




# Analysis of Educational Learning Approaches in Improving Digital Literacy in Elementary School Students

Mohammad Hayyi<sup>1</sup>, Nuril Huda<sup>1</sup>, Victor Maruli Tua L. Tobing<sup>1</sup>

<sup>1</sup> Magister Teknologi Pendidikan, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Dr. Soetomo Surabaya, Indonesia.

Received: March 16, 2025

Revised: May 26, 2025

Accepted: June 25, 2025

Published: June 30, 2025

Corresponding Author:

Mohammad Hayyi  
[khayonmohammad@gmail.com](mailto:khayonmohammad@gmail.com)

DOI: [10.29303/jppipa.v11i6.11480](https://doi.org/10.29303/jppipa.v11i6.11480)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)



**Abstract:** The use of digital technology has brought about major changes in the world of education, especially at the elementary school level. However, the use of gadgets in an educational manner requires proper guidance. In this context, the role of parents is very important. Unfortunately, unequal access to technology and limited teacher capabilities are the main obstacles in the development of digital literacy, especially in rural areas. This study aims to examine the influence of the role of parents, cultural capital, and social capital on the educational digital literacy of elementary school students in Madura. The method used is quantitative descriptive with a survey of 200 parents. Data collection was carried out through online and direct questionnaires, then analyzed using SEM-PLS 3.0 and a Likert scale. The results of the study indicate that parental involvement and social capital significantly influence students' digital literacy, highlighting the importance of collaboration between parents, teachers, and the school environment in supporting elementary school students' digital literacy skills. Meanwhile, cultural capital did not significantly impact elementary school students' digital literacy.

**Keywords:** Cultural capital; Digital literacy education; Elementary school; Role of parents; Social capital

## Introduction

Education is a crucial element in human life that serves as a foundation for personal development and the progress of a nation (Sulaiman et al., 2024). Education is a conscious and planned process aimed at creating an environment and learning activities that encourage students to actively develop their potential (Suci et al., 2023). In line with this development, information and communication technology plays a crucial role in creating a more interactive learning environment and supporting the development of more effective education.

The development of information and communication technology has brought major changes in various aspects of life, including in the world of education. Children at elementary school age now grow

up in an environment full of digital devices such as smartphones, tablets, and computers. Gadgets are not only a medium of entertainment, but can also be used as an effective and interactive learning medium. Digital literacy is not only about the ability to use technology, but also includes an understanding of information, ethics of use, and critical skills in assessing digital content.

Digital literacy is the skill of accessing, understanding, assessing, and producing information using digital technology. Paul (1997) states that digital literacy not only involves technical aspects but also includes the ability to think critically about the information obtained. Digital literacy includes skills in accessing, evaluating, and critically utilizing information from various digital platforms. Constructivism theory and critical media theory can be

### How to Cite:

Hayyi, M., Huda, N., Tobing, V. M. T. L. (2025). Analysis of Educational Learning Approaches in Improving Digital Literacy in Elementary School Students. *Jurnal Penelitian Pendidikan IPA*, 11(6), 883–892. <https://doi.org/10.29303/jppipa.v11i6.11480>

further explained to explain how children develop their knowledge through active engagement with digital technology. This second theory is the basis for understanding how participatory learning methods can support the improvement of digital literacy in children (Noor et al., 2024).

Digital literacy not only includes the ability to operate information and communication technology devices but also involves the ability to read and understand digital content, as well as write and create new information as a form of knowledge or valuable content (Sulianta, 2020). In the sophisticated and increasingly developing digital era, every child or individual is required to have knowledge and skills in education and digital literacy. This competence is the key to adapting and developing in the era of technological advances (Alamsyah et al., 2024).

However, in reality, not all children are able to use gadgets educationally. Good digital literacy is needed so that children can use technology wisely and responsibly. In this context, parents have a very important role in shaping children's habits and attitudes in using gadgets educationally, especially in the home environment. The sad phenomenon that occurs is that most children under the age of 6-12 years understand and are accustomed to using gadgets from an early age, especially those aged 6-12 years who are in a phase that should be accustomed to getting to know the natural environment, but instead are plundered by gadgets that tend to be used to play games. Parents have a responsibility to create an environment that supports literacy, both through direct interaction and by providing access to appropriate resources (Sabrina & Ratnasari, 2025).

In elementary school environments, digital literacy faces various obstacles, ranging from a lack of infrastructure to minimal teacher ability in delivering digital skills (Syifa & Rachman, 2024). Students from low-income families or those living in underdeveloped areas often do not have equal access to technology devices and digital resources compared to their more fortunate peers. Many primary schools, especially those in rural or remote areas, still lack adequate technological facilities and internet access. This situation is a major obstacle in implementing technology-based learning. In addition, the majority of teachers at the primary school level do not yet have sufficient digital competence to utilize technology in teaching and learning activities. Therefore, they need continuous training in order to teach digital literacy effectively. These limitations emphasize the importance of a systematic and comprehensive approach in developing digital literacy in primary schools (Inayah et al., 2024).

Parents need to take several steps to accompany their children when using digital media. Among them are increasing knowledge and skills related to digital

media, setting the location of devices connected to the internet at home so that parents can connect their children's activities more easily, and setting time limits for using digital media, both in terms of duration and time allowed. In addition, parents also need to provide an understanding to children about potentially harmful content, strictly prohibit access to inappropriate material, and build warm and open communication with children (Ghozali & Nugroho, 2023).

