

Petrophysical Analysis and Evaluation of Overpressure Zone as Hydrocarbon Trap in North East Java Basin

Michael Anggi¹, A. Haris², Rinaldo¹

¹ Master Program in Reservoir Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok, Indonesia

² Geology and Geophysics Study Program, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok, Indonesia

Received: February 10, 2025

Revised: April 29, 2025

Accepted: May 25, 2025

Published: May 31, 2025

Corresponding Author:

A. Haris

aharis@sci.ui.ac.id

DOI: [10.29303/jppipa.v11i5.11199](https://doi.org/10.29303/jppipa.v11i5.11199)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Errors in estimating pore pressure can cause blowouts during the drilling process, especially in overpressured zones. This study focuses on pore pressure estimation in the North East Java Basin using the approach, which is validated with field data. The well log data analyzed include resistivity, density, sonic velocity, and porosity, which are used to detect the presence of overpressure zones and identify reservoir potential. The results show that the overpressure zone begins at a depth of 4600 feet and lasts up to 9000 feet. The interval between 4800 to 7300 feet is identified as a potential reservoir, while seal rocks are found at 4000–4600 feet. The cross plot between sonic and density parameters shows the dominance of smectite minerals, indicating that perfect compaction has not occurred due to trapped fluids. This finding strengthens the suspicion that the overpressure formation mechanism is dominated by sediment loading. Precise pore pressure estimation is needed to reduce operational risks and optimize hydrocarbon exploration in this area.

Keywords: Hydrocarbon; Overpressure; Pore pressure; Reservoir; Smectite

Introduction

Failure to predict pore pressure is often the main cause of blowouts in drilling activities, especially in areas that have indications of overpressure (Bowers, 2002; Dubinya et al., 2022; Oloruntobi & Butt, 2019). Overpressure not only poses a risk to operational safety, but can also cause environmental damage and economic losses (Pan et al., 2023; Xiu et al., 2025). Therefore, accurate pore pressure estimation is a crucial aspect in casing design planning and drilling risk mitigation (Asfha et al., 2024; Mahmoud et al., 2024). Failure to predict pore pressure: Pore pressure is the pressure of fluids (water, oil, gas) contained in the pore spaces of rocks beneath the earth's surface (Li et al., 2023; Wang et al., 2024). Accurate prediction of pore pressure is essential before and during drilling operations. Failure to predict this means that the pore pressure estimate is far from the actual condition. Often the main cause of blowouts: Blowouts are the loss of control over a drilling well, where formation fluids (oil, gas, water) erupt uncontrollably to the surface. Failure to predict pore pressure is one of the main triggers for blowouts because: Unexpected formation pressure: If the pore

pressure is much higher than expected (overpressure), it can exceed the ability of the drilling mud to withstand it (Ashena et al., 2020).

The drilling mud serves to provide hydrostatic pressure to balance the formation pressure and prevent fluids from entering the well uncontrollably (Darwesh et al., 2017; Huszar et al., 2022; Wittenberger et al., 2023). Incorrect well design: Incorrect pore pressure prediction can result in inadequate casing design (the steel pipe that protects the well) and selection of well control equipment (such as a blowout preventer -BOP) to withstand the actual formation pressure. Especially in areas with indications of overpressure: Overpressure or abnormal pressure is a condition where the pore pressure exceeds the normal hydrostatic pressure at a certain depth (Nagy et al., 2021). Areas with indications of overpressure (e.g., based on seismic data, neighboring well data) have a higher risk of blowout if the pore pressure prediction is inaccurate (Bahmaei & Hosseini, 2020; Jafarizadeh et al., 2022). In these areas, the difference between the estimated and actual pore pressure can be very significant and fatal. Pore pressure prediction is a complex geotechnical challenge because it involves understanding (Amjad et al., 2023; Chen et al.,

How to Cite:

Anggi, M., Haris, A., & Rinaldo. (2025). Petrophysical Analysis and Evaluation of Overpressure Zone as Hydrocarbon Trap in North East Java Basin. *Jurnal Penelitian Pendidikan IPA*, 11(5), 945-949. <https://doi.org/10.29303/jppipa.v11i5.11199>

2025). The history of sediment loading and uplift; Rock composition and permeability; Hydrocarbon generation and migration; Tectonic activity. Various methods are used to predict pore pressure, including analysis of seismic data, well log data (measurements of the physical properties of rocks in the well), and drilling data.

