
 

JPPIPA 11(8) (2025) 
 

Jurnal Penelitian Pendidikan IPA 
         

 
http://jppipa.unram.ac.id/index.php/jppipa/index 

 
   

___________ 
How to Cite: 
Andini, N. R. P., Radhiah, Iskandar, T., & Oktavia, R. (2025). Application of GARCH and Value-at-Risk (VaR) Models in Stochastic Analysis of 
LQ45 Index Volatility. Jurnal Penelitian Pendidikan IPA, 11(8), 815–827. https://doi.org/10.29303/jppipa.v11i8.11670  

Application of GARCH and Value-at-Risk (VaR) Models in 
Stochastic Analysis of LQ45 Index Volatility 
 
Nissa Rahma Putri Andini1*, Radhiah1, Taufiq Iskandar1, Rini Oktavia1 
 

1 Mathematics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University Darussalam. 
Jl. Syech Abdurrauf No. 3, Gedung C, FMIPA USK, Banda Aceh, Indonesia 23111  

 

 
Received: June 12, 2025 
Revised:  July 11, 2025 
Accepted: August 25, 2025 
Published: August 31, 2025 
 

Corresponding Author:  
Nissa Rahma Putri Andini 
nissa_r@mhs.usk.ac.id  
 
DOI: 10.29303/jppipa.v11i8.11670  
 
© 2025 The Authors. This open access article 
is distributed under a (CC-BY License) 

 
 

Abstract: Stock market volatility is a crucial factor in investment decision-
making. This study analyzes the volatility of the LQ45 Index, one of Indonesia's 
major stock indices, using the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model and assesses risk through the Value-at-
Risk (VaR) method. The data consists of daily closing prices of the LQ45 index 
from 2020 to 2024. A GARCH(1,1) model is used to estimate the conditional 
variance dynamically, and VaR is calculated at the 95% confidence level. The 
results show that the GARCH(1,1) model effectively captures volatility 
dynamics, with the highest daily VaR recorded at 3.21% during the first quarter 
of 2020. The novelty of this study lies in the explicit integration of the 
mathematical formulation of GARCH with VaR estimation in the context of the 
Indonesian stock market, particularly the LQ45 index, which is rarely addressed 
in pure mathematical finance literature. This approach contributes to the 
development of stochastic financial models and provides a quantitative 
framework for investment risk management. 
 
Keywords: Stock volatility; LQ45 Index; GARCH(1,1); Value-at-Risk; Risk 
Management 

  

Introduction  
 

The capital market is a vital component in the 
modern financial system that functions as a means of 
funding as well as investment. One of the instruments 
that is widely used as a reference by investors in 
Indonesia is the LQ45 Index, which is a stock index 
consisting of 45 stocks with high liquidity and large 
market capitalization on the Indonesia Stock Exchange 
(IDX). However, fluctuating stock price movements are 
a challenge for investors in managing investment risk. 
Therefore, a quantitative analysis model is needed that 
is able to measure volatility and potential risks more 
precisely. Stock indices such as the LQ45 not only reflect 
market conditions but can also be analyzed 
mathematically to understand the complex nature of 
market volatility. This analysis is crucial, as volatility 
represents uncertainty that can be quantified using 

stochastic approaches, which are highly relevant in the 
context of financial mathematics. 

In mathematics, especially in the branches of 
stochastic analysis and random process theory, the 
study of financial variables such as stock returns opens 
up space for the application of various mathematical 
models, both deterministic and non-deterministic. The 
GARCH (Generalized Autoregressive Conditional 
Heteroskedasticity) model is one of the conditional 
stochastic models that can be interpreted as a nonlinear 
dynamic system with latent variables in the form of 
conditional variance. This model is rooted in Markov 
process theory and is mathematically a derivative of the 
ARCH process developed by Engle (1982), later 
expanded by Bollerslev (1986). Mathematically, the 
GARCH(p,q) process can be viewed as an extension of 
ARCH(q), where the conditional variance 𝜎𝑡

2 is 
influenced not only by the squares of the past residuals 
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but also by the previous variance (Francq & Zakoian, 
2019). 

In this approach, the observed volatility is not 
considered as a fixed value, but rather as a stochastic 
process that changes over time following the dynamics 
of residual variance. This model allows for a more 
realistic estimate of market risk fluctuations, as it takes 
into account the memory effect of previous shocks on 
current variants. In the realm of pure mathematics, the 
GARCH model is a form of nonlinear quadratic 
recursion that is very interesting to study, because it has 
the properties of stationariness, ergodicity, and 
convergence of estimation parameters in the long term 
(Bougerol & Picard, 1992; Ling & McAleer, 2002).  

As a complement to risk measurement, the Value-
at-Risk (VaR) approach plays an important role in 
quantifying potential losses in a probabilistic 
framework. VaR not only provides statistical numbers of 
potential losses, but also requires knowledge of the 
probability distribution of returns, tail risk behavior, as 
well as the relationship between variance and the 
frequency distribution of losses. Therefore, the 
integration between GARCH and VaR is a theoretically 
and practically suitable approach for market risk 
analysis. In the realm of pure mathematics, VaR can be 
understood as the result of a quantitative distribution 
function calibrated to the stochastic variable of the 
GARCH model. 

