



# Research Trends: STEAM Approach in Science Learning

Muhammad Ikhbar Ihsan<sup>1</sup>, Parno<sup>1\*</sup>, Purbo Suwasono<sup>1</sup>

<sup>1</sup> Department of Physics Education, Faculty of Science and Mathematics, Universitas Negeri Malang, Malang, Indonesia.

Received: June 12, 2025

Revised: July 02, 2025

Accepted: August 25, 2025

Published: August 31, 2025

Corresponding Author:

Parno

[parno.fmipa@um.ac.id](mailto:parno.fmipa@um.ac.id)

DOI: [10.29303/jppipa.v11i8.11658](https://doi.org/10.29303/jppipa.v11i8.11658)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)



**Abstract:** This study aims to examine research trends and explore the potential use of the STEAM approach in science learning. A Systematic Literature Review (SLR) was conducted using the PRISMA guidelines. The keywords "STEAM" and "Science Learning" were used to search the Scopus database, resulting in 60 articles, of which 13 met the inclusion criteria for further analysis. The findings highlight that the STEAM approach has strong potential to enhance science learning, particularly in improving students' 21st-century skills, conceptual understanding, and engagement through contextual and interdisciplinary learning experiences. This study is expected to serve as a valuable reference for researchers and educators in developing effective STEAM-based instructional strategies across various educational levels.

**Keywords:** Science learning; STEAM; Systematic literature review

## Introduction

The rapid development of the times encourages the world of education to adapt (Astra, 2021; Khairullina, 2022). Today, students face increasingly complex challenges, so thorough mastery of competencies is needed to respond to the global dynamics of the 21st century (Matuk, 2024). In response to these challenges, education is required to present a learning approach that can develop critical, collaborative, and creative thinking skills through cross-disciplinary integration (Lafifa et al., 2022). One of the approaches that has been developed and is considered relevant in this context is the STEAM (Science, Technology, Engineering, Arts, and Mathematics) approach (McCormick, 2021; Zhang, 2024). This approach is a development of STEM that adds elements of art to strengthen students' creativity and imagination (Hasanah et al., 2023). Through the STEAM approach, science learning is no longer separate from the real world but is directly linked to everyday life problems and is designed to encourage problem-solving through exploration and collaboration (Benu et al., 2024).

Although this approach is increasingly being applied, a comprehensive study of the direction and

trends of STEAM research in science learning is still not widely available (Chistyakov et al., 2023). In-depth literature mapping is essential to understand how this approach is evolving, the challenges faced, and the opportunities that can be leveraged in future learning development (Ng, 2024). Therefore, a systematic study is needed to examine the development of research related to the application of the STEAM approach to science learning. A Systematic Literature Review (SLR) is the appropriate method for thoroughly compiling and analyzing the literature (Magaji, 2024). By conducting an SLR, researchers can identify trends, patterns, and gaps in previous research (Guerra-Reyes, 2024). In addition, SLR helps lay a solid theoretical foundation for the development of advanced research (Yanti, 2024).

Based on this, this study was conducted to analyze research trends related to the STEAM approach in science education. This study is expected to provide a comprehensive overview of how the STEAM approach is applied in science education and contribute to the development of learning models that are more creative, contextual, and relevant to current needs. State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

## How to Cite:

Ihsan, M. I., Parno, & Suwasono, P. (2025). Research Trends: STEAM Approach in Science Learning. *Jurnal Penelitian Pendidikan IPA*, 11(8), 1-11.  
<https://doi.org/10.29303/jppipa.v11i8.11658>

## Method

This study uses a Systematic Literature Review (SLR) approach to evaluate the STEAM approach in the context of science learning (Hardianto et al., 2024). This research method followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Salim et al., 2024).

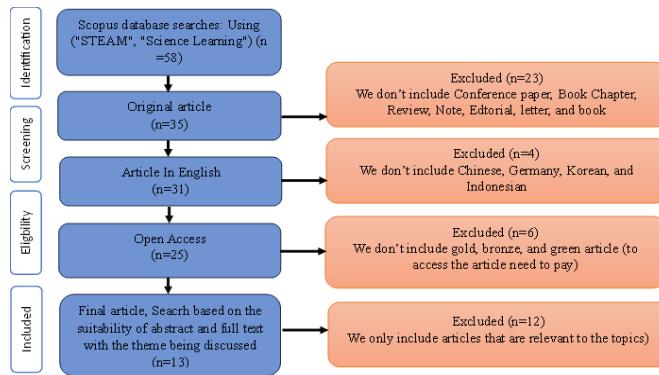



Figure 1. PRISMA diagram

Figure 1 presents the initial search stages conducted by the author through the Scopus database using the keywords "STEAM" and "Science Learning," which resulted in 58 articles. In the first screening stage, the author selected only the original type of article, so that the number of articles remained as many as 35, while the other 23 articles were excluded because they were included in the categories of conference proceedings, book chapters, literature reviews, notes, editorials, letters, and books.

Furthermore, the selection was based on the language of the publication. The author only considered articles written in English to avoid errors in interpretation. From this process, the number of articles was reduced to 31, with four articles not selected because they were written in German, Korean, Chinese, and Indonesian.

In the next stage, the author selected articles that have open access, so that the article can be accessed and used freely without having to pay. 25 articles were obtained, while six other articles were removed because they were included in the paid access category, such as gold, bronze, and green articles.

The final stage was carried out by reviewing the 25 articles through abstracts and the content of the text as a whole to assess their suitability for the research topic. Based on this assessment, 13 articles were declared relevant and met all the inclusion criteria, while the other 12 articles were not included because they were not in accordance with the theme of the study.