However, uncertainty always exists, and failure to interpret the data or the presence of unexpected geological conditions can lead to prediction errors (Doyle et al., 2019). The North East Java Basin is an area that has geological indications of overpressure. However, there is no detailed pore pressure mapping in this area (Suryana et al., 2023). Therefore, this study aims to estimate pore pressure using the (Eaton, 1975) method by integrating well log data and validating it with actual data from the field.

Method

This study is based on the analysis of well log data that includes resistivity, density (RHOB), sonic velocity (DT), and porosity parameters. Estimation of pore pressure is carried out using the Eaton (1975) approach based on sonic velocity value anomalies correlated to hydrostatic pressure. The overpressure zone is determined by comparing the calculated pore pressure with the hydrostatic pressure, where a higher pore pressure value is an indicator of overpressure. In addition, an analysis is carried out to trace the cause of overpressure, both in terms of loading mechanisms such as imperfect compaction, and external factors such as lateral pressure or fluid expulsion. This evaluation is expected to produce accurate pore pressure mapping to support safer hydrocarbon exploration and production planning.

Results and Discussion

Interpretation of well log data shows that in general, rock porosity decreases with increasing depth due to natural compaction processes. However, at certain depths, such as 3600 ft, 6000 ft, 7200 ft, 8400 ft, 8800 ft, 9200 ft, and 10200 ft, the porosity value remains relatively high. This condition indicates that the rocks in this interval still have large enough pore space to accommodate fluids, so they have the potential to act as reservoir zones in the petroleum system. In addition, Sonic Travel Time (DT) data shows that the deeper the rock layer, the DT value generally decreases, which is a consequence of the increasing density and compactness of the rock. However, at depths between 6200 and 9000 ft, the DT value shows a stable tendency. This stability indicates a failure in the compaction process, where fluids trapped in the rock pore space inhibit further compaction. This condition can be a sign of the presence of a high-pressure zone (overpressure), which

geologically can act as a hydrocarbon trap (Chen et al., 2022; Krishna et al., 2024; Tan et al., 2020).

The increasing trend of rock density (RHOB) also indicates a normal compaction process (Abbey et al., 2021; Amjad et al., 2022; Matinkia et al., 2022). However, at a depth of 6200–9000 ft, the density value does not appear to follow an increasing trend, but is relatively constant. This indicates that the presence of fluid in the rock maintains internal pressure, thereby slowing or stopping the compaction process (Hosseinzadeh et al., 2024; Jahanbakhsh et al., 2020). The presence of high Gamma Ray (GR) values at this depth interval further strengthens the suspicion that the layer consists of shale or organic-rich material, which tends to be impermeable and can store internal pressure for a long time. Analysis of the Deep Resistivity Log (LLD) also provides important information. In the depth interval of 6200–9000 ft, the resistivity values show quite large variations. Some layers show high resistivity values, while others are low. High resistivity likely reflects the presence of hydrocarbons (oil or gas), while low resistivity indicates the presence of conductive fluids such as salt water (Adeniran et al., 2024; Senger et al., 2021). This variation shows that several rock layers in the zone have been filled by different fluids, creating a complex stratigraphic potential but with high exploration value (Abd El-Hay et al., 2024; Alghamdi et al., 2024).

From the pressure aspect, top overpressure was identified at a depth of 4600 ft. The high-pressure zone was found in the interval of 4600–6000 ft and was re-detected from 6200 to 9000 ft. Most likely, this overpressure condition arose due to the presence of seal rocks that inhibited the release of fluid pressure from the layers below. In the petroleum system, seal rocks have a crucial role in maintaining hydrocarbon accumulation in the reservoir zone. Based on well log data, the main reservoir zone is located in the interval of 4800–7300 ft, which is characterized by porosity and permeability values that support fluid storage. While seal rocks were identified in the interval of 4000–4600 ft, which also corresponds to the beginning of the emergence of overpressure.