The urgency of using these two approaches in the 
context of the Indonesian capital market, especially the 
LQ45 index, is even stronger when looking at historical 
data that shows year-on-year return volatility. Volatility 
is not only visible, but can be measured and modeled 
mathematically, resulting in a more comprehensive risk 
map. Thus, by combining the GARCH(1,1) model and 
the VaR approach, this study not only explains price 
fluctuations, but also presents a concrete form of the 
application of stochastic structures to real-world 
phenomena. However, most previous studies have 
primarily focused on modeling volatility without 
incorporating a quantitative assessment of risk. 
Therefore, this study aims to address the following 
question: To what extent can the GARCH(1,1) model be 
used to estimate stochastic volatility, and how can the 
Value-at-Risk (VaR) measure be integrated to assess risk 
in the LQ45 index within the Indonesian stock market. 

Volatility in financial markets is often considered 
"risk" because it describes the level of uncertainty over 
the value of an asset. In the classical mathematical 
approach, risk is historically measured using standard 
variance or deviation. However, these measurements 
are static and do not take into account the temporal 
dynamics that occur in a real market. Therefore, an 
approach is needed that is able to accommodate the time 
character of the data, which in this case is manifested 

through heteroscedastic models such as ARCH and 
GARCH. A recent study by (Ugurlu et al., 2014) 
indicates that GARCH family models remain a reliable 
approach for modeling market volatility in Southeast 
Asia, while Value-at-Risk (VaR)-based methods 
continue to be developed to account for heavy-tailed 
distributions and extreme events. 

The GARCH model was specifically developed to 
answer the shortcomings of classical linear models in 
capturing the dynamics of variance fluctuations. In a 
formal framework, the GARCH model is a form of 
nonlinear stochastic recursion that represents the time 
dependence in the distribution of variance. The ℎ𝑡 
process, i.e. conditional variance, is treated as a 
stochastic variable that depends on two main factors: the 
square of the previous residual (𝜀𝑡−1

2 ) and the value of 
the previous variance (ℎ𝑡−1h). This structure is very 
close to the concept of second-order Markov chains, and 
mathematically meets the characteristics of discrete 
stochastic models that can be tested for stationary by 
theoretical or numerical methods. 

In its development, the GARCH model can also be 
studied in terms of dynamic system stability. When the 
value is α1+β1, the system is declared weakly stationary. 
However, when α1+β1 ≈ 1, the system behaves like an 
integration process of a time series of variance that is 
close to a random walk, also known as a persistent 
volatility process. Formal studies of this are important 
because they provide information about whether the 
model will converge towards a given value or 
continuously drift indefinitely – this issue is very central 
to the stability theory of stochastic systems. 

Along with that, the Value-at-Risk (VaR) approach 
emerged as a risk measurement method that provides a 
lower bound of maximum losses with a certain level of 
confidence. Mathematically, VaR is defined as the 
quantitil of the loss distribution, or more explicitly: the 
value of  in such a way that the probability of loss 
exceeding is no more than 1−α. The cumulative 
distribution function (CDF) of the return stochastic 
variable, in this case Rt, is the main key in determining 
the VaR value. Thus, the distribution estimate of Rt, 
obtained from the GARC model, greatly determines the 
accuracy of the VaR estimate. 

Furthermore, this approach has a direct connection 
with probability analysis, particularly in the study of 
empirical distribution functions, theoretical quantittiles, 
and confidence interval estimation. Thus, the 
application of VaR is not only relevant in risk 
management, but also a means to test and implement 
advanced probability theory and statistics in a real 
context. In this study, a parametric approach is used 
assuming a normal distribution, but in follow-up studies 
it can be extended to extreme distributions or bootstrap 
methods to approach VaR values numerically.  
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Previous research conducted by Muzio Ponziani 
(2022) confirmed that GARCH-type models, particularly 
GJR-GARCH, are effective in capturing the volatility 
dynamics of Indonesian stock indices such as LQ45, and 
highlighted the presence of asymmetric effects where 
negative shocks have a stronger impact than positive 
ones. Similarly, research conducted by Faydian et al. 
(2021) showed that the ARCH and GARCH models are 
effective in capturing the volatility dynamics of daily 
financial data, including stock indices. A similar thing 
was put forward by Amri et al. (2024), who stated that 
the GARCH(1,1) approach can describe stock market 
volatility dynamically. However, most of those studies 
only focus on estimating volatility without explicitly 
measuring the risk of loss. This is where the gap in this 
study lies: there have not been many studies that 
integrate the GARCH model with Value-at-Risk (VaR) 
as a tool for measuring stochastic risk in the context of 
the LQ45 stock index in Indonesia. 

According to Endri et al. (2021) shows that the 
GARCH model can effectively model the volatility of the 
Indonesian stock market during the COVID-19 
pandemic, capturing the volatility spikes due to external 
shocks. Previous research conducted by Hasnanda & 
Ratna (2020), results of this study indicate that the Mean 
Model for Inflation uses the AR (1) and MA (1) 
components, while the Mean Model for consumer price 
index is AR (1). Meanwhile, the Variance Model with 
GARCH estimates for inflation and consumer price 
index data has insignificant RESID2 (1) and GARCH (1). 

According to Hall & Yao (2003), ARCH and 
GARCH models directly address the dependency of 
conditional second moments, and have proved 
particularly valuable in modelling processes where a 
relatively large degree of fluctuation is present. These 
include financial time series, which can be particularly 
heavy tailed. However, little is known about properties 
of ARCH or GARCH models in the heavy-tailed setting, 
and no methods are available for approximating the 
distributions of parameter estimators there. In this paper 
we show that, for heavy-tailed errors, the asymptotic 
distributions of quasi-maximum likelihood parameter 
estimators in ARCH and GARCH models are 
nonnormal, and are particularly difficult to estimate 
directly using standard parametric methods.  