## Result and Discussion

### RQ1: Publication Trends of the STEAM Approach in Science Learning

The results of research on the STEAM approach in Science Learning were reported using SLR. Based on the analysis of data from research related to the STEAM approach in science learning, many articles from each year are shown in Figure 2.

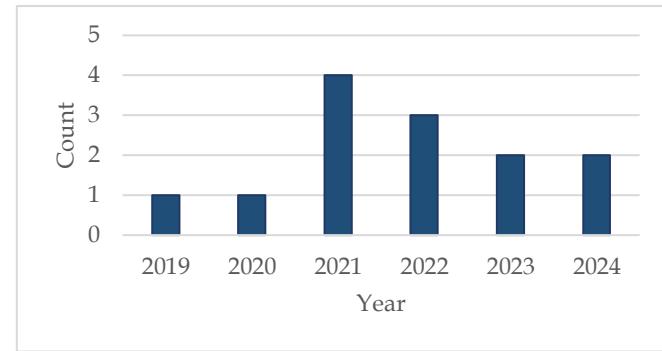
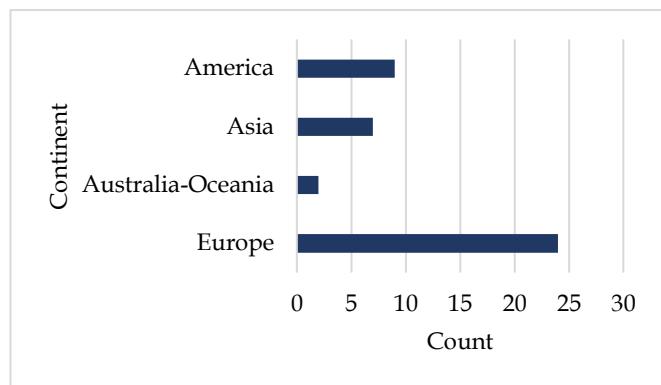



Figure 2. Distribution of Article Years

Figure 2 shows the number of articles discussing the STEAM approach in science learning from 2019 to 2024. It can be seen that publications fluctuate every year. 2021 recorded the highest number of articles, four publications, followed by 2022 with three articles. Meanwhile, 2019 and 2020 recorded only one article each. The number of publications decreased in 2023 and 2024, with two articles published each year. This pattern reflects that although the STEAM approach has gained attention, research interest in this topic has not consistently increased. Considering that the data were collected until the end of 2024, it is possible that there will still be some articles published in 2025. The results of the review of 13 articles based on the type/research method on the theme of the STEAM approach in science learning are presented in Table 1.

Table 1. Types/methods of research

| Method       | n |
|--------------|---|
| Quantitative | 3 |
| Development  | 7 |
| Experiment   | 2 |
| Mix Method   | 1 |

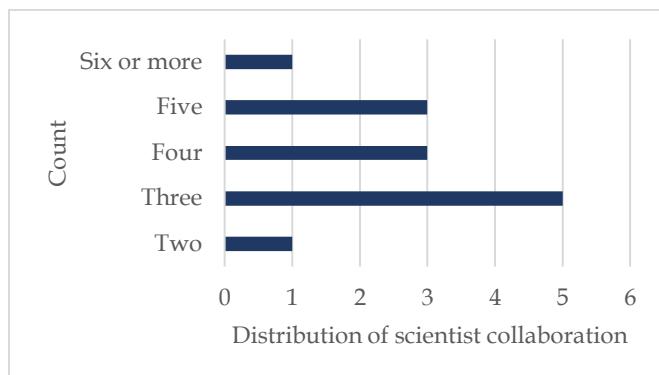

Table 1 shows that 13 articles examined the STEAM approach in science learning. The most widely used development research method, which is as many as 7 articles. This indicates that the STEAM approach is widely used to design and develop learning tools and models. In addition, there are three articles that use quantitative methods, two articles that use experimental methods, and only one article that uses the mixed method.

### Nationality of Researchers and International Collaboration

Research trends related to the nationality of researchers related to the theme of the STEAM Approach in science learning are shown in Table 2.

**Table 2.** Nationality and Continent of the Authors

| Country      | n | %    |
|--------------|---|------|
| USA          | 9 | 22.5 |
| Italy        | 7 | 17.5 |
| Spain        | 6 | 15   |
| Ireland      | 4 | 10   |
| Portugal     | 3 | 7.5  |
| Saudi Arabia | 2 | 5    |
| Greece       | 2 | 5    |
| South Korea  | 2 | 5    |
| Turkey       | 1 | 2.5  |
| Germany      | 1 | 2.5  |
| Netherlands  | 1 | 2.5  |
| Vietnam      | 1 | 2.5  |
| Australia    | 1 | 2.5  |




**Figure 3.** Number of authors from each continent

Table 2 presents the distribution of the author's country of origin which examines the theme "STEAM approach in science learning" shows that the United States is the country with the highest contribution, which is as many as 9 articles or 22.5% of the total publications. Italy ranked second with seven articles (17.5%), followed by Spain with six articles (15%). Other countries, such as Ireland (10%), Portugal (7.5%), Saudi Arabia, Greece, and South Korea, each contributed two articles (5%). Turkey, Germany, the Netherlands,

Vietnam, and Australia each contributed one article (2.5%). This shows that the STEAM approach to science learning has attracted the attention of researchers from various countries, especially Europe and America, and has begun to develop in several Asian countries and Australia. The distribution of the number of writers from each continent is shown in Figure 3.

The distribution of the number of author collaborations in articles discussing STEAM approaches to science learning is shown in Figure 4.



**Figure 4.** Researcher collaboration in writing articles

Figure 4 shows the collaboration of researchers in writing articles on the subject. The most research collaborations occurred with three authors, namely, five publications. Furthermore, collaborations involving four and five authors were recorded as three publications each. Collaborations involving two authors and six or more authors were found only once. This shows that most research related to the STEAM approach in science learning was conducted by small groups of three to five authors.

