and power-voltage (P-V) characteristics of 
photovoltaic cells. By leveraging the algorithm's robust 
search mechanisms, this approach achieves higher 
precision in modeling photovoltaic behavior, offering a 
reliable solution for optimizing energy output 
predictions in solar energy systems. 

 

Method  
 

Photovoltaic cell behavior is commonly modeled 
through equivalent circuit representations, which 
integrate key electrical components such as a 
photogenerated current source, diode configurations (in 
series or parallel), series resistance, and shunt resistance. 
Among the established modeling frameworks, two 
predominant configurations are widely adopted: one-
diode model (ODM) and two-diode model (TDM). 

The ODM simplifies the photovoltaic cell’s 
electrical characteristics using a single diode to simulate 
recombination losses in the depletion region. In contrast, 
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the TDM incorporates an additional diode to account for 
recombination effects in both the neutral and depletion 
regions, enhancing modeling accuracy under varying 
operating conditions. These models serve as 
foundational tools for simulating current-voltage (I−V) 
and power-voltage (P−V) curves, enabling precise 
parameter extraction critical for optimizing photovoltaic 
system performance. 
 
One-Diode Model (ODM) 

The equivalent circuit of the ODM for photovoltaic 
cells is depicted in Figure 1. This model comprises four 
primary components: a photogenerated current source 
(𝐼𝑃𝑉), a diode, a series resistance (𝑅𝑆), and a shunt 
resistance (𝑅𝑃). The current source represents the 
photogenerated current, which arises from the 
conversion of incident solar energy into electrical energy 
through electron-hole pair generation. The diode 
accounts for carrier recombination dynamics, with the 
diode current (𝐼𝐷) corresponding to the diffusion current 
produced by majority carriers under forward bias 
(Morcillo et al., 2022). 

The series resistance quantifies the internal resistive 
losses within the semiconductor material and metallic 
contacts, leading to voltage and power dissipation as 
current flows through the cell. Conversely, the shunt 
resistance models leakage currents across the p-n 
junction, which degrade the cell’s efficiency under non-
ideal conditions. The diffusion current is governed by 
the diode equation: 

 

𝐼𝐷 = 𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆)

A𝑉𝑇𝐻
] −  1}                 (1) 

  
Based on the equivalent circuit in Figure 1, the 

output current of the photovoltaic cell by the ODM can 
be expressed as follows: 

 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝐷 − 
𝑉+𝐼𝑅𝑆

𝑅𝑃
         (2) 

 
In equations (1) and (2), 𝐼𝑃𝑉  is the photogeneration 

current, 𝐼𝑂 is the reverse saturation current, A is the 
ideality factor of the diode, V is the photovoltaic output 
voltage, I is the photovoltaic output current, and 𝑉𝑇𝐻 is 
the thermal voltage. Thermal voltage is defined as 
follows: 

 

𝑉𝑇𝐻 =
𝑁𝑆𝑘𝑇

𝑞
   (3) 

 
The thermal stress 𝑉𝑇𝐻 depends on 𝑁𝑆 (number of 

photovoltaic cells connected in series), k (Boltzmann 
constant = 1.38x10-23 J/K), q (electron charge = 1.6x10-19 
C), and T (absolute temperature of the photovoltaic cell 
measured in Kelvin). Thus, in the ODM there are five 

parameters namely: 𝐼𝑃𝑉 , 𝐼𝑂, 𝑅𝑆, 𝑅𝑃, and A, as unknown 
parameters. 
 