According to Darmanto et al. (2025), The findings 
indicate that GARCH models effectively capture stock 
price dynamics and provide accurate 10-day forecasts. 
Additionally, the models reliably predict VaR, validated 
through backtesting at various confidence levels. These 
insights are valuable for financial regulators and risk 
managers, aiding in policy design to ensure market 
stability by enabling the implementation of measures 
such as stricter capital reserve requirements for 
institutions with high-risk exposure and mandatory 

adoption of advanced risk management techniques like 
dynamic stress testing. 

Previous research conducted by Nasrudin et al. 
(2024), The results showed that the VAR(1) model is 
stable, but this model indicates the presence of 
heteroskedasticity or ARCH effects. Therefore, the 
VAR(1) model was combined with the GARCH model, 
and the results showed that the best model is VAR(1)-
GARCH(1,1). The VAR(1) GARCH(1,1) model is 
appropriate and meets the homoskedasticity 
assumptions for modeling the stock prices of the mining 
sub-sector in the Jakarta Islamic Index (JII). This 
indicates that the VAR-GARCH model could 
successfully handle the volatility of stock price data 

Classical statistical models often fail to capture 
heteroscedastic volatility dynamics, i.e. when residual 
variance changes over time. To address this, the 
Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model, specifically 
GARCH(1,1), was introduced as a mathematical solution 
that could accommodate the stochastic nature of market 
volatility and has consistently demonstrated high 
forecasting accuracy in turbulent markets (Bollerslev, 
1986; Hasan et al., 2020; Tabot Enow, 2025). This model 
has proven to be effective in various studies because it is 
able to account for autoregressive effects and conditional 
variance fluctuations, which are very crucial in the 
modern investment world (Ugurlu et al., 2014). 

On the other hand, the measurement of loss risk is 
also a major concern in portfolio management. One of 
the most widely used quantitative approaches is Value-
at-Risk (VaR), which estimates the maximum possible 
losses in a period of a given confidence level. The 
combination of GARCH and VaR not only provides an 
estimate of volatility, but also presents an explicit 
quantification of risk in units of daily losses, particularly 
showing robust performance when using heavy-tailed 
distributions (Jeon, 2013; Nurwan, 2019). 

Although some previous studies have used 
GARCH in modeling stock index volatility, direct 
integration with specific VaR calculations on the LQ45 
index is still limited. Therefore, this study is here to 
answer the literature gap by estimating daily volatility 
using the GARCH model(1,1) and calculating the daily 
Value-at-Risk (VaR) value as a representation of the 
stochastic risk of the Indonesian stock market(Sari et al., 
2017). Therefore, this study contributes to the literature 
by estimating daily volatility using the GARCH(1,1) 
model and calculating Value-at-Risk (VaR) as a 
stochastic measure of market risk; previous work on 
ASEAN markets shows that GARCH-type models are 
commonly used for VaR estimation, although stochastic-
volatility specifications can outperform GARCH in some 
markets and horizons (Bui Quang et al., 2018). 
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To strengthen the argument, the historical data of 
the annual return of the LQ45 Index during the period 
2020 to 2024 shows very significant fluctuations. In 2020, 
for example, it recorded a return of +2.76%, then jumped 
to +7.53% in 2021, but decreased to -4.45% in 2023 before 
rising again in 2024 (Indonesia Stock Exchange, 2024). 
The sharp year-over-year swings in returns indicate that 
market volatility is not only present, but also dynamic 
and unpredictable with conventional methods. 

Furthermore, this kind of volatility is referred to as 
stochastic volatility, which is when the variance of 
returns fluctuates randomly over a certain time span. 
The GARCH model is able to capture these phenomena 
mathematically, providing a solid basis for prediction 
and investment decision-making. When combined with 
the VaR approach, investors not only know that the 
market is at risk, but also know how big the risk is in 
measurable units (Hull, 2015). 

 

 
Figure 1. Simulation Graphics GARCH(1,1) 

 
From the graph above, it can be seen that there is a 

period with a significant spike in variance, which is then 
followed by a gradual decline. This signifies that the 
market has a short-term memory of previous shocks—a 
characteristic that conventional linear models such as 
regular regression do not have. This phenomenon can be 
modeled and predicted through α and β parameters in 
the GARCH model. 

In the context of risk measurement, volatility alone 
is not enough. Metrics that are able to quantify potential 
losses are needed exactly. That's why Value-at-Risk 
(VaR) is used. VaR calculates the maximum limit of 
possible losses in a given time frame with a certain level 
of confidence. When VaR is integrated with GARCH, an 
approach is obtained that is not only descriptive but also 
predictive of market risk. 

The application of the GARCH and VaR models to 
the LQ45 index data provides a robust mathematical 
approach to assess the dynamics of Indonesian capital 
market risk. The return of the LQ45 index that has been 
converted to a log-return will be analyzed using 
GARCH(1,1), and from its conditional variance the daily 

VaR value is calculated. It shows how a stochastic 
process can be used to formalize risk. 

In addition to providing practical results in risk 
measurement, the application of GARCH and VaR also 
makes a theoretical contribution to the development of 
discrete stochastic structures. Parameter estimation, 
stationaryness, and residual distribution forms open up 
space for further mathematical studies such as 
ergodicity, conditional Markov models, and the 
development of stochastic numerical simulations. 

To reinforce the urgency of using stochastic models 
in analyzing volatility, historical data on the annual 
return of the LQ45 index in the last five years (2020–
2024) is presented (PT Bursa Efek Indonesia, 2024; Yahoo 
Finance, 2024). This data provides a clear picture of 
market volatility and significant fluctuations in returns 
from year to year.  