Research result Raccah (2024) revealed that parents with high socioeconomic status use digital capital more often than parents with low socioeconomic status. Furthermore, digital capital is directly related to parental involvement. Social and institutional cultural capital, and their involvement in their children's learning, provide benefits to parents with high socioeconomic status. However, the relationship between parental involvement and types of capital was found to differ between parents with low and high socioeconomic status. These findings highlight the potential of digital capital, especially for disadvantaged groups, as a driver for increasing parental involvement to benefit children and ultimately contribute to a more equitable society.

Research result Asmawati (2022). The results of this study indicate a positive and significant influence of digital technology on the role of parents in using gadgets. These findings can be a reference for parents to utilize technology optimally so that they can keep up with the development of the times.

A study Asmayawati (2023) showed that parental involvement positively influences children's literacy, highlighting the importance of active parental involvement in fostering digital skills. In addition, balanced gadget play time was also found to improve digital literacy, emphasizing the importance of managing gadget play time for educational purposes. Apart from digital literacy, social capital and cultural capital can also be important for improving digital literacy in elementary school students.

Talking about social capital cannot be separated from Pierre Bourdieu, who first used the term social capital. Social capital refers to social connections built in social networks and the inherent relationships between individuals, groups, or organizations that are based on mutual recognition and assistance between group members (Bourdieu, 1986). In the educational context, parents may have certain types of socio-educational capital that encompass a variety of social networks, including relationships with other parents whose children are friends, and with other stakeholders in educational institutions (Coleman & Hoffer, 1987). It also includes specific knowledge and experience related to parental involvement in schools that enables connections with the school (Addi-Raccah, 2020). Social-

educational capital can help parents navigate the school environment and engage with their children's schools (Boutte & Johnson, 2014). Having higher levels of educational social capital within and outside the family is associated with higher levels of parental influence in school-based activities (Addi-Raccah, 2020).

Bourdieu asserts that social capital also includes cultural understanding, knowledge, and skills that individuals have through education, experience, and environment. Social capital is a form of capital related to the ownership or control of cultural capital, symbolic capital, and scientific capital, which includes knowledge, information, networks, and relationships (Alemdar & Anilan, 2022). Unlike Bourdieu, Putnam places more emphasis on the important role of participation in social organizations in forming social capital in society. According to Putnam, social capital refers to various elements in society, including social organizations and their memberships that allow individuals to interact, collaborate, and build strong relationships. His view highlights how membership in a club, voluntary group, or social network can increase social cohesion and support the development of society as a whole (Wibowo et al., 2024).

Social capital is not a static phenomenon, but rather dynamic and organic. Their approach also emphasizes the role and function of social capital, not social capital itself. Cohen (2001) focuses on three principles, namely how social capital works in an organization; how social capital is invested; and how this investment brings benefits to organizations and individuals. In this context, social capital is defined as active connection capital between communities in the form of trust, mutual understanding, and shared values and behaviors that bind and shape members of human networks and communities (Boldureanu et al., 2020).

Besides that, Cultural capital reflects the habitus of individuals expressed through the way they act and are. This is achieved through a continuous socialization process Bourdieu (1986) states that cultural capital consists of three types of resources that enhance an individual's position: embodied cultural capital (i.e., an individual's social interaction style, knowledge, values, and cultural tastes); objectified cultural capital (i.e., the possession of cultural goods and material objects such as art, books, paintings, or instruments) and institutionalized cultural capital. This last resource entails academic degrees and qualifications, which reflect professional knowledge, capacity, and expertise, and refers to the production of knowledge and familiarity with various symbolic actions in social life (Bourdieu, 1986).

Cultural capital in general, and institutionalized cultural capital in particular, has received considerable attention in studying parent-school relationships

(Farkas, 2018; Lareau & Weininger, 2003). This study emphasizes that parents use their cultural capital to conform to institutional expectations, meet educational standards, and interact better with schools and teachers.

This study aims to describe the concept of digital literacy and its relevance to elementary school students. In addition, it also analyzes the role of parents in instilling digital literacy in children. As well as exploring concrete forms of parental education and assistance in the use of gadgets by elementary school students. They can provide access to digital devices and ensure that children use technology wisely and safely.

This research will be more directed at elementary school students. There needs to be socialization about digital literacy and its educational use for elementary school students. In addition to students, the role of parents in encouraging digital literacy also needs to be strengthened, and more specifically, provide literacy about the form of parental assistance to elementary school students in the educational use of gadgets.

This study integrates the concept of parental roles, social capital, and cultural capital in shaping educational digital literacy for elementary school children, especially in rural areas such as Madura. This study is important to fill the gap in the literature that has not explored much about how socio-cultural characteristics of families and community support play a role as key factors in the success of children's digital literacy development.

Through this approach, this study not only provides theoretical contributions in enriching the discourse on family-based digital literacy, but also has significant practical implications in designing educational interventions that are sensitive to the cultural and social contexts of local communities. The findings of this study are expected to be the basis for the formulation of more inclusive, adaptive, and community-based digital education policies and programs, especially in areas with limited infrastructure and access to technology.

## Method

This study uses a descriptive quantitative method with a survey approach to examine the level of educational digital literacy in elementary school students. The main focus of this study is to analyze the influence of the role of parents, social capital, and cultural capital on children's digital literacy skills in the context of education.