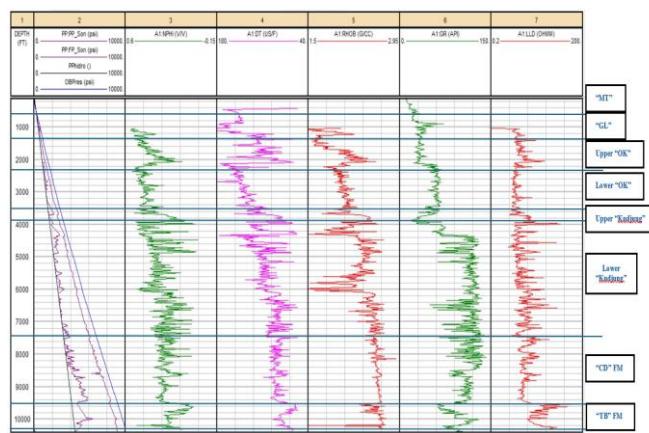


Figure 1. Sonic log, density, resistivity, and porosity data

Figure 1 shows a cross plot between Sonic (DT) and rock density (RHOB) values. In the plot, the bottom line represents the position of smectite minerals, while the top line represents the position of illite minerals. These lines are used to evaluate the level of clay mineral transformation due to diagenesis and increased temperature and pressure. Figure 2 shows the distribution of data in the cross plot across the analyzed depth intervals, the dominant mineral identified is smectite. Almost no data was found indicating transformation into illite. This indicates that the rock has not undergone advanced diagenesis, which usually occurs at higher temperatures and pressures. This means that the rock is still in the early to middle diagenetic stage.

The presence of dominant smectite strengthens the suspicion that the overpressure formation mechanism in this area is dominated by vertical loading due to sediment accumulation (loading) (Li et al., 2022). Smectite has a high water retention capacity and tends to inhibit the rock compaction process (Qin et al., 2019; Zheng & Bourg, 2023). When fluids are trapped, high pore pressure can form. This process inhibits the transformation of smectite minerals into illite and supports the formation of a stable high-pressure zone. Thus, the results of petrophysical analysis as well as pore pressure and mineralogical mapping indicate that the study area has great potential as a petroleum system (Feng et al., 2024; Hussain et al., 2022), with a combination of porous reservoirs, effective seal rocks, and overpressure zones that function as hydrocarbon traps. A thorough understanding of these physical and geological properties is essential for exploration decision making and drilling risk management (Du et al., 2024; Xu et al., 2023).

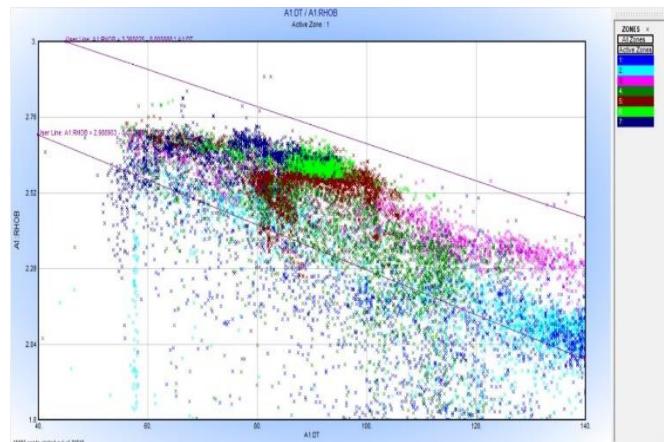


Figure 2. Dutta Crossplot between sonic and rhob

Conclusion

Petrophysical analysis of well log data indicates the presence of a reservoir zone with porosity and resistivity characteristics that support hydrocarbon accumulation at a depth of 4800–7300 ft. The seal rock zone is at 4000–

4600 ft, while overpressure is identified from 4600 to 9000 ft, indicating potential hydrocarbon traps due to compaction failure. The cross plot between DT and RHOB confirms that smectite minerals are still dominant, strengthening the hypothesis that this zone is under high pressure due to sediment loading mechanisms. Thus, this area has promising hydrocarbon prospects and requires special attention in drilling planning.

Acknowledgments

Thank you to University of Indonesia

Author Contributions

Conceptualization, M. A.; methodology, A. H.; validation, R.; formal analysis, M. A.; investigation, A. H.; resources, R.; data curation, M. A.; writing—original draft preparation, A. H.; writing—review and editing, R.; visualization. All authors have read and agreed to the published version of the manuscript.