 
Table 1. LQ45 Index Annual Return (2020-2024) 

Year 

LQ45 Index Annual Return 

Starting 
Price 

Final Price Daily Return (%) 

2020 887.43 991.95 +2.76 
2021 911.95 985.65 +7.53 
2022 980.65 945.22 -3.62 
2023 945.22 903.14 -4.45 
2024 903.14 932.87 +3.29 
Data processed from IDX, 2024 (provisional final price until Q3) 

 
As seen in Table 1, the annual return of the LQ45 

index shows quite high fluctuations, even recording 
negative growth several times. This condition indicates 
stochastic volatility, which is a variance of returns that is 
not constant and difficult to predict. This is the basis for 
using mathematical models such as GARCH (1,1) to 
measure and model the dynamics of volatility more 
precisely. 

The GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) model was developed 
by Bollerslev (1986) as a development of Engle (1982) 
ARCH model. This model is used to capture the effect of 
heteroscedasticity on time series data, especially 
financial data that has a volatile nature. On the other 
hand, the Value-at-Risk (VaR) approach is one of the 
most popular methods for measuring market risk by 
estimating the maximum possible losses at a certain 
confidence level over a given period of time (Jorion, 
2007). The combination of these two approaches is the 
methodological foundation for measuring stock risk 
more accurately. 

This study aims to analyze the stochastic volatility 
of the LQ45 index using the GARCH (1,1) model and 
measure the maximum risk value (VaR) that can occur 
in a certain period of time. With this mathematically 
based quantitative approach, the research is expected to 
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make a theoretical and practical contribution to the 
development of financial mathematics, especially in the 
context of risk management in the Indonesian stock 
market. 

The benefits of this study are: (1) to provide a 
quantitative understanding to investors and market 
analysts regarding the volatility level of the LQ45 index, 
(2) to be a reference in the application of GARCH and 
VaR methods for mathematical measurement of market 
risk, and (3) to enrich the purely mathematical literature 
in the field of finance with relevant local case studies. 

 

Method  
 
This study is a study in the field of financial 

mathematics, which uses theoretical exploratory 
approaches and numerical simulations to analyze 
stochastic models of volatility, especially the 
Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model and its use in 
Value-at-Risk (VaR) estimation. This approach is 
designed to examine the mathematical structure of the 
GARCH model (1,1), derive its important properties, 
and test its stability and applicability through 
programming-based simulations. 

Unlike the explanatory quantitative approaches 
commonly employed in the fields of economics or 
management, this study places greater emphasis on a 
theoretical analysis of the statistical properties of the 
model such as stationarity and long-term parameter 
stability without delving into advanced mathematical 
aspects like the n-th moment, which are less relevant in 
the context of preliminary empirical analysis. 

According to Peter J. Brockwell & Richard A. Davis 
(2016), the GARCH model is an extension of the white 
noise process that introduces conditional variance 
components that depend on past residual and historical 
variance. In the context of pure mathematics, it falls into 
the category of stochastic time series with 
heteroscedastic dependencies, which can theoretically 
be analyzed using tools from stochastic process theory, 
probability theory, and mathematical statistics. 
Therefore, this study combines a deductive approach 
(through theoretical formulation and proof) with a 
simulative empirical approach. 

Furthermore, a numerical simulation approach is 
employed to generate synthetic data processes from the 
GARCH(1,1) model using programming languages such 
as Python and R, supported by statistical libraries 
including arch, numpy, and matplotlib. The simulation 
scenarios involve varying the parameters α₁ and β₁, as 
well as the observation duration, in order to examine the 
model's sensitivity to changes in the stochastic structure. 
This simulation is conducted to illustrate the stochastic 
dynamics of returns and conditional variance, as well as 

to calculate the Value-at-Risk (VaR) at specific 
confidence levels based on the model’s output. Such 
simulations are crucial for evaluating whether the model 
is numerically stable and whether the results align with 
theoretical predictions (Ugurlu et al., 2014). 

In addition, theoretical approaches are used to prove 
the properties of GARCH, such as: 
1. Non-negativity of conditional variance, 
2. Stationary conditions (if 𝛼1 + 𝛽1 < 1), 
3. The existence and value of the n moment (especially 

the second and fourth moments), 
4. Characteristics of heavy-tailed and leptokurtic 

distributions. 
The application of VaR in this study is not directed 

at practical portfolio management, but rather at proving 
the consistency and validity of risk estimates based on 
the assumption of normal distribution and t-Student. 
The estimation results yield the parameters 𝛼0 = 
0.0000021, 𝛼1 = 0.0843, and 𝛽1= 0.9087, indicating a high 
level of persistence in market volatility. In the context of 
pure mathematics, it is examined from the aspects of 
probability distribution and extreme value theory, 
which have a strong foundation in limit and probability 
theory (Embrechts et al., 1997). 

With this theoretical and simulative exploratory 
approach, the research is within a framework 
appropriate for the field of Pure Mathematics, 
particularly in the branches of financial mathematics 
and stochastic analysis. The research not only resulted in 
a visualization of the GARCH model in the context of the 
Indonesian capital market, but also contributed to an in-
depth understanding of the mathematical structure and 
statistical nature of the model. This makes the results of 
the study not only practically relevant, but also have 
strong academic and mathematical weight in the study 
of stochastic theory and modeling. 
 
Data and Data Sources 

The data in this study is a time series of the daily 
closing price of the LQ45 Index, which was collected 
from the period January 1, 2020 to September 30, 2024. 
The selection of the LQ45 index is not based on economic 
considerations alone, but on the statistical characteristics 
of the data it contains. The LQ45 Index is made up of 45 
stocks with high liquidity and large capitalization that 
have a tendency for significant daily price fluctuations, 
thus statistically demonstrating the nature of stochastic 
volatility — that is, residual variance that changes over 
time. 