### RQ2: The Potential of STEAM Approaches in Science Learning

The researcher reviewed 13 articles to identify and collect up-to-date information regarding the application of the STEAM approach to science learning. Four main points were obtained that explain the key aspects related to the integration of STEAM in science learning, as presented in Table 3.

**Table 3.** Important Findings from the Article

| Information Found                                                                                                                                                                                                                                                                                                                                                    | Linkage to Information                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The application of the STEAM (Science, Technology, Arts, Engineering, and Mathematics) approach in learning has a positive impact on cognitive creativity (especially in the "act" dimension or the active process of analogous thinking, idea generation, and concept manipulation) as well as students' motivation for science careers (Alexopoulos et al., 2021). | The integration of art in the STEAM approach provides space for students to explore creative expression, thus creating a more meaningful and immersive learning experience. |
| The use of zines in STEAM motivates students to actively engage with science concepts through creative media (Brown et al., 2021).                                                                                                                                                                                                                                   |                                                                                                                                                                             |
| Integration of the arts (A in STEAM) does not reduce the focus on science, but instead helps students understand complex concepts and can reduce the                                                                                                                                                                                                                 |                                                                                                                                                                             |

| Information Found                                                                                                                                                                                                                                      | Linkage to Information |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| learning gap between bilingual and English-speaking students (Hughes et al., 2022).                                                                                                                                                                    |                        |
| The integration of art in STEM not only increases students' emotional engagement but effectively enhances scientific creativity and understanding of science concepts thereby helping students visualize abstract science concepts (Kim et al., 2023). |                        |
| The integration of SSI and STEAM helps students understand abstract science concepts more easily (e.g., using visual art to explain molecular structures) (Mang et al., 2021).                                                                         |                        |
| The application of Augmented Reality (AR) technology in STEAM-based learning improves students' learning retention and critical thinking skills (Alkhabra et al., 2023).                                                                               |                        |
| IoT and STEAM integration enhances Team Collaboration in designing and testing technology solutions, enabling students to explore innovative ideas, and improving digital literacy (Santos et al., 2023)                                               |                        |
| STEAM activities based on eco-friendly straws as a science learning tool to improve students' Basic Science Process Skills (BSPS) (Khamhaengpol et al., 2024)                                                                                          |                        |
| STEAM learning interventions are considered effective in reducing the gap between bilingual learners (Emerging Bilingual Learners) and English speaking students (English Fluent Students) (Corrigan et al., 2022).                                    |                        |
| Exploring the use of stand-up comedy adapted to the STEAM approach as a method to bring science closer as an activity that involves creativity, teamwork, and communication is not just an experiment in the laboratory (Heras et al., 2020).          |                        |
| STEAM effectively enhances understanding of science concepts and 21st century skills (creativity, collaboration, problem-solving) (M. Liu et al., 2018).                                                                                               |                        |
| STEAM professional development programs have a significant effect on improving teachers' self-efficacy in applying STEAM methods in the classroom (Romero-Ariza et al., 2021).                                                                         |                        |
| STEAM integration effectively improves understanding of mathematical concepts when associated with real context (such as cryptography) and creative activity (Roldán-Zafra & Perea, 2022).                                                             |                        |

## Discussion

### RQ1: Publication Trends of the STEAM Approach in Science Learning

#### Year Distribution

Thirteen articles discuss the application of the STEAM approach in science learning, showing a pattern that fluctuates from 2019 to 2024. Although there has been no consistent increase every year, the trend over the past two years indicates steady interest from researchers. This shows that STEAM is increasingly recognized as a relevant approach to be developed in the world of science education, especially in creating more innovative learning experiences (Cheng, 2022; Ng, 2024).

These developments illustrate that the STEAM approach plays an important role in strengthening students' understanding through the integration of science, technology, engineering, art, and mathematics (H. Lin, 2022; Weng, 2023). With this interdisciplinary approach, students are trained to think critically and creatively and work together to solve complex problems (Rohman, 2024; Trisnaningsih et al., 2021). The stability of researchers' interest in this theme is a strong basis for

the development of more holistic and contextual science learning practices in the future (Illene, 2023).

#### Type/Method of Research

Based on the results of the analysis of the research methods used in the study of the STEAM approach in science learning, it can be seen that there are variations in the approaches chosen by researchers. Of the 13 articles analyzed, most used the development method (7 articles), followed by quantitative (3 articles), experimental (2 articles), and mixed methods (1 article). This pattern suggests that most researchers focus on the creation or development of learning tools as an implementation of the STEAM approach (Cheng, 2022; Susanti, 2023).

In addition to the predominant development methods, quantitative and experimental methods also contribute to the objective validation of the effectiveness of STEAM implementation through numerical data (Alfian et al., 2024). Experimental methods help identify the direct influence of the STEAM approach on students' abilities, while quantitative methods are used to

systematically measure certain aspects, such as learning outcomes or student responses (Yang, 2023). Although still very limited, the existence of research using mixed methods shows the potential for perspective enrichment. By combining quantitative and qualitative data, a more complete picture is provided. The combination of these methods is the foundation for the development of more in-depth and diverse follow-up studies in future STEAM research (Nafidiah et al., 2023; Parno et al., 2020).

### *Collaboration*

Table 2 shows the geographical distribution of authors, showing that the United States is the country with the most contributions, with as many as nine authors (22.5%). Italy ranked next with seven authors (17.5%), followed by Spain with six authors (15%). Other countries, such as Ireland, Portugal, Saudi Arabia, Greece, and South Korea, have two to four writers. Meanwhile, some countries are represented by only one author, so it can be said that their participation is still very limited in the study of the STEAM approach in the field of science learning.