Funding

Researchers independently funded this research.

Conflicts of Interest

No conflict interest.

References

Abbey, C. P., Meludu, O. C., & Oniku, A. S. (2021). 3D modeling of abnormal pore pressure in shallow offshore Niger delta: An application of seismic inversion. *Petroleum Research*, 6(2), 158–171. <https://doi.org/10.1016/j.ptlrs.2020.12.001>

Abd El-Hay, M., Radwan, A. A., Mahfouz, K. H., & Leila, M. (2024). Integrated seismic-stratigraphic, sedimentological and petrophysical approaches for characterizing the reservoir potential of early Cretaceous Alam El Bueib formation in the Meleihha concession of North Western Desert, Egypt. *Marine and Petroleum Geology*, 160, 106659. <https://doi.org/10.1016/j.marpetgeo.2023.106659>

Adeniran, M. A., Oladunjoye, M. A., & Doro, K. O. (2024). Assessing the Use of Electrical Resistivity for Monitoring Crude Oil Contaminant Distribution in Unsaturated Coastal Sands Under Varying Salinity. *Geosciences*, 14(11), 308. <https://doi.org/10.3390/geosciences14110308>

Alghamdi, A. H., Alonaizi, F. A., & Almalki, M. A. (2024). Investigating the Structural Framework Beneath Riyadh Region for Potential Geothermal Exploration Utilizing Geological and Geophysical Data. *Sustainability*, 16(24), 11286. <https://doi.org/10.3390/su162411286>

Amjad, M. R., Zafar, M., Ahmad, T., Hussain, M., & Shakir, U. (2022). Overpressures Induced by Compaction Disequilibrium Within Structural Compartments of Murree Formation, Eastern Potwar, Pakistan. *Frontiers in Earth Science*, 10, 947

903405. <https://doi.org/10.3389/feart.2022.903405>

Amjad, M. R., Zafar, M., Malik, M. B., & Naseer, Z. (2023). Precise geopressure predictions in active foreland basins: An application of deep feedforward neural networks. *Journal of Asian Earth Sciences*, 245, 105560. <https://doi.org/10.1016/j.jseae.2023.105560>

Afsha, D. T., Gebretsadik, H. T., Latiff, A. H. A., & Rahmani, O. (2024). Predictive pore pressure modeling using well-log data in the West Baram Delta, offshore Sarawak Basin, Malaysia. *Geomechanics and Geophysics for Geo-Energy and Geo-Resources*, 10(1), 196. <https://doi.org/10.1007/s40948-024-00903-5>

Ashena, R., Elmgerbi, A., Rasouli, V., Ghalambor, A., Rabiei, M., & Bahrami, A. (2020). Severe wellbore instability in a complex lithology formation necessitating casing while drilling and continuous circulation system. *Journal of Petroleum Exploration and Production Technology*, 10(4), 1511-1532. <https://doi.org/10.1007/s13202-020-00834-3>

Bahmaei, Z., & Hosseini, E. (2020). Pore pressure prediction using seismic velocity modeling: Case study, Sefid-Zakhor gas field in Southern Iran. *Journal of Petroleum Exploration and Production Technology*, 10(3), 1051-1062. <https://doi.org/10.1007/s13202-019-00818-y>

Bowers, G. L. (2002). Detecting high overpressure. *The Leading Edge*, 21(2), 174-177. <https://doi.org/10.1190/1.1452608>

Chen, X., Cao, W., Gan, C., & Wu, M. (2022). A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process. *Journal of Petroleum Science and Engineering*, 210, 109771. <https://doi.org/10.1016/j.petrol.2021.109771>

Chen, X.-Y., Weng, C.-K., Tao, L., Yang, J., Gao, D.-L., & Li, J. (2025). A novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling data. *Petroleum Science*, S1995822625001396. <https://doi.org/10.1016/j.petsci.2025.04.012>

Darwesh, A. K., Rasmussen, T. M., & Al-Ansari, N. (2017). Time Optimizing near the Pay Zone. *Engineering*, 09(10), 848-859. <https://doi.org/10.4236/eng.2017.910050>

Doyle, E. E. H., Johnston, D. M., Smith, R., & Paton, D. (2019). Communicating model uncertainty for natural hazards: A qualitative systematic thematic review. *International Journal of Disaster Risk Reduction*, 33, 449-476. <https://doi.org/10.1016/j.ijdrr.2018.10.023>