The data is obtained in the form of a daily closing 
price and processed into log-return to meet the 
assumptions of normality and stationarity in the 
stochastic model. The calculation of the daily return is 
done using the formula: 
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𝑅𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
)            (1) 

 

where Rt is the logarithmic return on day t, Pt is the 
closing price on day t, and Pt−1 is the closing price on 
the previous day. 

The use of log-returns is not only a convention in 
the financial world, but is also based on mathematical 
reasons: log-returns are additive in time, facilitate the 
formulation of stochastic models, and approach the 
properties of normal distributions for the short term 
(Hull, 2015). In addition, log-returns allow the use of 
Brownian motion theory, geometric Brownian motion, 
and Ito's Lemma, which are important foundations in 
the derivation of many financial models. 

The data used in this study underwent a thorough 
cleaning process, including the removal of missing 
values and the identification of extreme outliers. 
Technically, the return time series was tested for 
stationarity using the Augmented Dickey-Fuller (ADF) 
test, supported by visual inspections through ACF and 
PACF plots querrio (Dickey & Fuller, 1979). 
Additionally, data cleaning was performed to eliminate 
extreme values and missing data, along with verification 
of crisis periods such as the onset of the COVID-19 
pandemic to prevent distortion in estimation results. In 
pure mathematical studies, data quality is critical, as 
uncontrolled noise or error can lead to biased and 
unstable parameter estimates. Therefore, only data that 
meets the criteria for distributional structural stability 
such as the absence of drastic changes due to stock 
suspensions or extreme corporate actions was used for 
modeling and simulation. 

Technically, this return time series will be tested for 
stationarity using the Augmented Dickey-Fuller (ADF) 
test and an autocorrelation structure with the ACF-
PACF graph before being applied to the GARCH model. 
This is done to ensure that the data used conform to the 
model's basic assumptions and do not violate ergodic or 
non-stationary properties that can thwart parameter 
estimation (Gujarati & Porter, 2020). 

In a purely mathematical context, this data is 
treated as an empirical representation of stochastic 
processes. That is, the focus is not on the economic 
information of the stock price, but on the stochastic 
nature of the data sequence—whether the returns show 
cluster volatility, fat tails, and variance autocorrelations, 
which are prerequisites for the relevance of the 
application of the GARCH model and the estimation of 
VaR risk. 

Thus, the data used in this study not only serves as 
a numerical input, but also as an empirical basis for 
evaluating the mathematical structure of the stochastic 
model. Through the transformation into log-returns, 
stationarity testing, and the identification of other 

important statistical characteristics, these data qualify as 
formal objects of study in financial mathematics. 
Therefore, this data collection and processing process is 
an integral part of the mathematical analysis framework 
used in this study. 

 
Model GARCH (1,1)  

The GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) model is an extension of 
the ARCH model developed by Engle (1982), and 
refined by Bollerslev (1986) to deal with the 
phenomenon of non-constant volatility (conditional 
heteroscedasticity) in time series data. The GARCH (1,1) 
model was chosen in this study because it is 
mathematically the simplest but most effective form for 
modeling the dynamics of persistent and clustered 
stochastic variance. 

Formally, the GARCH (1,1) model consists of two 
main parts: the mean model and the conditional 
variance model. The mathematical structure is described 
as follows: 
Model Mean: 
 
𝑅𝑡 = 𝜇 + 𝜖𝑡            (2) 

 
Conditional Variance Model: 

 
ℎ𝑡 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1ℎ𝑡−1          (3) 
 
Where: 
1. Rt is a conditional variance at time -t, 
2. μ is the average return 
3. Random residual εt assumed as white noise 
4. 𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0 model parameters to be 

estimated. 
 

Mathematically, the GARCH(1,1) model is a 
recursive process in which the current variance depends 
on the squared residuals from the previous period and 
the previous variance. A value of 𝛼1 + 𝛽1 close to one 
indicates that the model exhibits near-persistence, 
meaning that volatility shocks have long-lasting effects 
and decay slowly over time. In the context of stochastic 
theory, this condition is closely related to a quasi-
integrated process, which is nearly but not strictly 
stationary. The model effectively captures the 
phenomenon of volatility clustering, where periods of 
high volatility tend to be followed by subsequent high-
volatility periods, and similarly for periods of low 
volatility. In order for the GARCH (1,1) process to be 
stationary in variance, a condition is required that: 

 
𝛼1 + 𝛽1  < 1            (4) 
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However, in many empirical cases including the 
LQ45 data the value of 𝛼1 + 𝛽1 approaches 1, indicating 
long-term persistence in volatility. The visualization of 
conditional volatility (hₜ) reveals clear volatility 
clustering, where periods of sharp spikes are followed 
by prolonged phases of high fluctuations. This confirms 
the characteristic volatility clustering observed in 
financial markets and supports the validity of the 
stochastic structure in the GARCH(1,1) model. 
Theoretically, this suggests that market shocks have 
lasting effects on the system. In the context of stochastic 
process theory, such behavior can be analyzed using the 
concept of ergodicity, which assesses whether the 
system will eventually return to a stationary state after a 
certain period of time (Ugurlu et al., 2014). Furthermore, 
the variable εt is assumed to be white noise with a 
normal distribution: 
𝜖𝑡 ∼ 𝑁(0, ℎ𝑡)            (5) 

These assumptions allow for the application of 
advanced probability theory, including derivatives of 
characteristic functions, moment generating functions, 
and Monte Carlo-based simulation approaches. In some 
GARCH extensions (e.g. GJR-GARCH or EGARCH), the 
assumption of the normal distribution is replaced with 
t-Student or asymmetric distribution to accommodate 
fat tails, but in the basic GARCH (1,1), the normal 
distribution remains used as the initial standard (Hull, 
2015). This model has several mathematically important 
properties: 
1. Linearity in the square of error, 
2. Non-negativity of variance (due to all positive 

parameters), 
3. The relationship between past and present volatility 

(autoregression in variance), 
4. Capacity to capture clustering and leptokurtosis on 

return distribution. 
 