Figure 3 shows that the dominance of researchers from the United States can be attributed to the application of the STEAM approach, which was introduced earlier in their education systems (Ramsey, 2022). In the United States, learning is already being implemented, focusing not only on memorizing materials but also on developing high-level thinking skills, creativity, and collaboration through the integration of various disciplines (Corrigan et al., 2022; Herwinarso, 2023). Additionally, an educational culture that supports experimentation and innovation provides space for teachers and researchers to develop new learning methods (Sormunen, 2023). However, in countries with a small number of writers, the STEAM approach has not been widely studied because the curriculum tends to prioritize content over process skills (Nungu, 2023; Zuhri, 2023). The lack of teacher training in the implementation of STEAM and the limited understanding of its benefits for students (Boice et al., 2021). This condition opens up space for researchers from the region to further explore the potential of STEAM approaches in science learning in the future (Hamad et al., 2022).

Figure 4 shows that the majority of scientific publications in the data analyzed involved three to five authors, with the largest number being in the collaboration of three. This reflects the increasing trend of collaboration in research, especially in the increasingly complex and multi science (Dusdal & Powell, 2021). The large number of authors in a single article, even up to six or more, can be due to the need to combine a wide range of expertise from different

disciplines and the involvement of researchers from different countries (Ivanov et al., 2021). Cross-border collaboration allows for a wider knowledge exchange, better utilization of research facilities, and more effective global problem-solving (Beck et al., 2022; Sebatana, 2022). Thus, the involvement of multiple authors in a single scientific article not only demonstrates close scientific cooperation but also reflects a strategy to produce publications that are of high quality, globally relevant, and have a wider impact on the development of science.

### *RQ2: The Potential of STEAM Approaches in Science Learning*

The STEAM approach, which incorporates elements of art, gives students the opportunity to develop their imagination and channel their ideas creatively (Aerila, 2023; C. Y. Liu, 2022). Art acts as a bridge between abstract concepts and real applications, allowing students to express their understanding through visual, music, movement, and other media (Chu, 2022). Through this process, students learn cognitively, emotionally, and aesthetically (H. Sari, 2024). Learning also becomes more lively, contextual, and fun because students feel personally involved in each activity (Paolucci, 2021). Thus, integrating art into STEAM enriches the learning experience and helps students build a deeper understanding of the material being studied (Horvath, 2023).

The STEAM approach's focus on digital technology and innovation opens up opportunities for students to familiarize themselves with digital tools that are now integral to everyday life (Khairullina, 2022). Through learning activities that involve the use of software, interactive applications, or digital simulations, students are encouraged to think logically, solve problems, and understand scientific concepts more concretely than before (Wannapiroon & Pimdee, 2022). Experience shapes theoretical understanding and develops applicable technical skills (Körtesi et al., 2022). Thus, students gain provisions to face the development of science and the challenges of the world of work, which is increasingly based on technology and innovation.

Students are required to possess skills that are not only academic but also include the ability to think critically, collaborate, communicate, and innovate (Wilson et al., 2021). Through the STEAM approach, students are trained to explore problems in depth, design solutions through project activities, and work in teams (C.-L. Lin & Tsai, 2021). This process forms a habit of reflective and systematic thinking, which is indispensable in the face of future challenges (Li et al., 2022). In addition, learning becomes closer to daily life, so that students can see the connection between science and social realities. Thus, the STEAM approach supports

the formation of an adaptive, creative, and resilient generation across various situations (Belbase et al., 2022).

The implementation of the STEAM approach not only impacts students but also drives teachers to improve their competence (Kastriti et al., 2022; Razi & Zhou, 2022). Teachers are required to design cross-disciplinary learning that is interesting and relevant, as well as utilize various media and technologies (Dubek et al., 2021). Teachers are encouraged to be reflective and innovative in their teaching practice (Bertrand & Namukasa, 2023). On the other hand, students benefit from learning that is integrated into a real and easy-to-understand context (Duong et al., 2024). The quality of education improves when teachers and students grow through a dynamic learning process. The STEAM approach fosters synergy between teachers and students to create meaningful learning experience (Chapman, 2021).

In line with the growing interest in the STEAM approach, the results of a systematic literature review (SLR) conducted in this study show that research related to STEAM in science education has experienced a significant increase in the last five years, particularly at the secondary school level. Most studies focus on improving students' creative thinking, scientific literacy, and problem-solving abilities through project-based learning models (Benu et al., 2024; Indrasari et al., 2020; Rohman, 2024). However, the majority of research is still concentrated in developed countries, indicating a gap in implementation and study in developing regions, which presents a valuable opportunity for future research expansion (Wong, 2023).

Despite the promising potential of the STEAM approach, several challenges still hinder its optimal application. One of the main obstacles identified in the literature is the limited pedagogical understanding among educators regarding how to design and implement STEAM-based learning effectively (Razi & Zhou, 2022). In addition, constraints related to the availability of teaching materials, limited access to interdisciplinary learning tools, and a lack of institutional support are frequently mentioned. These challenges highlight the need for structured teacher training, the development of integrated curriculum guidelines, and stronger collaboration among stakeholders to ensure that STEAM can be implemented sustainably.

In conclusion, the STEAM approach has shown considerable potential to transform science learning into a more integrated, creative, and relevant process (Wikoff, 2021). However, realizing this potential requires collaborative efforts in research, curriculum development, and educator empowerment (Lindsay, 2021). The findings from this review can serve as a

reference for education stakeholders to strengthen the design and implementation of STEAM-based learning, particularly in contexts that have been underrepresented in existing studies (Merrill, 2024). Through this, it is expected that the development of learning models will be increasingly responsive to the needs of the 21st century and contribute to the formation of a generation that is critical, innovative, and adaptable (Widarwati, 2021).