Primary data were collected through a Google Form-based questionnaire that was distributed directly and online to parents of students. The research instrument was compiled based on indicators that had been tested in previous studies, with measurements

using a Likert scale (1-5) to capture respondents' perceptions and attitudes towards each variable.

After the data was collected, the following steps were taken: Data checking and cleaning to ensure the eligibility of the data to be analyzed; Quantitative data coding into statistical software; Data analysis was carried out using SEM-PLS (Structural Equation Modeling - Partial Least Squares) version 3.0, which allows testing of relationships between latent variables simultaneously; and Interpretation of the results was carried out based on the significance value and strength of influence of each variable on students' educational digital literacy.

To provide a more systematic overview of the stages of research implementation, the following is a methodology flowchart that shows the main steps from planning to data analysis. This chart summarizes the quantitative research process used, from identifying the problem to drawing conclusions based on the results of statistical analysis.

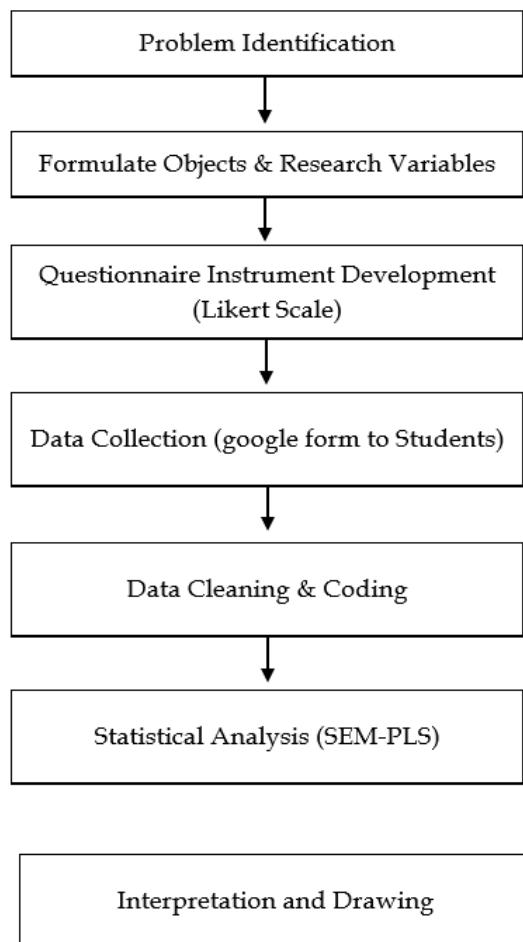



Figure 1. Research methodology flowchart source: PLS data processing results

Participants in this study will be parents or guardians who have children aged 6-12 in Madura, East

Java, Indonesia. Data will also be collected about their children in this age group. Efforts will be made to obtain a demographically representative sample size of 200 participants. Data were collected through online and direct questionnaires, then analyzed using SEM (Structural Equation Modeling) analysis techniques using the PLS 3.0 test tool and the assessment in the questionnaire was assessed using a Likert scale.

The study will utilize two types of questionnaires. First, a questionnaire for parents will be designed to measure their roles in supporting their children's digital literacy, focusing on aspects such as supervision, cultural capital, social capital, and their overall support in the use of technology. Second, questionnaires for children will be used, consisting of simple questions or short insights, to assess their knowledge and understanding of the educational use of technology and digital literacy.

Based on theoretical studies and previous research, this study uses three independent variables, namely X1 (parental role), X2 (cultural capital), and X3 (social capital) to analyze their influence on digital literacy among elementary school students.

Parental role plays a crucial role in shaping children's digital behavior and skills. Parental support, supervision, and involvement in children's digital activities can enhance their digital literacy. Therefore, the first hypothesis is formulated as:

H1: There is an influence of parental role on digital literacy in elementary school students.

Furthermore, cultural capital, which includes knowledge, attitudes, and values instilled in the family and social environment, also shapes students' digital thinking and abilities (Nugroho & Nursikin, 2025). Therefore, the second hypothesis is:

H2: There is an influence of cultural capital on digital literacy education in elementary school students.

In addition, social capital, which includes social networks, trust, and norms within the community, plays a role in supporting positive access to and use of technology. Based on this, the third hypothesis is:

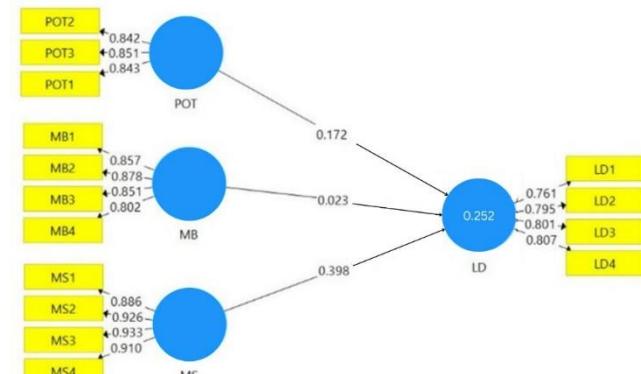
H3: There is an influence of social capital on digital literacy education in elementary school students.

## Result and Discussion

### Result

The results of data processing were carried out using SEM-PLS 3.0 statistical analysis. Statistical model assessment is carried out through three steps, namely outer model analysis, inner model analysis, and hypothesis testing in accordance with latent construction.