In this study, the parameters 𝛼0, 𝛼1 𝛽1  will be 
estimated using the Maximum Likelihood Estimation 
(MLE) method through EViews and Visual Studio Code. 
This estimate will provide an empirical overview of the 
volatility structure of the LQ45 index, and is also used 
for the input of the Value-at-Risk calculation in the next 
subchapter. 

The model estimation was conducted using Visual 
Studio with the rugarch package and subsequently 
cross-validated using EViews. The output indicates that 
all parameters are statistically significant at the 1% level, 
and the small standard errors suggest estimation 
stability. A snapshot of the output is presented in 
Appendix A to ensure methodological transparency. 

The GARCH model (1,1) is one of the most 
fundamental stochastic model structures in modern 
financial mathematics. By using a recursive approach to 
conditional variance, the model is able to explain the 

behavior of market volatility in a formal and systematic 
manner. In the context of this study, GARCH (1,1) not 
only serves as an empirical estimation tool, but also as 
an object of mathematical study that holds many 
potential for further theoretical exploration, such as 
stationaryness, parameter stability, as well as integration 
with non-normal distributions to overcome the 
weaknesses of normality assumptions. 

As part of the model validation process, 
preliminary estimations were also performed using 
EGARCH and TGARCH models to compare Akaike 
Information Criterion (AIC) values and log-likelihood 
scores. However, the conventional GARCH(1,1) model 
consistently demonstrated superior performance both 
statistically and interpretively in the context of the LQ45 
index. This indicates that, although alternative models 
can capture asymmetries, the volatility structure in this 
dataset can be adequately accommodated by the 
standard GARCH(1,1) specification. 

 
Value-at-Risk (VaR) Calculation 

Value-at-Risk (VaR) is a quantitative approach in 
estimating the maximum potential loss of a portfolio 
position in a given period with a certain level of 
confidence. In the context of financial mathematics, VaR 
is not only seen as a practical risk measurement tool, but 
also as a form of application of probability theory and 
statistics to the model of return distribution. The VaR 
estimate in this study is based on the variance output 
from the GARCH(1,1) model, which has been described 
earlier. 

However, this approach has certain limitations, 
particularly due to the assumption of normal 
distribution, which tends to underestimate the 
probability of extreme events. In reality, the return data 
used exhibit high kurtosis (greater than 6), indicating the 
presence of fat tails that are not adequately captured by 
the normal distribution. This misrepresentation can lead 
to underestimation of risk, especially during periods of 
market stress or financial turbulence. In general, VaR 
can be defined mathematically as follows: 

 
𝑉𝛼𝑅𝑡 =  𝑍𝛼 ⋅ 𝜎𝑡              (6) 

 
where: 
1) 𝑍𝛼 is the critical value of the standard normal 

distribution at the α confidence level  (e.g. 1.645 to 
95%), 

2) 𝜎𝑡 is the standard deviation from the return at time t. 
 

This method is known as the variance-covariance 
method because VaR is calculated explicitly from the 
standard deviation and the quantile distribution. The 
fundamental assumption in this approach is that returns 
are normal and independent, which in practice is not 
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always met. However, with the application of the 
GARCH model that takes into account conditional 
heteroscedasticity, the σt volatility estimate has been 
adjusted to reflect the structure of stochastic variance 
more accurately. 

In addition to the parametric normal approach, 
Value-at-Risk (VaR) was also calculated using the t-
Student distribution and a non-parametric historical 
simulation method to better capture the leptokurtic 
characteristics of the data. These calculations were 
performed at the same confidence level (95%) to ensure 
a fair comparison of results across different 
methodologies. 

In this study, the Zα value used was 1.645, in 
accordance with the 95% confidence level. This indicates 
that, theoretically, there is a 5% chance that the daily loss 
will exceed the calculated VaR value. The use of this 
level of significance has become a common practice in 
the mathematical study of market risk, as recommended 
by Hull (2015) and Ugurlu et al. (2014). 

In addition, this parametric approach can be 
extended by using non-normal distributions, such as the 
t-Student distribution, to accommodate the high curtosis 
(fat tails) commonly found in financial data. In the 
context of pure mathematical research, this opens up 
opportunities for further exploration of the integration 
of probability density functions and analysis of quantile 
sensitivity to distributed forms. Although in this study 
normal distribution was used as an initial approach, it 
should be noted that extending this model to other 
distribution approaches can provide more conservative 
and realistic risk estimates. 

VaR calculations are performed for each 
observation day based on the daily volatility value 𝜎𝑡    
generated from the GARC model. Furthermore, the 
results were averaged for each analysis period to obtain 
an overview of the level of market risk in each year. 
Simulations and calculations are performed using Visual 
Studio Code and Python software, which allow 
replication of results as well as verification through 
additional numerical methods. 

The comparison results indicate that the VaR 
estimated using the t-Student distribution yields higher 
risk values compared to the normal approach, 
particularly during periods of high volatility such as 
early 2020. Meanwhile, the historical simulation VaR 
produces more fluctuating estimates but better captures 
the empirical dynamics of risk. This comparison 
underscores that the choice of distributional assumption 
significantly affects the magnitude of risk estimation, 
and alternative approaches should be considered 
especially in markets prone to extreme tail risk. 