 
Figure 1. One-diode model circuit 

 

Two-Diode Model (TDM) 
The equivalent circuit of the TDM for photovoltaic 

cells, illustrated in Figure 2, incorporates two diodes to 
enhance the representation of carrier dynamics, 
contrasting with the simplified TDM. This configuration 
explicitly accounts for recombination losses in both the 
depletion and neutral regions of the p-n junction, 
addressing limitations of the TDM in capturing non-
ideal behaviors under diverse operating conditions 
(Çelik et al., 2025). The first diode models the diffusion 
current (𝐼𝐷1) arising from majority carrier transport, 
while the second diode represents the recombination 
current (𝐼𝐷2) associated with minority carrier dynamics, 
enabling a more comprehensive characterization of 
photovoltaic cell performance. The diffusion current and 
recombination current are governed by distinct diode 
equations: 

 

𝐼𝐷1 = 𝐼𝑂1 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴1𝑉𝑇𝐻
] −  1}  (4) 

𝐼𝐷2 = 𝐼𝑂2 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴2𝑉𝑇𝐻
] −  1}  (5) 

In equations (4) and (5), 𝐼𝑂1 and 𝐼𝑂2 are the reverse 
saturation currents due to diffusion and recombination 
phenomena, respectively. The ideality factors of 
diffusion and recombination are denoted by 𝐴1 and 𝐴2, 
respectively. Thus, the output current is as follows: 

 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝐷1 − 𝐼𝐷2 − 
𝑉+𝐼𝑅𝑆

𝑅𝑃
  (6) 

 
For the TDM there are seven unknown parameters, 

namely: 𝐼𝑃𝑉 , 𝐼𝑂, 𝑅𝑆, 𝑅𝑃, 𝐴1and 𝐴2. 
 

 
Figure 2. Two-diode model circuit 
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Problem Formulation 
The optimization framework in this study is 

formulated as an optimization problem defined by a 
specific objective function. To quantify the accuracy of 
parameter estimation, the root mean square error 
(RMSE) method (Ćalasan et al., 2024) is employed as the 
objective function. RMSE serves as a statistical metric to 
evaluate the deviation between experimentally 
measured current-voltage (I−V) data and the 
corresponding values estimated by the photovoltaic 
model. This approach ensures rigorous minimization of 
discrepancies, enabling precise calibration of model 
parameters to match empirical observations. 

The objective function for the photovoltaic 
parameter estimation problem is mathematically 
expressed as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑓𝑘(𝑉, 𝐼, ∅)]2𝑁

𝑘=1     (7) 

 
In equation (7), N is the number of measurement 

data, V and I are the photovoltaic output voltage and 
current (measurement results) and ∅ is a vector 
containing the parameters to be calculated. For the ODM 
the function 𝑓𝑘(𝑉, 𝐼, ∅) is: 
 

𝑓𝑘(𝑉, 𝐼, ∅) = IPV − ID − 
V+IRs

Rp
− I   (8) 

 
While for MDD the function 𝑓𝑘(𝑉, 𝐼, ∅) is: 
 

𝑓𝑘(𝑉, 𝐼, ∅) =   IPV − ID1 − ID2 −
V+IRs

Rp
− I       (9) 

 
The vector ∅ for the ODM contains ∅ = {𝐼𝑃𝑉, 𝐼𝑂, 𝑅𝑆, 

𝑅𝑃, A} and for the TDM contains ∅ = {𝐼𝑃𝑉 , 𝐼𝑂, 𝑅𝑆, 𝑅𝑃, 𝐴1, 
𝐴2}. 
 
Moth-Flame Optimization Algorithm 

The moth-flame optimization (MFO) algorithm 
operates within a structured metaheuristic framework, 
comprising six sequential phases: parameter 
initialization, population generation, fitness evaluation, 
iterative updating, position refinement, and solution 
selection [24]. In this methodology, moths act as search 
agents navigating a multidimensional solution space, 
while flames represent the optimal positions identified 
during the exploration process. Each moth dynamically 
adjusts its position relative to the nearest flame, 
iteratively refining its trajectory to converge toward 
regions of higher fitness, thereby balancing global 
exploration and local exploitation. 