Du, S., Huang, C., Ma, X., & Fan, H. (2024). A Review of Data-Driven Intelligent Monitoring for Geological Drilling Processes. *Processes*, 12(11), 2478. <https://doi.org/10.3390/pr12112478>

Dubinya, N., Bayuk, I., Hortov, A., Myatchin, K., Pirogova, A., & Shchuplov, P. (2022). Prediction of Overpressure Zones in Marine Sediments Using Rock-Physics and Other Approaches. *Journal of Marine Science and Engineering*, 10(8), 1127. <https://doi.org/10.3390/jmse10081127>

Eaton, B. A. (1975). The Equation for Geopressure Prediction from Well Logs. *Fall Meeting of the Society of Petroleum Engineers of AIME*, SPE-5544-MS. <https://doi.org/10.2118/5544-MS>

Feng, J., Wang, Q., Li, M., Li, X., Zhou, K., Tian, X., Niu, J., Yang, Z., Zhang, Q., & Sun, M. (2024). Pore Pressure Prediction for High-Pressure Tight Sandstone in the Huizhou Sag, Pearl River Mouth Basin, China: A Machine Learning-Based Approach. *Journal of Marine Science and Engineering*, 12(5), 703. <https://doi.org/10.3390/jmse12050703>

Hosseinzadeh, S., Haghghi, M., Salmachi, A., & Shokrollahi, A. (2024). Carbon dioxide storage within coal reservoirs: A comprehensive review. *Geoenergy Science and Engineering*, 241, 213198. <https://doi.org/10.1016/j.geoen.2024.213198>

Hussain, W., Ali, N., Sadaf, R., Hu, C., Nykilla, E. E., Ullah, A., Iqbal, S. M., Hussain, A., & Hussain, S. (2022). Petrophysical analysis and hydrocarbon potential of the lower Cretaceous Yageliemu Formation in Yakela gas condensate field, Kuqa Depression of Tarim Basin, China. *Geosystems and Geoenvironment*, 1(4), 100106. <https://doi.org/10.1016/j.geogeo.2022.100106>

Huszar, T., Wittenberger, G., & Skvarekova, E. (2022). Warning Signs of High-Pressure Formations of Abnormal Contour Pressures When Drilling for Oil and Natural Gas. *Processes*, 10(6), 1106. <https://doi.org/10.3390/pr10061106>

Jafarizadeh, F., Rajabi, M., Tabasi, S., Seyedkamali, R., Davoodi, S., Ghorbani, H., Alvar, M. A., Radwan, A. E., & Csaba, M. (2022). Data driven models to predict pore pressure using drilling and petrophysical data. *Energy Reports*, 8, 6551-6562. <https://doi.org/10.1016/j.egyr.2022.04.073>

Jahanbakhsh, A., Włodarczyk, K. L., Hand, D. P., Maier, R. R. J., & Maroto-Valer, M. M. (2020). Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. *Sensors*, 20(14), 4030. <https://doi.org/10.3390/s20144030>

Krishna, S., Irfan, S. A., Keshavarz, S., Thonhauser, G., & Ilyas, S. U. (2024). Smart predictions of petrophysical formation pore pressure via robust data-driven intelligent models. *Multiscale and Multidisciplinary Modeling, Experiments and Design*, 7(6), 5611-5630. <https://doi.org/10.1007/s41939-024-00542-z>

Li, C., Zhan, L., & Lu, H. (2022). Mechanisms for Overpressure Development in Marine Sediments. *Journal of Marine Science and Engineering*, 10(4), 490. <https://doi.org/10.3390/jmse10040490>

Li, H., Tan, Q., Deng, J., Dong, B., Li, B., Guo, J., Zhang, S., & Bai, W. (2023). A Comprehensive Prediction

Method for Pore Pressure in Abnormally High-Pressure Blocks Based on Machine Learning. *Processes*, 11(9), 2603. <https://doi.org/10.3390/pr11092603>

Mahmoud, A. A., Alzayer, B. M., Panagopoulos, G., Kiomourtzi, P., Kirmizakis, P., Elkhatatny, S., & Soupios, P. (2024). A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study. *Processes*, 12(4), 664. <https://doi.org/10.3390/pr12040664>