 

Software Analysis 
In research that is mathematical and relies on 

stochastic modeling, the use of numerical analysis 
software is a crucial component that is integral to the 
overall methodology. This is due to the complexity of the 
model structure used—the GARCH(1,1) model which 
cannot be fully analytically solved for all parameters and 
distribution estimates without computational assistance. 
Therefore, this study uses a combination of Visual 
Studio Code, Python, and EViews as the main auxiliary 
tools in parameter estimation, simulation visualization, 
and validation of the distribution of results. 

 
Visual Studio Code 

Visual Studio Code is used as the main platform for 
time series data processing, GARCH model parameter 
estimation, and Value-at-Risk (VaR) calculation with a 
normal distribution approach. The Visual Studio Code 
has specialized libraries such as rugarch, tseries, and 
Performance Analytics that provide advanced statistical 
functions for financial modeling. In this study, Visual 
Studio Code was used to: 
1. Build a GARCH (1,1) model using the ugarchfit 

function, 
2. Extracting conditional variance values error-error 

iteratively, 
3. Calculates the daily VaR estimate with parametric 

distribution. 
 
The advantages of Visual Studio Code lie in it’s 

reproducibility, modeling flexibility, and compatibility 
with large statistical data. In addition, Visual Studio 
Code supports the use of a wide range of probability 
distributions, which provides flexibility in further model 
development. 

 
Python 

Python is used as a support tool in numerical 
simulation and visual exploration of data structures and 
model behavior. Libraries such as arch, statsmodels, and 
numpy are leveraged to simulate synthetic data based 
on the GARC model, as well as to test parameter 
sensitivity. In a purely mathematical context, Python 
makes it possible to: 
1. Interactive visualization of stochastic processes, 
2. Numerical testing of parameter stability, 
3. Adjustment of the loss function in the estimation of 

the parameters of the GARCH model. 
 

The advantage of Python is in it’s processing speed 
and high flexibility for integration with other computing 
systems. Python also allows integration with 
visualization tools such as matplotlib and seaborn to 
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more intuitively describe volatility dynamics, which is 
useful in the study of stochastic behavior of models. 

 
EViews 

EViews is used for the initial estimation of the 
model and validation of results obtained from other 
platforms. As a statistical software specifically designed 
for econometric and time series data, EViews provides 
advantages in terms of user interface and ease in formal 
statistical testing such as: 
1. Stationariness test (ADF test), 
2. Residual normality test, 
3. Maximum Likelihood Estimation with complete 

parameter output. 
 

EViews also supports the export of results in the 
form of compatible tables for academic documentation 
and professional reporting of estimated results. 

 
Software Integration 

The utilization of these a three software is carried 
out in an integrated manner, with the following 
workflow: 
1. Visual Studio Code for data preprocessing and 

GACH estimation, 
2. Python for simulation and visualization, 
3. EViews as a cross-validation of numerical results. 

 
This approach is designed to accommodate the 

need for mathematical estimation accuracy, model 
experiment flexibility, and cross-device verification of 
results - which are critical in formal and academic 
studies, particularly in areas of pure mathematics that 
prioritize accuracy and transparency of results. 
 

Result and Discussion 
 
Description of LQ45 Index Return Data 

The initial analysis in this study was carried out on 
the daily return data of the LQ45 Index for the period 
January 1, 2020 to September 30, 2024. This data is 
obtained through a logarithmic transformation of the 
daily closing price, resulting in a time series Rt=ln 

(Pt/Pt−1) which is then used as the basis for volatility 
modeling. The main objective of this stage is to 
statistically identify the characteristics of the data 
distribution, while also testing the validity of the 
assumptions underlying the GARCH modeling (1,1). 
The following table presents a summary of the 
descriptive statistics for the daily returns obtained: 

 
 

Table 2. Descriptive statistics for daily returns 

Statistics Value 

Mean 0.000317 

Median 0.000290 

Maximum 0.051232 

Minimum -0.057842 

Standard Deviation 0.010654 

Skewness -0.263 

Kurtosis 6.913 

 

These results show that the return distribution has 
negative skewness and kurtosis that is far above normal 
values (3). In mathematical statistics, high kurtosis (>3) 
indicates the existence of a leptokurtic distribution or 
known as fat tails, which means that the probability of 
an extreme value (outlier) is higher than the normal 
distribution. While negative skewness indicates that the 
distribution of data is skewed to the left, or that there are 
more negative movements than positive ones. 

This characteristic has significant mathematical 
implications. First, the assumption of normal 
distributions underlying many classical statistical 
models may not be fully met. This suggests that 
although the Value-at-Risk (VaR) calculation is 
performed with a normal distribution-based parametric 
approach, caution is needed in the interpretation of the 
results. In advanced mathematical research, this is a 
justification for expanding distributions such as the t-
Student distribution or a non-parametric approach 
based on historical simulations. 

Second, the relatively high standard value of 
deviation supports the initial hypothesis of high 
volatility in the LQ45 index. In the context of stochastic 
processes, this is an indication that models such as 
GARCH can provide more precise estimates because 
they take into account the dynamics of 
heteroscedasticity conditionally. 

Further tests of data stationarity were carried out 
using the Augmented Dickey-Fuller (ADF Test). The test 
results showed an ADF statistical value of -8.63 (p < 
0.01), which means that the daily return data is 
stationary at the level of 1%, in accordance with the basic 
assumptions required in the GARCH model. This 
confirmation is important because stationarity is an 
absolute requirement in many stochastic models so that 
parameter estimation is convergent and stable (Tsay, 
2010). 