Critical algorithmic parameters include the 
population size (N), dimensionality of the problem, 

lower (𝑙𝑏) and upper bounds (𝑢𝑏) of the search space, 
and the maximum iteration count (Max). The bounds 𝑙𝑏 
and (𝑢𝑏) constrain the solution domain, ensuring 
feasible parameter ranges for photovoltaic models. 
These boundaries are mathematically defined as: 

 
𝑙𝑏𝑗 = [𝑙𝑏1 𝑙𝑏2 … 𝑙𝑏𝐷]    (10) 

𝑢𝑏𝑗 = [𝑢𝑏1 𝑢𝑏2 … 𝑢𝑏𝐷]    (11) 

 
In the MFO algorithm, the moth population is 

randomly generated using equations: 
 

𝑀𝑖,𝑗
(𝐼=1) = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑𝑗 . (𝑢𝑏𝑗 − 𝑙𝑏𝑗)  (12) 

 
Furthermore, the moth population can be presented in 
matrix form as follows: 
 

𝑀𝑖,𝑗
(𝐼) = 

[
 
 
 
 
𝑀1,1

𝑀2,1

𝑀3,1

𝑀1,2

𝑀2,2

𝑀3,2

⋮
𝑀𝑁,1

⋮
𝑀𝑁,2

    

…
…
…

𝑀1,𝐷

𝑀2,𝐷

𝑀3,𝐷

    
⋱
⋯

⋮
𝑀𝑁,𝐷]

 
 
 
 

  (13) 

 
In equations (12) and (13), the values of i = 1, 2, 3, ..., N 
and j = 1, 2, 3, ..., D. 

The process to find the fitness value of the moth is 
done using the equation: 

 

MFi
(I=1) =  f(Mi,j

(I=1))  (14) 

 
Furthermore, the fitness value can be presented in 
matrix form as follows: 
 

𝑀𝐹𝑖
(𝐼) = 

[
 
 
 
 
𝑀𝐹1

𝑀𝐹2

𝑀𝐹3

⋮
𝑀𝐹𝑁]

 
 
 
 

       (15) 

 
In equations (14) and (15), the values of i = 1, 2, 3, ..., N 
and j = 1, 2, 3, ..., D. 

The flame fitness values (at I = 1) are the initial 
fitness values of the sorted moths, while the flames are 
then sorted based on their match values. The flame 
fitness values are sorted from best to worst, as follows: 

 

𝐹𝐹𝑖
(𝐼) =  𝑠𝑜𝑟𝑡𝑒𝑑(𝑀𝐹𝑖

(𝐼)) =  

[
 
 
 
 
𝐹𝐹1

𝐹𝐹2

𝐹𝐹3

⋮
𝐹𝐹𝑁]

 
 
 
 
(𝐼)

   (16) 
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𝐹𝑖,𝑗
(𝐼) = 

[
 
 
 
 
𝐹1,1

𝐹2,1

𝐹3,1

𝐹1,2

𝐹2,2

𝐹3,2

⋮
𝐹𝑁,1

⋮
𝐹𝑁,2

    

…
…
…

𝐹1,𝐷

𝐹2,𝐷

𝐹3,𝐷

    
⋱
⋯

⋮
𝐹𝑁,𝐷]

 
 
 
 
(𝐼)

    (17) 

 
Updating the moth population is using a 

logarithmic spiral model, in which the movement of 
moths will converge to the flame based on the 
formulation: 

 

𝑀𝑖,𝑗
(𝐼+1) = 𝑆𝑖,𝑗

(𝐼). 𝑒(𝑏𝑡). 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑖,𝑗
(𝐼)    (18) 

 
where S is the distance between the moth and the flame, 
b is the shape constant of the spiral path (-1 ≤ b ≤ 1), t is 
the control parameter to keep and adjust the distance 
between the moth and the flame to always be in the 
spiral path (r ≤ t ≤ 1), and r is the convergence constant 
that moves down from -1 to -2 to make the forecast value 
of the control parameter. 