*Evaluation of the Measurement Model (Outer Model Analysis)*


The data processed and analyzed are measured through outer model analysis by testing the validity and reliability of each variable indicator. Validity test can be measured by convergent validity, which depends on latent variable loading factors, Average Variance Extracted (AVE) value, and Discriminant Validity by looking at the value of constructs that are greater than the value of other horizontal and vertical constructs. This can be seen by the results of the correlation value between measurement items and variables. The variable reliability assessment depends on the Cronbach's Alpha and Composite Reliability values.

**Table 1. Loading Factors**

| Parameters | Digital Literacy | Cultural Capital | Social Capital | The Role of Parents |
|------------|------------------|------------------|----------------|---------------------|
| LD1        | 0.761            |                  |                |                     |
| LD2        | 0.795            |                  |                |                     |
| LD3        | 0.801            |                  |                |                     |
| LD4        | 0.807            |                  |                |                     |
| MB1        |                  | 0.857            |                |                     |
| MB2        |                  | 0.878            |                |                     |
| MB3        |                  | 0.851            |                |                     |
| MB4        |                  | 0.802            |                |                     |
| MS1        |                  |                  | 0.886          |                     |
| MS2        |                  |                  | 0.926          |                     |
| MS3        |                  |                  | 0.933          |                     |
| MS4        |                  |                  | 0.910          |                     |
| POT2       |                  |                  |                | 0.842               |
| POT3       |                  |                  |                | 0.851               |
| POT1       |                  |                  |                | 0.843               |

Source: PLS Data Processing Results

According to Chin, (1998) that the loading factor value has a value of  $> 60$ , the data can be said to be valid. The higher the loading factor value of each indicator, the more valid the indicator is. Based on table 1, each variable has a value  $> 0.60$ . This means that all indicators



**Figure 2. Structural model (Source: PLS Data Processing Results)**

**Table 2. Reliability**

| Parameters          | Cronbach's Alpha | rho_A | Composite Reliability | Decision |
|---------------------|------------------|-------|-----------------------|----------|
| Digital Literacy    | 0.802            | 0.808 | 0.870                 | Reliable |
| Cultural Capital    | 0.870            | 0.875 | 0.911                 | Reliable |
| Social Capital      | 0.934            | 0.935 | 0.953                 | Reliable |
| The Role of Parents | 0.801            | 0.805 | 0.883                 | Reliable |

Source: PLS Data Processing Results

According to Hair et al. (2019) states that data can be said to be reliable if the results of the Cronbach's alpha and composite reliability values ( $\rho_A$  and  $\rho_c$ )  $> 0.70$ . The Cronbach's alpha value is lower than the composite reliability ( $\rho_A$ ), and ( $\rho_A$ ) is lower than ( $\rho_c$ ). The results of table 2 above, show that all the values generated by Cronbach's alpha and composite reliability  $> 0.70$ , meaning that the data is reliable.

of each of the above variables can be said to be valid. It can be seen on MH 2 that the spirit of shopping has the highest loading factor value of 0.860 than other items, so the data is the most valid and represents variable measurement.

**Table 3. Convergent Validity**

| Parameters          | Average Variance Extracted (AVE) |
|---------------------|----------------------------------|
| Digital Literacy    | 0.626                            |
| Cultural Capital    | 0.718                            |
| Social Capital      | 0.835                            |
| The Role of Parents | 0.715                            |

Source: PLS Data Processing Results

Average Variance Extracted (AVE) is the average variation owned by variables for each measurement

item. The resulting value is  $> 0.50$ . All variables in table 3 have met the convergent validity criteria with a value  $> 0.50$ .

#### Discriminant Validity

This measurement is to determine how much difference between this variable and other variables in theory and empirically proven statistical testing. Discriminant validity measurement consists of three indicators, namely cross loading, fornell lacker and HTMT.

**Table 4.** Htmt

| Htmt | Heteroit Monotrait Ratio |       |       |     |
|------|--------------------------|-------|-------|-----|
|      | LD                       | MB    | MS    | POT |
| LD   |                          |       |       |     |
| MB   | 0.376                    |       |       |     |
| MS   | 0.543                    | 0.599 |       |     |
| POT  | 0.404                    | 0.570 | 0.431 |     |

Source: PLS Data Processing Results

Hair et al. (2019) states that HTMT which can be said to meet discriminant validity is worth  $<0.90$ . Table 4 above shows that the resulting HTMT is  $<0.90$ , meaning that the variable meets discriminant validity.

**Table 5.** Discriminat Validity Fornell Larcker

| Parameters | LD    | MB    | MS    | POT   |
|------------|-------|-------|-------|-------|
| LD         | 0.791 |       |       |       |
| MB         | 0.319 | 0.848 |       |       |
| MS         | 0.474 | 0.540 | 0.914 |       |
| POT        | 0.330 | 0.473 | 0.370 | 0.845 |

Source: PLS Data Processing Results

Based on the results of the Fornell-Larcker criterion test, the square root AVE value on market orientation of 0.914 is greater than the correlation value of social capital with the role of parents of 0.474, which shows that the requirements for discriminant validity value have been met and can be accepted. Then, the square root AVE value at POT of 0.845 is greater than the correlation value of cultural capital of 0.370, besides that the correlation value at POT is also greater than the correlation value of cultural capital of 0.330. This shows that the requirements for discriminant validity value have been met and can be accepted.

Cross Loading is the measurement of the value of each variable item greater than the other items. This means that the variable item has a greater correlation with the variable it measures, or a lower relationship with other variable items. In accordance with table 6 that each variable item has a higher correlation than other variable items, so it meets the Cross Loading criteria.