Matinkia, M., Amraeiniya, A., Behboud, M. M., Mehrad, M., Bajolvand, M., Gandomgoun, M. H., & Gandomgoun, M. (2022). A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network. *Journal of Petroleum Science and Engineering*, 211, 110156. <https://doi.org/10.1016/j.petrol.2022.110156>

Nagy, Z., Baracza, M. K., & Szabó, N. P. (2021). Magnitude Estimation of Overpressure Generation Mechanisms Using Quantitative Stochastic 2D Basin Models: A Case Study from the Danube-Tisza Interfluvial Area in Hungary. *Applied Sciences*, 11(6), 2841. <https://doi.org/10.3390/app11062841>

Oloruntobi, O., & Butt, S. (2019). Energy-based formation pressure prediction. *Journal of Petroleum Science and Engineering*, 173, 955–964. <https://doi.org/10.1016/j.petrol.2018.10.060>

Pan, R., Cui, B., Zhang, X., Wang, Y., & Zheng, L. (2023). Study on pressure wave response and overpressure attenuation law of explosion-proof doors. *Process Safety and Environmental Protection*, 169, 706–717. <https://doi.org/10.1016/j.psep.2022.11.032>

Qin, X., Han, D.-H., & Zhao, L. (2019). Elastic characteristics of overpressure due to smectite-to-illite transition based on micromechanism analysis. *GEOPHYSICS*, 84(4), WA23–WA42. <https://doi.org/10.1190/geo2018-0338.1>

Senger, K., Birchall, T., Betlem, P., Ogata, K., Ohm, S., Olaussen, S., & Paulsen, R. S. (2021). Resistivity of reservoir sandstones and organic rich shales on the Barents Shelf: Implications for interpreting CSEM data. *Geoscience Frontiers*, 12(6), 101063. <https://doi.org/10.1016/j.gsf.2020.08.007>

Suryana, E., Hutasoit, L. M., Ramdhani, A. M., Nugroho, D., & Arifin, A. (2023). Pore Pressure and Compartmentalization of Carbonate Reservoirs in Northern Madura Platform–East Java Basin, Indonesia. *Indonesian Journal on Geoscience*, 10(3), 297–307. <https://doi.org/10.17014/ijog.10.3.297-307>

Tan, Q., Hao, X., Luo, C., Zhang, J., & Weng, H. (2020). Application of Bowers Model in Abnormal Pore Pressure Prediction in Deepwater Drilling. *IOP Conference Series: Earth and Environmental Science*, 513(1), 012062. <https://doi.org/10.1088/1755-1315/513/1/012062>

Wang, H., Ma, J., & Li, L. (2024). Pore pressure prediction based on rock physics theory and its application in seismic inversion. *Journal of Applied Geophysics*, 229, 105494. <https://doi.org/10.1016/j.jappgeo.2024.105494>

Wittenberger, G., Huszar, T., Skvarekova, E., Cambal, J., & Bugnova, M. (2023). Dependency of Pressure Expression towards Formation Pressures during Drilling Operations in Hydrocarbon Wells and Suitable Choice of Pressure Control Method. *Processes*, 11(11), 3054. <https://doi.org/10.3390/pr11113054>

Xiu, Z., Liu, Q., Liu, Z., Li, M., Li, P., & Hao, B. (2025). Coupled behavior of overpressure and vented flame in large-scale constrained spaces during methane deflagration: Effect of ignition position. *Process Safety and Environmental Protection*, 198, 107111. <https://doi.org/10.1016/j.psep.2025.107111>

Xu, Y.-Q., Liu, K., He, B.-L., Pinyaeva, T., Li, B.-S., Wang, Y.-C., Nie, J.-J., Yang, L., & Li, F.-X. (2023). Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data. *Petroleum Science*, 20(6), 3654–3672. <https://doi.org/10.1016/j.petsci.2023.06.005>

Zheng, X., & Bourg, I. C. (2023). Nanoscale Prediction of the Thermal, Mechanical, and Transport Properties of Hydrated Clay on 10^6 – 10^{15} -Fold Larger Length and Time Scales. *ACS Nano*, 17(19), 19211–19223. <https://doi.org/10.1021/acsnano.3c05751>