Furthermore, the distance between the moth and 
the flame is defined as follows: 

 

𝑆𝑖,𝑗
(𝐼) = 𝑎𝑏𝑠(𝐹𝑖,𝑗

(𝐼) − 𝑀𝑖,𝑗
(𝐼))        (19) 

 
The r and t values are respectively expressed as follows: 
 

𝑟 =  − (1 +
𝐼

𝑀𝑎𝑥
 )              (20) 

𝑡 = 𝑟𝑎𝑛𝑑. (𝑟 − 1) + 1           (20 
 

The updated position of the moth may sometimes 
become worse after going through the iteration process. 
To ensure that the moth can find the flame, the moth 
must always update its position with respect to the flame 
at each final step of the iteration process. Therefore, the 
control parameters required for this mechanism are: 
 

𝐹𝑁 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 −
(𝑁−1).𝐼

𝑀𝑎𝑥
) (21) 

 
Finally, based on (22), the process of moth population 
renewal becomes: 
 

𝑀𝑖,𝑗
(𝐼+1) = 𝑆𝑖,𝑗

(𝐼). 𝑒(𝑏𝑡). 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑖,𝑗
(𝐼) , 𝑖𝑓 𝐼 ≤ 𝐹𝑁  (23) 

𝑀𝑖,𝑗
(𝐼+1) = 𝑆𝑖,𝑗

(𝐼). 𝑒(𝑏𝑡). 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝐹𝑁,𝑗
(𝐼) , 𝑖𝑓 𝐼 > 𝐹𝑁 (24) 

 
Next, the flame update is done using the equation: 
 

𝐹𝐹𝑖
(𝐼+1) =  𝑠𝑜𝑟𝑡𝑒𝑑 [

𝑀𝐹𝑖
(𝐼+1)

𝐹𝐹𝑖
(𝐼)

] (25) 

 
The position of the flames in order of their fitness value 
becomes: 

 

𝐹𝑖,𝑗
(𝐼+1) = 

[
 
 
 
 
𝐹1,1

𝐹2,1

𝐹3,1

𝐹1,2

𝐹2,2

𝐹3,2

⋮
𝐹𝑁,1

⋮
𝐹𝑁,2

    

…
…
…

𝐹1,𝐷

𝐹2,𝐷

𝐹3,𝐷

    
⋱
⋯

⋮
𝐹𝑁,𝐷]

 
 
 
 
(𝐼+1)

 (26) 

 
The best position of the moth and its fitness value are 
selected here, as follows: 
 

𝐹𝐹𝑏𝑒𝑠𝑡
(𝐼+1) = 𝐹𝐹1

(𝐼+1)        (27) 

 𝐹𝑏𝑒𝑠𝑡
(𝐼+1) = 𝐹1,𝑗

(𝐼+1)         (28) 

 
The process of updating moths and flames can then be 

carried out again until 𝐹𝐹𝑏𝑒𝑠𝑡
(𝐼+1) reaches the 

predetermined criterion value and/or I = Max. 

 
Result and Discussion 
 

The experimental current-voltage (I−V) 
characteristics of the RTC-France photovoltaic cell, 
measured under standard test conditions (33°C, 1000 
W/m² irradiance), are summarized in Table 1. For 
parameter estimation, the one-diode model (ODM) 
involves five unknown variables: the photogenerated 
current, diode reverse saturation current, ideality factor, 
series resistance), and shunt resistance. MFO agorithm is 
applied to estimate these parameters within the 
following constrained search intervals:𝐼𝑃𝑉 = {0, 1} A, 𝐼𝑂 = 
{0, 1} µA, A = {1, 2}, 𝑅𝑆 = {0, 0,5} Ω, and 𝑅𝑃 = {0, 100} Ω. 
Meanwhile, the TDM has seven unknown parameters to 
be estimated with the MFO design interval: 𝐼𝑃𝑉 = {0, 1} 
A, 𝐼𝑂1 = {0, 1} µA, 𝐼𝑂2 = {0, 1} µA, 𝐴1 = {1, 2}, 𝐴2 = {1, 2 }, 
𝑅𝑆 = {0, 0,5} Ω, and 𝑅𝑃 = {0, 100} Ω. 