**Table 6.** Discriminant Validity Crosloading

| Parameters | LD    | MB    | MS    | POT   |
|------------|-------|-------|-------|-------|
| LD1        | 0.761 | 0.222 | 0.321 | 0.211 |
| LD2        | 0.795 | 0.272 | 0.377 | 0.288 |
| LD3        | 0.801 | 0.280 | 0.372 | 0.229 |
| LD4        | 0.807 | 0.236 | 0.417 | 0.304 |
| MB1        | 0.253 | 0.857 | 0.440 | 0.429 |
| MB2        | 0.290 | 0.878 | 0.453 | 0.387 |
| MB3        | 0.227 | 0.851 | 0.471 | 0.396 |
| MB4        | 0.298 | 0.802 | 0.465 | 0.393 |
| MS1        | 0.425 | 0.524 | 0.886 | 0.381 |
| MS2        | 0.426 | 0.469 | 0.926 | 0.318 |
| MS3        | 0.430 | 0.480 | 0.933 | 0.293 |
| MS4        | 0.450 | 0.502 | 0.910 | 0.361 |
| POT2       | 0.300 | 0.340 | 0.251 | 0.842 |
| POT3       | 0.282 | 0.443 | 0.342 | 0.851 |
| POT1       | 0.251 | 0.424 | 0.355 | 0.843 |

Source: PLS Data Processing Results

#### Evaluation of Structural Models (Inner Model Analysis)

Inner Model Analysis is used to analyze the causal relationships that exist between latent variables, also known as variables that are impossible to measure directly. This Inner Model shows the relationship between variables that have been built based on the theoretical basis.

**Table 7.** F Square

| Parameters                          | F Square |
|-------------------------------------|----------|
| Cultural Capital > Digital Literacy | 0.000    |
| Social Capital > Digital Literacy   | 0.146    |
| Role of Parents > Digital Literacy  | 0.030    |

Source: PLS Data Processing Results

According to Hair et al. (2021), the f square value of 0.02 is low, 0.15 is moderate, and 0.35 is high. This analysis is used to determine the relationship between external and internal factors, as well as mediating variables on the dependent variable. Based on table 7 above, that the highest f square value lies in the influence of social capital on digital literacy 0.146 and the role of parents on digital literacy 0.030. This means that social capital has a high effect on digital literacy and the role of parents has a high influence on digital literacy.

**Table 8.** R Square/Determination Test

| Parameter | R Square | R Square Adjusted |
|-----------|----------|-------------------|
| LD        | 0.252    | 0.241             |

Source: PLS Data Processing Results

According to Chin, (1998) the R Square value is (0.19) low, (0.33) medium, and (0.67) high. The R square value is used to see the accuracy of prediction (estimation) on the independent variable to the dependent variable. The R square value in this study is 0.252 or 25.2%, it can be stated that digital literacy is

influenced by these variables. While 74.8% is influenced by factors not used in this study.

**Table 9. Q Square**

| Parameters | Q2 Prediction |
|------------|---------------|
| LD         | 0.376         |
| MB         | 0.517         |
| MS         | 0.704         |
| POT        | 0.414         |

Source: PLS Data Processing Results

According to Hair et al. (2021) shows the Q Square value  $> 0$  (low),  $> 0.25$  (medium),  $> 0.50$  (high). This measurement is to determine the relevant prediction value according to the observation level. Based on table 9 above, Q predictions have a medium relevant prediction value or a fairly good observation level.

**Table 10. Multicollinearity (VIF)**

| Parameters | VIF   |
|------------|-------|
| LD1        | 1.587 |
| LD2        | 1.598 |
| LD3        | 1.682 |
| LD4        | 1.584 |
| MB1        | 2.350 |
| MB2        | 2.495 |
| MB3        | 2.449 |
| MB4        | 1.626 |
| MS1        | 2.919 |
| MS2        | 4.544 |
| MS3        | 5.085 |
| MS4        | 3.559 |
| POT2       | 1.599 |
| POT3       | 1.777 |
| POT1       | 1.837 |

Source: PLS Data Processing Results

Table 10 multicollinearity test above, the VIF value that occurs in each variable shows  $<5$ , meaning that there is no multicollinearity.

**Table 11. Hypothesis test results**

| Parameters | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics ( $ O/STDEV $ ) | P Values | Results      |
|------------|---------------------|-----------------|----------------------------|------------------------------|----------|--------------|
| POT -> LD  | 0.172               | 0.174           |                            | 0.064                        | 2.693    | 0.008 Accept |
| MB -> LD   | 0.023               | 0.028           |                            | 0.078                        | 0.291    | 0.771 Reject |
| MS -> LD   | 0.398               | 0.396           |                            | 0.068                        | 5.866    | 0.000 Accept |

Source: Data processed using SmartPLS 3 application, 2025

### Discussion

#### *The Influence of the Role of Parents on Educational Digital Literacy in Elementary School Students*

Based on the results of this study, H1: The results of the study indicate that parental involvement plays a positive role in supporting the effective improvement of digital literacy in elementary school students. Acceptance of the first hypothesis confirms that educational digital literacy cannot be separated from the

### Hypothesis Testing

Results of Significance Test of Structural Relationships Hypothesis Testing Hypothesis testing is done by observing the values obtained in the path coefficient and t-statistics through the bootstrapping procedure in the Smart-PLS 3 application. After the bootstrapping results are obtained, the next step is to compare the t-statistic value with the t-table. If the t-statistic is greater than 1.65 ( $>1.65$ ), then the proposed hypothesis is accepted (Ghozali, 2016).