## Conclusion

This SLR provides an interesting overview of research trends related to the STEAM approach to science learning. First, the number of publications on this topic shows a trend that tends to increase from year to year, although there are slight fluctuations in certain periods. Second, development research dominates the type of research used, followed by quantitative research, experimental research, and mixed methods, which show various approaches to exploring the effectiveness and application of STEAM. Third, the study found that publications related to this topic originated from various countries, with most authors coming from the United States. When viewed by region, this trend reflects the broad interest of researchers in Europe in developing STEAM approaches. Fourth, most articles are written through inter-agency and cross-country collaborations, showing that this issue is global and multidisciplinary. The researcher also succeeded in identifying the potential implementation of the STEAM approach in science learning, including encouraging students' creative exploration through the integration of the arts, strengthening conceptual understanding through project-based activities, and improving 21st century skills that are highly relevant to today's needs. In addition, this approach opens up more contextual and innovative learning opportunities, both in the school environment and at the level of the broader educational community. These findings reinforce the importance of developing and implementing the STEAM approach more widely, and provide a basis for further research in science learning.

## Acknowledgments

The researcher would like to express his deep gratitude to all parties who have provided support and contributions in the preparation of this research on the trend of the STEAM approach in science learning.

## Author Contributions

Conceptualization, M.I.I. and P.; methodology, M.I.I.; validation, P. and P.S.; formal analysis, M.I.I.; investigation, M.I.I.; resources, M.I.I.; data curation, M.I.I.; writing – original draft preparation, Muhammad Ikhbar Ihsan; writing – review

and editing, M.I.I.; visualization, M.I.I. All authors have read and agreed to the published version of the manuscript.

## Funding

This research received no external funding.

## Conflicts of Interest

The authors declare no conflict of interest.

## References

Aerila, J. A. (2023). Learning Steam Content Via Arts-Based Hands-On Activities. *Science Technology Engineering Arts and Mathematics Steam Education in the Early Years Achieving the Sustainable Development Goals*, 91-107. <https://doi.org/10.4324/9781003353683-9>

Alexopoulos, A. N., Paolucci, P., Sotiriou, S. A., Bogner, F. X., Dorigo, T., Fedi, M., Menasce, D., Michelotto, M., Paoletti, S., & Scianitti, F. (2021). The colours of the Higgs boson: a study in creativity and science motivation among high-school students in Italy. *Smart Learning Environments*, 8(1). <https://doi.org/10.1186/s40561-021-00169-4>

Alfian, M. A., Parno, P., & Wisodo, H. (2024). The Influence of the 9E Learning Cycle with A STEM Approach on Students' Science Process Skills in Static Fluid Topics. *Jurnal Penelitian Pendidikan IPA*. Retrieved from <https://jppipa.unram.ac.id/index.php/jppipa/article/view/8916>

Alkhabra, Y. A., Ibrahim, U. M., & Alkhabra, S. A. (2023). Augmented reality technology in enhancing learning retention and critical thinking according to STEAM program. *Humanities and Social Sciences Communications*, 10(1). <https://doi.org/10.1057/s41599-023-01650-w>

Astra, I. M. (2021). Hots and the 21st century learning skills: Formed with practicum-based physics learning worksheets. *Aip Conference Proceedings*, 2320. <https://doi.org/10.1063/5.0037608>

Beck, S., Bergenholz, C., Bogers, M., Brasseur, T.-M., Conradsen, M. L., Di Marco, D., Distel, A. P., Dobusch, L., Dörler, D., Effert, A., Fecher, B., Filiou, D., Frederiksen, L., Gillier, T., Grimpe, C., Gruber, M., Haeussler, C., Heigl, F., Hoisl, K., ... Xu, S. M. (2022). The Open Innovation in Science research field: a collaborative conceptualisation approach. *Industry and Innovation*, 29(2), 136-185. <https://doi.org/10.1080/13662716.2020.1792274>

Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2022). At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. *International Journal of Mathematical Education in Science and Technology*, 53(11), 2919-2955. <https://doi.org/10.1080/0020739X.2021.1922943>

Benu, M. Y. T., Parno, P., & Handayanto, S. K. (2024). The Effect of STEM Approach with Assessment Formative in PBL on the Problem-Solving Ability of Prospective Physics Teacher on Mechanical Wave. *International Conference on Mathematics and Science Education (ICoMSE)*. Retrieved from <https://www.atlantis-press.com/proceedings/icomse-23/126002096>

Bertrand, M. G., & Namukasa, I. K. (2023). A pedagogical model for STEAM education. *Journal of Research in Innovative Teaching & Learning*, 16(2), 169-191. <https://doi.org/10.1108/JRIT-12-2021-0081>

Boice, K. L., Jackson, J. R., Alemdar, M., Rao, A. E., Grossman, S., & Usselman, M. (2021). Supporting Teachers on Their STEAM Journey: A Collaborative STEAM Teacher Training Program. *Education Sciences*, 11(3), 105. <https://doi.org/10.3390/educsci11030105>

Brown, A., Hurley, M., Perry, S., & Roche, J. (2021). Zines as Reflective Evaluation Within Interdisciplinary Learning Programmes. *Frontiers in Education*, 6. <https://doi.org/10.3389/feduc.2021.675329>

Chapman, S. N. (2021). To STEAM or not to STEAM: Investigating arts immersion to support children's learning. *Embedding Steam in Early Childhood Education and Care*, 155-172. [https://doi.org/10.1007/978-3-030-65624-9\\_8](https://doi.org/10.1007/978-3-030-65624-9_8)