 
Table 1. RTC-France Photovoltaic Cell Data 

Item Measured Data 

V (Volt) I (Ampere) P (Watt) 

1 -0.2157 0.7640 -0.1572 
2 -0.1291 0.7620 -0.0984 
3 -0.0588 0.7605 -0.0447 
4 0.0057 0.7605 0.0043 
5 0.0646 0.7600 0.0491 
6 0.1185 0.7590 0.0899 
7 0.1678 0.7570 0.1270 
8 0.2132 0.7570 0.1614 
9 0.2545 0.7555 0.1923 
10 0.2924 0.7540 0.2205 
11 0.3269 0.7505 0.2453 
12 0.3585 0.7465 0.2676 
13 0.3873 0.7385 0.2860 
14 0.4137 0.7280 0.3012 
15 0.4373 0.7065 0.3090 
16 0.4590 0.6755 0.3101 
17 0.4784 0.6320 0.3023 
18 0.4960 0.5730 0.2842 
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Item Measured Data 

V (Volt) I (Ampere) P (Watt) 
19 0.5119 0.4990 0.2554 
20 0.5265 0.4130 0.2174 
21 0.5398 0.3165 0.1708 
22 0.5521 0.2120 0.1170 
23 0.5633 0.1035 0.0583 
24 0.5736 -0.0100 -0.0057 
25 0.5833 -0.1230 -0.0717 
26 0.5900 -0.2100 -0.1239 

 
Table 2 presents the estimated parameters and the 

RMSE for ODM and TDM of RTC-France photovoltaic 
cells using the MFO algorithm. 

 
Table 2. Estimation Results Using the MFO Algorithm 

Parameters ODM TDM 

IPV (A) 0.7608 0.7608 
IO1 (µA) 0.3230 0.7493 
IO2 (µA) - 0.2260 
RS (Ω) 0.0364 0.0367 
RP (Ω) 53.7185 55.4854 
A1 1.4812 2.0000 
A2 - 1.4510 
RMSE  9.8602x10-04 9.8248x10-04 

 
The RMSE values obtained using the MFO 

algorithm for the RTC-France photovoltaic cell are 
presented in Table 2, with 9.8602x10-04 for the ODM and 
9.8344x10-04 for the two-diode model (TDM). These 
results indicate that the TDM achieves marginally higher 
accuracy in parameter estimation compared to the 
ODM, attributed to its enhanced capability to model 
recombination losses through the inclusion of a second 
diode. The reduced RMSE of the TDM underscores its 
suitability for applications requiring precise 
photovoltaic characterization under varying operational 
conditions. 

A comparative analysis of photovoltaic parameter 
estimation methods, as summarized in Table 3, reveals 
that the MFO algorithm exhibits accuracy comparable to 
advanced techniques such as teaching–learning-based 
optimization with triple-phase learning (TPTLBO), 
improved teaching-learning-based optimization 
(ITLBO), improved symbiotic organisms search (ISCE), 
and hybrid firefly and pattern search (HFAPS) for the 
TDM. For the ODM, the MFO algorithm surpasses the 
accuracy of symbiotic organisms search (SOS), modified 
salp swarm optimization (MSSO), and modified 
artificial bee colony (MABC) algorithms. Furthermore, 
the MFO algorithm demonstrates superior performance 
over methods such as supply-demand-based 

optimization (SDO), PGJAYA, parallelized sunflower 
optimization (pSFS), improved crow search algorithm 
(ImCSA), modified adaptive differential evolution 
(MADE), chaotic whale optimization algorithm 
(CWOA), and Nelder-Mead-modified moth-flame 
optimization (NM-MPSO) in TDM-based parameter 
estimation. These results validate the MFO algorithm’s 
robustness and precision in navigating complex, high-
dimensional search spaces, positioning it as a 
competitive tool for photovoltaic system optimization. 