Based on the Table 11, the original sample value shows a positive number of 0.172, which indicates that the direction of the test is in line with the formulated hypothesis. In addition, the t-statistic value is 2.693 or  $>1.65$ , with a p-value of 0.008 or  $<0.05$ . The third criterion is met, so it can be concluded that the first hypothesis (H1) is accepted. Thus, the role of parents has a positive influence on digital literacy.

Based on the table above, the original sample value is positive at 0.023, which indicates that the direction of the test is in line with the proposed hypothesis. Then the t-statistic value is 0.291 or  $<1.65$ , but the p-values show a value of 0.771 or  $>0.05$ . Because one of the criteria is not met, it is concluded that the second hypothesis (H2) is rejected. In other words, cultural capital does not influence digital literacy.

The table 11 shows that the original sample value is positive, which is 0.398, meaning that the direction of this test is in accordance with the proposed hypothesis. Then the t-statistic value is 5.866 or  $> 1.65$ , with a p-value of 0.000 or  $<0.05$ . Because the third criterion is met, it can be concluded that the third hypothesis (H3) is accepted. Thus, social capital is proven to have a positive influence on digital literacy.

contribution of parents in uniting and accompanying children's development. In this section, parents act as facilitators and guides in the process of developing children's digital literacy in the home environment. They provide access to digital devices while ensuring that children use technology safely and responsibly.

In order for the assistance to be more optimal, parents also need to get education about digital literacy. This can be done through training, seminars, or learning

materials provided by the school. That way, parents will better understand the technology their children use and how to use it properly. Collaboration between schools and parents is an important factor in this success. Schools can hold information sessions or meetings to discuss the progress of students' digital literacy and provide direction on support that can be done at home. Through the active participation of parents and families, the development of digital literacy in students can run more effectively and sustainably (Inayah et al., 2024).

#### *The Influence of Cultural Capital on Educational Digital Literacy in Elementary School Students*

Based on the results of this study, H2 cultural capital does not influence educational digital literacy in elementary school students. The rejection of the second hypothesis is due to the gap in knowledge, skills, and experience of each parent. Parents with high socioeconomic status have easier access to digital literacy than parents with low socioeconomic status. Furthermore, cultural capital is abstract and conceptual, while digital literacy in elementary school students is still operational and depends on direct experience.

Elementary school children tend to use technology for simple purposes, such as playing or watching, not for literacy activities influenced by cultural values. Therefore, cultural capital has not yet been relevant to be formed. Lareau & Weininger (2003) emphasize that parents use their cultural capital to conform to institutional expectations, meet educational standards, and interact better with schools and teachers.

#### *The Influence of Social Capital on Educational Digital Literacy in Elementary School Students*

Based on the results of this study, H3 social capital has a positive effect on educational digital literacy in elementary school students. This variable's influence is due to the good relationship between students' parents and teachers, who have the same goal of creating an environment that supports the development of sustainable literacy for students. On the other hand, collaboration and the exchange of ideas with classmates also develop speaking, listening, and critical thinking skills (Wibowo et al., 2024).

In addition, parents and teachers network to build relationships that support literacy. School environments that facilitate interaction between students, teachers, and school staff, and encourage collaboration between individuals, play an important role in improving students' literacy skills. Discussions, forums, and group-based activities help students expand their literacy horizons. Schools and peers have a significant influence on developing children's literacy skills (Shabrina, 2022).

In the context of literacy skills, social capital can also act as a resource that supports and facilitates

learning, information sharing, and literacy skill development. Several studies have shown that social capital can influence literacy skills through several mechanisms. First, a strong social capital relationship network can provide better access to various sources of information, such as through discussions with friends, family, or communities. Such discussions allow individuals to develop a deeper understanding of various topics and broaden their horizons (Carroll & Baroody, 2018). Second, social norms that promote literacy values, such as the appreciation of reading books or producing writing, can shape individuals' motivation to improve their literacy skills. These norms can also create an environment that supports continuous learning among the community (Lundberg & Kilhamn, 2018). Third, high trust in social capital networks can encourage individuals to take risks in developing literacy skills without fear of negative judgment. This is especially true in learning contexts that involve trial and error, where individuals feel comfortable sharing their views and getting feedback from their peers. In this case, social capital acts as a support network that encourages children's intellectual exploration (Mishra, 2020).

Lareau (2011) also supports this statement, referring to the concept of 'integrated development' to indicate that parents with high socioeconomic status activate cultural and social resources from an early age to support their children's intellectual, cultural, and socio-emotional development. This includes the development of competencies, skills, and talents that are aligned with school requirements. In contrast, families with low socioeconomic status may lack the relevant cultural and social capital and capacities (e.g., language capacity) to collaborate with schools and support their children's learning (Posey & Haley, 2020). These parents were found to adopt a parenting logic based on the principles of achieving natural growth (Lareau, 2011), which aims to meet children's basic needs while enabling them to develop independently.