Cheng, L. (2022). Design My Music Instrument: A Project-Based Science, Technology, Engineering, Arts, and Mathematics Program on The Development of Creativity. *Frontiers in Psychology*, 12. <https://doi.org/10.3389/fpsyg.2021.763948>

Chistyakov, A. A., Zhdanov, S. P., Avdeeva, E. L., Dyadichenko, E. A., Kunitsyna, M. L., & Yagudina, R. I. (2023). Exploring the characteristics and effectiveness of project-based learning for science and STEAM education. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(5). <https://doi.org/10.29333/EJMSTE/13128>

Chu, H. E. (2022). Arts-Integrated STEM in Korean Schools. *Concepts and Practices of Stem Education in Asia*, 217-233. [https://doi.org/10.1007/978-981-19-2596-2\\_12](https://doi.org/10.1007/978-981-19-2596-2_12)

Corrigan, M. W., Grove, D., Andersen, S., Wong, J. T., & Hughes, B. S. (2022). Sometimes Finding Nothing is Something: Shrinking the Gap between Emerging Bilingual Learners and English Fluent Students (Case in Point). *International Journal of Educational Methodology*, 8(1), 11-27. <https://doi.org/10.12973/ijem.8.1.11>

Dubek, M., DeLuca, C., & Rickey, N. (2021). Unlocking the potential of STEAM education: How

exemplary teachers navigate assessment challenges. *The Journal of Educational Research*, 114(6), 513–525. <https://doi.org/10.1080/00220671.2021.1990002>

Duong, N. H., Nam, N. H., & Trung, T. T. (2024). Factors affecting the implementation of STEAM education among primary school teachers in various countries and Vietnamese educators: comparative analysis. *Education* 3-13, 1-15. <https://doi.org/10.1080/03004279.2024.2318239>

Dusdal, J., & Powell, J. J. W. (2021). Benefits, Motivations, and Challenges of International Collaborative Research: A Sociology of Science Case Study. *Science and Public Policy*, 48(2), 235–245. <https://doi.org/10.1093/scipol/scab010>

Guerra-Reyes, F. (2024). Misconceptions in the Learning of Natural Sciences: A Systematic Review. *Education Sciences*, 14(5). <https://doi.org/10.3390/educsci14050497>

Hamad, S., Tairab, H., Wardat, Y., Rabbani, L., AlArabi, K., Yousif, M., Abu-Al-Aish, A., & Stoica, G. (2022). Understanding Science Teachers' Implementations of Integrated STEM: Teacher Perceptions and Practice. *Sustainability*, 14(6), 3594. <https://doi.org/10.3390/su14063594>

Hardianto, H., Mahanal, S., Susanto, H., & Prabaningtyas, S. (2024). Protist literacy: A novel concept of protist learning in higher education. *Eurasia Journal of Mathematics, Science and Technology Education*, 20(2), em2399. <https://doi.org/10.29333/ejmste/14157>

Hasanah, S., Parno, P., Hidayat, A., & Supriana, E. (2023). Building students' creative thinking ability through STEM integrated project-based learning with formative assessment on thermodynamics topics. *AIP Conference Proceedings*. Retrieved from <https://pubs.aip.org/aip/acp/article-abstract/2569/1/050007/2870172>

Heras, M., Ruiz-Mallén, I., & Gallois, S. (2020). Staging science with young people: bringing science closer to students through stand-up comedy. *International Journal of Science Education*, 42(12), 1968–1987. <https://doi.org/10.1080/09500693.2020.1807071>

Herwinarso. (2023). Investigation of science process skills and computational thinking dispositions during the implementation of collaborative modeling-based learning in high school physics class. *Journal of Education and E Learning Research*, 10(4), 753–760. <https://doi.org/10.20448/jeelr.v10i4.5200>

Horvath, A. S. (2023). STEAM Matters for Sustainability: 10 Years of Art and Technology Student Research on Sustainability Through Problem-based Learning. *Journal of Problem Based Learning in Higher Education*, 11(2). <https://doi.org/10.54337/ojs.jpblhe.v11i2.7768>

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. *International Journal of STEM Education*, 9(1). <https://doi.org/10.1186/s40594-022-00375-7>

Illene, S. (2023). Create multiple-choice tests based on experimental activities to assess students' 21st century skills in heat and heat transfer topic. *Journal of Education and Learning*, 17(1), 44–57. <https://doi.org/10.11591/edulearn.v17i1.20540>

Indrasari, N., Parno, P., Hidayat, A., & ... (2020). Designing and implementing STEM-based teaching materials of static fluid to increase scientific literacy skills. *AIP Conference Proceedings*. Retrieved from <https://pubs.aip.org/aip/acp/article-abstract/2215/1/050006/615891>

Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., & Das, A. (2021). Researchers' perspectives on Industry 4.0: multi-disciplinary analysis and opportunities for operations management. *International Journal of Production Research*, 59(7), 2055–2078. <https://doi.org/10.1080/00207543.2020.1798035>

Kastriti, E., Kalogiannakis, M., Pscharis, S., & Vavougios, D. (2022). The teaching of Natural Sciences in kindergarten based on the principles of STEM and STEAM approach. *Advances in Mobile Learning Educational Research*, 2(1), 268–277. <https://doi.org/10.25082/AMLER.2022.01.011>

Khairullina, I. (2022). Art-Based Innovation Teaching and Learning: How Do Students, Teachers, and Administrators Experience STEAM Education Online? *Digital Teaching and Learning in Higher Education Developing and Disseminating Skills for Blended Learning*, 247–295. [https://doi.org/10.1007/978-3-031-00801-6\\_13](https://doi.org/10.1007/978-3-031-00801-6_13)