 
Table 3. Comparison of RMSE Results of RTC-France 
Photovoltaic Parameter Estimation of Various Algorithms 

Algorithms RMSE 

ODM TDM 

MFO 9.8602x10-04 9.8248x10-04 
SDO (Xiong et al., 2019) 9.8602x10-04 9.8250x10-04 
SOS (Xiong et al., 2018) 9.8609x10-04 9.8518x10-04 
TPTLBO (Liao et al., 2020) 9.8602x10-04 9.8248x10-04 
ITLBO (Li et al., 2019) 9.8602x10-04 9.8248x10-04 
PGJAYA (Yu et al., 2019) 9.8602x10-04 9.8263x10-04 
pSFS (Chen et al., 2019) 9.8602x10-04 9.8255x10-04 
ImCSA (Kang et al., 2018) 9.8602x10-04 9.8249x10-04 
ISCE (Gao et al., 2018) 9.8602x10-04 9.8248x10−04 
MSSO (Lin et al., 2017) 9.8607x10-04 9.8281x10-04 
MABC (Jamadi et al., 2016) 9.8610x10-04 9.8276x10-04 
MADE  (Li et al., 2019)  9.8602x10-04 9.8261x10-04 
HFAPS (Beigi & Maroosi, 
2018) 

9.8602x10-04 9.8248x10-04 

CWOA (Oliva et al., 2017) 9.8602x10-04 9.8272x10-04 
NM-MPSO (Hamid et al., 
2016) 

9.8602x10-04 9.8250x10-04 

 
Furthermore, to rigorously validate the accuracy of 

the MFO algorithm in determining photovoltaic 
parameters, the current-voltage (I-V) and power-voltage 
(P-V) curves derived from the measured and estimated 
datasets were systematically compared. Figures 3(a) and 
3(b) illustrate the I-V and P-V characteristics, 
respectively, for the ODM, while Figures 4(a) and 4(b) 
depict the corresponding curves for the TDM. A striking 
congruence between the measured and estimated curves 
is evident across all figures, with negligible deviations 
observed in both the I-V and P-V profiles. This close 
alignment underscores the MFO algorithm’s capability 
to accurately replicate the electrical behavior of 
photovoltaic systems under both ODM and TDM 
configurations. The consistent overlap of experimental 
and simulated curves further substantiates the 
algorithm’s robustness in parameter identification, 
reinforcing its reliability for high-precision photovoltaic 
modeling and analysis. 

 



Jurnal Penelitian Pendidikan IPA (JPPIPA) July 2025, Volume 11, Issue 7, 779-788  

 

785 

 

 

 
(a)  (b) 

Figure 3. One-diode model: (a) I-V curve, (b) P-V curve 
 
By comparing the measured data with the 

estimated results, the average current errors for both the 
ODM and TDM are found to be below 0,0025 A, while 
the average power errors for these models remain under 
0,0015 W. These results demonstrate that the MFO 
algorithm achieves photovoltaic parameter estimation 
with exceptional accuracy, as evidenced by the minimal 

deviations observed for both the ODM and TDM 
configurations. The consistently low errors across 
current and power measurements highlight the 
robustness of the MFO algorithm in delivering precise 
parameter identification, reinforcing its suitability for 
modeling complex photovoltaic systems under varying 
operational conditions. 

 

 

 

 

(a)  (b) 
Figure 4. Two-diode model: (a) I-V curve, (b) P-V curve 

 

Conclusion  

 
The MFO algorithm achieves root mean square 

error (RMSE) values of 9.8602 × 10⁻⁴ and 9.8344 × 10⁻⁴ for 
photovoltaic parameter estimation under the ODM and 
TDM, respectively. Notably, the marginally lower RMSE 
of the TDM underscores its superior accuracy over the 
ODM. Furthermore, comparative analysis demonstrates 
that the MFO algorithm significantly outperforms 
existing metaheuristic algorithms including SDO, SOS, 
MSSO, PGJAYA, pSFS, ImCSA, MABC, MADE, CWOA, 
and NM-MPSO in terms of estimation precision. Beyond 

its exceptional accuracy in parameter identification, the 
MFO algorithm exhibits remarkable fidelity in 
reconstructing the I-V and P-V curves, aligning closely 
with empirical measurements. Additionally, the 
algorithm’s robustness and adaptability suggest its 
broader applicability for optimizing parameters in 
diverse photovoltaic technologies, including 
monocrystalline and polycrystalline solar panels, 
thereby holding significant promise for advancing 
photovoltaic modeling and system design. 
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