## Conclusion

This study concludes that the role of parents and social capital contribute positively and significantly to improving the educational digital literacy of elementary school students. This finding confirms that the active involvement of parents as facilitators at home plays an important role in shaping children's habits in using technology wisely and productively. Social capital, which includes social networks, communication, and collaborative relationships between parents, teachers, and the school environment, has been shown to be a crucial supporting factor in creating a healthy and adaptive digital learning ecosystem. In contrast, cultural capital did not show a significant influence, possibly due

to limited access to digital resources and the low relevance of cultural objects owned to the digital activities of elementary school children. This finding can be generalized to other learning contexts that emphasize the collaborative role between families and schools, such as digital-based character education, distance learning, or community-based literacy programs. The practical implications of this study are the need for strategies to strengthen parents' capacity in assisting children in using technology, as well as the importance of building stronger social networks between schools, parents, and the community. Family and community-based digital literacy training programs can be a practical solution to address the gap in access and quality of technology use among elementary school students.

### Acknowledgments

The author expresses gratitude to God Almighty for His grace and blessings, which have enabled the completion of this research entitled "Analysis of Educational Learning Approaches in Improving Digital Literacy among Elementary School Students." The author extends heartfelt gratitude to all parties who have assisted, particularly the institutions that granted permission and support, the students who volunteered as respondents, and the parents/guardians who supported the data collection process. Special thanks are also extended to the author's colleagues and support team for their guidance, assistance, and mentorship, as well as all other parties who contributed to this research but cannot be named individually. May all forms of assistance provided be rewarded appropriately, and may the results of this research contribute to improving digital literacy among elementary school students.

### Author Contributions

All authors contributed to writing this article.

### Funding

This research did not receive any specific funding from any government, private, or non-profit organization. All operational costs of the research were borne independently by the author.

### Conflicts of Interest

The authors declare no conflict of interest.

### References

Addi-Raccah, A. (2020). Resources and Influences: Parents in Leadership Positions in Low-/Mid-SES and High-SES Schools in Israel. *Educational Administration Quarterly*, 56(4), 600–640. <https://doi.org/10.1177/0013161X19883693>

Alamsyah, Sari, K. M., Kania, S. T., Sakinah, V. O., & Muthia, K. (2024). Edukasi Literasi Digital bagi Siswa Sekolah Dasar Negeri 01 Sukamulya di Desa Sukamulya, Kecamatan Semendawai Suku III, Kabupaten Ogan Komering Ulu Timur, Provinsi Sumatera Selatan. *Jurnal Pengabdian Masyarakat*, 3(1), 52–73. [https://doi.org/10.21927/jbd.2024.3\(1\).52-73](https://doi.org/10.21927/jbd.2024.3(1).52-73)

Alemdar, M., & Anilan, H. (2022). Reflection of social capital in educational processes: emotional literacy and emotional labor context. *Asia Pacific Education Review*, 23(1), 27–43. <https://doi.org/10.1007/s12564-021-09701-0>

Asmawati, L. (2022). Peran Orang Tua dalam Pemanfaatan Teknologi Digital pada Anak Usia Dini. *Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini*, 6(1), 30–44. <https://doi.org/10.31004/obsesi.v6i1.1170>

Asmayawati. (2023). Parental Involvement in Mattering Early Childhood Digital Literacy: The Role of Balanced Screen time and Access to Technology Evidence from Indonesia. *International Journal of Multidisciplinary Research and Analysis*, 6(11), 5220–5229. <https://doi.org/10.47191/ijmra/v6-i11-30>

Boldureanu, G., Ionescu, A. M., Bercu, A.-M., Bedrul-Grigoruță, M. V., & Boldureanu, D. (2020). Entrepreneurship Education through Successful Entrepreneurial Models in Higher Education Institutions. *Sustainability*, 12(3), 1267. <https://doi.org/10.3390/su12031267>

Bourdieu, P. (1986). *The forms of capital* (2011). *Cultural theory: An anthology*, 1, 81–93. Imre Szeman and Timothy Kaposy

Boutte, G. S., & Johnson, G. L. (2014). Community and family involvement in urban education. In H. R. Milner & K. Lomotey (Eds.), *Handbook of urban education* (pp. 167–187). Routledge.

Carroll M., J., Holliman, A. J., Weir, F., & Baroody, A. E. (2018). Literacy interest, home literacy environment and emergent literacy skills in preschoolers. *Journal of Research in Reading*, 42(1), 150–161. <https://doi.org/10.1111/1467-9817.12255>

Chin, W. W. (1998). *The partial least squares approach to structural equation modelling*. In: Marcoulides, G.A. (Ed.), *Modern Methods for Business Research*. Erlbaum, Mahwah.

Cohen, S., P. L. (2001). *In Good Company: How Social Capital Makes Organization*. Harvard Business School Press.

Coleman, J., & Hoffer, T. (1987). *Public and private high schools: The impact of communities*. Basic Books.

Farkas, G. (2018). Family, schooling, and cultural capital. In Schneider (Ed.), *Handbook of the Sociology of Education in the 21st Century* (pp. 3–53). Cham: Springer International Publishing AG. [https://doi.org/10.1007/978-3-319-76694-2\\_1](https://doi.org/10.1007/978-3-319-76694-2_1)

Ghozali, I. (2016). *Apikasi Analisis Multivariate dengan Program IBM SPSS 23* ((Cet. Ke 8)). Badan Penerbit Universitas Diponegoro.