Khamhaengpol, A., Nokaew, T., & Chuamchaitrakool, P. (2024). Development of STEAM activity "Eco-Friendly Straw" based science learning kit to examine students' basic science process skills. *Thinking Skills and Creativity*, 53. <https://doi.org/10.1016/j.tsc.2024.101618>

Kim, E. S., Chu, H. E., & Song, J. (2023). Development and Impact of an Intercultural STEAM Program on Science Classroom Creativity. *Asia-Pacific Science Education*, 3(1), 1–36. <https://doi.org/10.1163/23641177-bja10058>

Körtesi, P., Simonka, Z., Szabo, Z. K., Guncaga, J., & Neag, R. (2022). Challenging Examples of the Wise Use of Computer Tools for the Sustainability of Knowledge and Developing Active and Innovative

Methods in STEAM and Mathematics Education. *Sustainability*, 14(20), 12991. <https://doi.org/10.3390/su142012991>

Lafifa, F., Parno, P., Hamimi, E., & ... (2022). Development of STEM animation learning media with feedback to facilitate students' critical thinking ability on global warming materials. *Eighth Southeast Asia Design Research (SEA-DR) & the Second Science, Technology, Education, Arts, Culture, and Humanity (STEACH) International Conference (SEADR-STEACH 2021)*. Retrieved from <https://www.atlantis-press.com/proceedings/seadr-steach-21/125968030>

Li, J., Luo, H., Zhao, L., Zhu, M., Ma, L., & Liao, X. (2022). Promoting STEAM Education in Primary School through Cooperative Teaching: A Design-Based Research Study. *Sustainability*, 14(16), 10333. <https://doi.org/10.3390/su141610333>

Lin, C.-L., & Tsai, C.-Y. (2021). The Effect of a Pedagogical STEAM Model on Students' Project Competence and Learning Motivation. *Journal of Science Education and Technology*, 30(1), 112-124. <https://doi.org/10.1007/s10956-020-09885-x>

Lin, H. (2022). The Influence Mechanism of High School English Grammar Science, Technology, Engineering, Art, and Mathematics Teaching Model on High School Students' Learning Psychological Motivation. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.917167>

Lindsay, S. M. (2021). Integrating microscopy, art, and humanities to power STEAM learning in biology. *Invertebrate Biology*, 140(1). <https://doi.org/10.1111/ivb.12327>

Liu, C. Y. (2022). STEM without art: A ship without a sail. *Thinking Skills and Creativity*, 43. <https://doi.org/10.1016/j.tsc.2021.100977>

Liu, M., Liu, S., Pan, Z., Zou, W., & Li, C. (2018). Examining science learning and attitude by at-risk students after they used a multimedia-enriched problem-based learning environment. *Interdisciplinary Journal of Problem-Based Learning*, 13(1). <https://doi.org/10.7771/1541-5015.1752>

Magaji, A. (2024). A Systematic Review of Preservice Science Teachers' Experience of Problem-Based Learning and Implementing It in the Classroom. *Education Sciences*, 14(3). <https://doi.org/10.3390/educsci14030301>

Mang, H. M. A., Chu, H. E., Martin, S. N., & Kim, C. J. (2021). An SSI-Based STEAM Approach to Developing Science Programs. *Asia-Pacific Science Education*, 7(2), 549-585. <https://doi.org/10.1163/23641177-bja10036>

Matuk, C. (2024). Promoting students' informal inferential reasoning through arts-integrated data literacy education. *Information and Learning Science*, 125(3), 163-189. <https://doi.org/10.1108/ILS-07-2023-0088>

McCormick, S. (2021). Putting the A in STEAM: Arts education in junior cycle. *Curriculum Change within Policy and Practice Reforming Second Level Education in Ireland*, 143-159. [https://doi.org/10.1007/978-3-030-50707-7\\_8](https://doi.org/10.1007/978-3-030-50707-7_8)

Merrill, M. L. (2024). Everyday STEAM for the Early Childhood Classroom: Integrating the Arts into STEM Teaching. *Everyday Steam for the Early Childhood Classroom Integrating the Arts into Stem Teaching*, 1-234. <https://doi.org/10.4324/9781003395614>

Nafidiah, F. Z., Parno, P., Fitriyah, I. J., & Fardhani, I. (2023). Development of digital game-based learning based PBL-STEM to stimulate scientific literacy of junior high school students in climate change analyzing activities. *AIP Conference Proceedings*. Retrieved from <https://pubs.aip.org/aip/acp/article-abstract/2569/1/060002/2870060>

Ng, A. (2024). Empowering Malaysian early childhood practitioners' sustainable inclusive practices through the 'integrating and navigating Science, Technology, Engineering, Arts, and Mathematics' (inSTEAM) framework. *Eurasia Journal of Mathematics Science and Technology Education*, 20(11), 1-14. <https://doi.org/10.29333/EJMSTE/15579>

Nungu, L. (2023). Online collaborative learning and cognitive presence in mathematics and science education. Case study of university of Rwanda, college of education. *Education and Information Technologies*, 28(9), 10865-10884. <https://doi.org/10.1007/s10639-023-11607-w>

Parno, P., Yuliati, L., & Hermanto, F. M. (2020). A case study on comparison of high school students' scientific literacy competencies domain in physics with different methods: pbl-stem education, pbl, and conventional learning. *Jurnal Pendidikan IPA Indonesia*. Retrieved from <https://journal.unnes.ac.id/nju/jpii/article/view/23894>

Ramsey, G. P. (2022). Integrating science, technology, engineering, and math (STEM) and music: Putting the arts in science, technology, engineering, arts, and math (STEAM) through acoustics. *Journal of the Acoustical Society of America*, 152(2), 1106-1111. <https://doi.org/10.1121/10.0013571>