Ghozali, M. A., & Nugroho, R. (2023). Peran Orang Tua dalam Mengenalkan Literasi Digital pada Anak Usia Dini di Dusun Ringin Desa Tlogorejo Pendahuluan. *J + PLUS: Jurnal Mahasiswa Pendidikan Luar Sekolah*, 12(2), 153–160. Retrieved from <https://ejournal.unesa.ac.id/index.php/jurnal-pendidikan-luar-sekolah/article/view/54415>

Hair, J. F., C.W.Black, Babin, J. B., & Anderson, E. R. (2019). *Multivariate Data Analysis, Eighth Edition*. Cengage.

Hair, J. J., Hult, G. T., Ringle, C. M., Sarstedt, M., Danks, N., & Ray, S. (2021). *Partial least squares structural equation modeling (PLS-SEM) using R: A workbook*. Springer Nature. <https://doi.org/10.1007/978-3-030-80519-7>

Inayah, A., Matondang, A. H., Ritonga, D. P., & Widia, F. (2024). Meningkatkan Literasi Digital Siswa di Sekolah Dasar. *Jurnal Pendidikan Dan Ilmu Sosial (Jupendis)*, 2(3), 247–258. Retrieved from <https://shorturl.asia/uCo2R>

Lareau, A., & Weininger, E. B. (2003). Cultural capital in educational research: A critical assessment. *Theory and society*, 32(5), 567–606. <https://doi.org/10.1023/B:RYSO.0000004951.04408.b0>

Lareau, A. (2011). *Unequal childhoods*. University of California Press.

Lundberg, A. L. V., & Kilhamn, C. (2018). Transposition of knowledge: Encountering proportionality in an algebra task. *International Journal of Science and Mathematics Education*, 16(3), 559–579. <https://doi.org/10.1007/s10763-016-9781-3>

Mishra, S. (2020). Social networks, social capital, social support and academic success in higher education: A systematic review with a special focus on 'underrepresented' students. *Educational Research Review*, 29, 100307. <https://doi.org/10.1016/j.edurev.2019.100307>

Noor, G., Jannah, M., Sahrani, D., & Hizkia, H. (2024). Menyiapkan Anak Untuk Dunia Digital : Panduan Bagi Orangtua Dalam Mendampingi Penggunaan Teknologi. *Jurnal Pendidikan Bhineka Tunggal Ika*, 2(5), 19–37. <https://doi.org/10.51903/bersatu.v2i5.755>

Nugroho, C. A., & Nursikin, M. (2025). Budaya literasi sebagai penguat pendidikan karakter di era society 5.0. *Al Iman: Jurnal Keislaman dan Kemasyarakatan*, 9(1), 1–28. Retrieved from <https://ejournal.stidar.ac.id/index.php/aliman/article/view/7664>

Paul, G. (1997). *Digital literacy*. New York: John Wiley & Sons, Inc.

Posey-Maddox, L., & Haley-Lock, A. (2020). One size does not fit all: Understanding parent engagement in the contexts of work, family, and public schooling. *Urban Education*, 55(5), 671–698. <https://doi.org/10.1177/0042085916660348>

Raccah, A. A. (2024). The role of digital capital in parental engagement. *Education and Information Technologies*, 29(13), 16901–16928. <https://doi.org/10.1007/s10639-024-12455-y>

Sabrina, P., & Ratnasari, E. M. (2025). The Role of Parents in Supporting Digital Literacy in Early Childhood. *AlBanna: Jurnal Pendidikan Islam Anak Usia*, 5(2), 51–59. <https://doi.org/10.24260/albanna.v5i2.4634>

Shabrina, L. M. (2022). Kegiatan Kampus Mengajar dalam Meningkatkan Keterampilan Literasi dan Numerasi Siswa Sekolah Dasar. *Jurnalbasicedu*, 6(1), 916–924. <https://doi.org/10.31004/basicedu.v6i1.2041>

Suci, L. E., Addainuri, M. I., & Abidin, M. (2023). The Effect of Economic Growth, Education, Unemployment, and Human Development Index on Poverty in The Special Region of Yogyakarta For Period 2015-2021. *Jurnal Ilmu Ekonomi Terapan*, 8(2), 284–296. <https://doi.org/10.20473/jiet.v8.i2.51028>

Sulaiman, E., Hasibuan, R., Azzahra, W., Hidayatullah, T. P., Bahri, S., Wijaya, K., Hasna, R., Ramadhanti, D., Pratomo, H. W., Citraningsih, D., Paringja, A. F., & Sugianto, J. (2024). *Inovasi Pembelajaran Era Merdeka Belajar dan Kampus Merdeka*. ALIFBA MEDIA. Retrieved from <https://shorturl.asia/L2Viq>

Sulianta., F. (2020). *Literasi Digital, Riset dan Perkembangannya dalam Perspektif Social Studies*. Feri Sulianta

Syifa, S. N., Az-Zahra, A. M., & Rachman, I. F. (2024). Analisis infrastruktur teknologi, pelatihan pengajar dan tantangan dalam implementasi model pembelajaran literasi digital untuk mendukung SDGs 2030. *Jurnal Sadewa: Publikasi Ilmu Pendidikan, Pembelajaran Dan Ilmu Sosial*, 2(2). Retrieved from <https://shorturl.asia/M7IiU>

Wibowo, A., Gularso, D., & Purwaningsih, O. (2024). The Importance of Social Capital in Developing Students' Literacy Skills in Elementary Schools. *Indonesian Journal of Educational Research and Review*, 7(62), 116–127. <https://doi.org/10.23887/ijerr.v7i1.68144>