Razi, A., & Zhou, G. (2022). STEM, iSTEM, and STEAM: What is next? *International Journal of Technology in Education*, 5(1), 1-29. <https://doi.org/10.46328/ijte.119>

Rohman, M. H. (2024). Effectiveness of Ethnoecological-STEM Project-Based Learning Model to Improve Critical Thinking Skills, Creativity, and Science Concept Mastery. *International Journal of Cognitive Research in Science Engineering and Education*, 12(3), 521-534. <https://doi.org/10.23947/2334-8496-2024-12-3-521-534>

Roldán-Zafra, J., & Perea, C. (2022). Math Learning in a Science Museum—Proposal for a Workshop Design Based on STEAM Strategy to Learn Mathematics. The Case of the Cryptography Workshop. *Mathematics*, 10(22). <https://doi.org/10.3390/math10224335>

Romero-Ariza, M., Quesada, A., Abril, A. M., & Cobo, C. (2021). Changing teachers' self-efficacy, beliefs and practices through STEAM teacher professional development (Cambios en la autoeficacia, creencias y prácticas docentes en la formación STEAM de profesorado). *Infancia y Aprendizaje*, 44(4), 942-969. <https://doi.org/10.1080/02103702.2021.1926164>

Salim, F. A., Mahanal, S., & Susanto, H. (2024). The Existence of Health Literacy in Science Education: A Systematic Literature Review. *Jurnal Penelitian Pendidikan IPA*, 10(12), 930-943. <https://doi.org/10.29303/jppipa.v10i12.7413>

Santos, M., Carlos, V., & Moreira, A. A. (2023). Towards interdisciplinarity with STEAM educational strategies: the Internet of Things as a catalyser to promote participatory citizenship. *Educational Media International*, 60(3-4), 274-291. <https://doi.org/10.1080/09523987.2023.2324581>

Sari, H. (2024). The impact of STEAM (STEM + arts) activities on learning outcomes in students with specific learning disabilities. *Support for Learning*, 39(1), 3-21. <https://doi.org/10.1111/1467-9604.12462>

Sebatana, M. J. (2022). Enhancing Grade 10 Physical Sciences Teachers' Self-Directedness in Implementing Blended Problem-Based Learning. *Science Education International*, 33(4), 427-437. <https://doi.org/10.33828/sei.v33.i4.11>

Sormunen, K. (2023). Learning science through a collaborative invention project in primary school. *Disciplinary and Interdisciplinary Science Education Research*, 5(1). <https://doi.org/10.1186/s43031-023-00074-5>

Susanti, A. (2023). Developing physics learning videos with STEM approach (Science, technology, engineering, mathematics). *Aip Conference Proceedings*, 2595. <https://doi.org/10.1063/5.0123793>

Trisnaningsih, D. R., & Parno, P. (2021). The development of virtual laboratory-based STEM approach equipped feedback to improve critical thinking skills on acid-base concept. *International Joint Conference on Science and Engineering*. Retrieved from <https://www.atlantis-press.com/proceedings/ijcse-21/125966454>

Wannapiroon, N., & Pimdee, P. (2022). Thai undergraduate science, technology, engineering, arts, and math (STEAM) creative thinking and innovation skill development: a conceptual model using a digital virtual classroom learning environment. *Education and Information Technologies*, 27(4), 5689-5716. <https://doi.org/10.1007/s10639-021-10849-w>

Weng, X. (2023). Creativity Development With Problem-Based Digital Making and Block-Based Programming for Science, Technology, Engineering, Arts, and Mathematics Learning in Middle School Contexts. *Journal of Educational Computing Research*, 61(2), 304-328. <https://doi.org/10.1177/07356331221115661>

Widarwati, D. (2021). STEAM (Science Technology Engineering Art Mathematic) Based Module for Building Student Soft Skill. *Journal of Physics Conference Series*, 1823(1). <https://doi.org/10.1088/1742-6596/1823/1/012106>

Wikoff, K. H. (2021). *Building STEAM: Creating a Culture of Art in an Engineering Education*. ASEE.

Wilson, H. E., Song, H., Johnson, J., Presley, L., & Olson, K. (2021). Effects of transdisciplinary STEAM lessons on student critical and creative thinking. *The Journal of Educational Research*, 114(5), 445-457. <https://doi.org/10.1080/00220671.2021.1975090>

Wong, J. T. (2023). A Learning Experience Design Approach to Online Professional Development for Teaching Science through the Arts: Evaluation of Teacher Content Knowledge, Self-Efficacy and STEAM Perceptions. *Journal of Science Teacher Education*, 34(6), 593-623. <https://doi.org/10.1080/1046560X.2022.2112552>

Yang, W. (2023). Science, Technology, Engineering, Arts, And Mathematics (Steam) Education In The Early Years: Achieving the Sustainable Development Goals. *Science Technology Engineering Arts and Mathematics Steam Education in the Early Years Achieving the Sustainable Development Goals*, 1-268. <https://doi.org/10.4324/9781003353683>

Yanti, F. A. (2024). Higher order thinking skills in science learning: a systematic review from 2014-2023. *International Journal of Evaluation and Research in Education*, 13(4), 2419-2427. <https://doi.org/10.11591/ijere.v13i4.28082>

Zhang, C. (2024). Enriching STEAM education with visual art: education benefits, teaching examples, and trends. *Discover Education*, 3(1). <https://doi.org/10.1007/s44217-024-00354-w>

Zuhri, R. S. (2023). Multiple Representation Approach in Elementary School Science Learning: A Systematic Literature Review. *International Journal of Learning Teaching and Educational Research*, 22(3), 51-73.  
<https://doi.org/10.26803/ijlter.22.3.4>