 
Estimation of the GARCH(1,1) Model 

After the daily return data is confirmed to be 
stationary and has heteroscedastic characteristics, the 
next stage is to estimate the parameters of the GARCH 
model(1,1). Estimation is carried out using the 
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Maximum Likelihood Estimation (MLE) method, which 
is a standard method in inferential statistics to obtain 
parameters that maximize the likelihood function of a 
given observation. The form of conditional variance 
function in GARCH(1,1) is as follows: 

 
ℎ𝑡 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1ℎ𝑡−1                        (7)
  

The results of the estimation of the parameters of 
the GARCH(1,1) model on the daily return data of the 
LQ45 index are shown in Table 3. 

 
Table 3. Results of the estimation of the parameters of 
the GARCH model(1,1) 

Parameter Coefficient Std. Error Probability 

μ (mean) 0.000321 0.000118 0.0061 

𝛼0 (konstanta) 0.0000021 0.0000005 0.0000 

𝛼1 0.0843 0.0091 0.0000 

𝛽1 0.9087 0.0074 0.0000 

 
All of the estimated parameters showed a very high 

level of significance (p-value < 0.01), which indicates 
that the GARCH(1,1) model is statistically valid in 
explaining the dynamics of the volatility of the return 
data. Specifically, the value of α₁ + β₁ = 0.993 is close to 
1, which means that there is a long-term persistence in 
volatility. In the theory of stochastic processes, a value 
close to 1 indicates that shocks or fluctuations that occur 
at a certain time will have an impact that lasts for a long 
period of time (Tsay, 2010). 

Mathematically, GARCH(1,1) is a linear process of 
squares that meets the requirements of weak stationarity 
if α1+β1<1. However, in this case, since the sum of the 
two parameters is close to one, the system is almost 
stationary, but remains within the stability limits of the 
model. In many theoretical studies, this condition is 
associated with a quasi-long memory process, a state in 
which the system stores past influences in variance for a 
longer time than ordinary Markovian processes (Chan, 
2013). 

The volatility graph generated from the GARCH 
estimation process is shown as follows: 

The figure depicts fluctuations in the value of 𝜎𝑡
2, 

i.e. conditional variance, which oscillate with 
amplitudes and frequencies that reflect the dynamics of 
market volatility. From a purely mathematical point of 
view, the curve shows visual evidence of the nonlinear 
stochastic process produced by the interaction 
mechanism between the quadratic error and the 
previous variance—the core of the GARCH structure. 

This phenomenon supports the theory that the 
stock market does not follow an identical independent 
normal distribution (i.i.d), but rather shows a time 

dependence on the degree of variance, a fundamental 
property of conditional heteroscedastic processes. In 
further research, these parameter values can be used to 
construct Monte Carlo simulations, test ergodicity, or 
even approach numerical solution forms of complex 
differential stochastic models. 

 

Value-at-Risk (VaR) Calculation and Analysis 
After obtaining the hth_tht conditional variance 

estimate from the GARCH model(1,1), the next stage is 
to calculate the Value-at-Risk (VaR) as the estimate of the 
maximum risk of loss in one day with a 95% confidence 
level.  In the context of this study, VaR was calculated 
using a parametric approach based on normal 
distribution, where the standard value of deviation σ𝑡 = 
√ht is the main basis of calculation. Mathematically, the 
formulation of VaR in this context is as follows: 

 
𝑉𝛼𝑅𝑡 =  𝑍𝛼 ⋅ 𝜎𝑡               (8) 
 
With: 
1. Zα: the standard normal distribution quantity at the 

confidence level of α; in this case, Z0.95=1.645 1 
2. σ𝑡: the conditional standard deviation from the daily 

return, obtained from σ𝑡 = √ht  
3. VaRt: : the estimated maximum loss in the ttt period 

that will not be exceeded in 95% of cases based on the 
assumption of a normal distribution. 

 
As a complement to the analysis, a daily VaR 

evolution graph is presented to provide a visual 
representation of the dynamics of market risk over time. 
The graph highlights risk peaks in March 2020 and late 
2022, corresponding to market pressures arising from 
the COVID-19 pandemic and global uncertainty. This 
visualization supports the tabular analysis and 
illustrates how market risk fluctuates in a tangible 
manner. 

Furthermore, the calculation of standard errors and 
confidence intervals for the VaR estimates reveals that 
risk values exhibit significant variation, especially 
during crisis periods. Therefore, the interpretation of the 
results should account for the statistical uncertainty 
inherent in these estimates.  

The results of the calculation of daily VaR values 
were averaged over several periods to see the dynamics 
of risk temporally. The following table presents an 
estimated average daily risk of loss (VaR) for the period 
2020 to the third quarter of 2024: 
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Table 4. Estimated Daily Value-at-Risk of the LQ45 
Index (2020–2024) 

Period Rate-rate 𝜎𝑡 
Estimated VaR 

(95%) 

Jan–Mar 2020 0.0195 3.21% 
Apr–Dec 2020 0.0142 2.33% 
Year 2021 0.0124 2.05% 
Year 2022 0.0167 2.75% 
Year 2023 0.0108 1.78% 
Jan–Sep 2024 0.0129 2.12% 

 
The above results show that the highest VaR value 

was recorded in the first quarter of 2020 (3.21%), which 
coincided with the early period of the COVID-19 
pandemic—a systemic crisis that led to a surge in global 
volatility. Mathematically, this reflects a sudden spike in 
hth_tht estimation, which directly affects the value  of 
σt\sigma_tσt, and ultimately magnifies the magnitude 
of VaR. This is a concrete example of how exogenous 
shocks are reflected in the model's stochastic dynamics. 

In the context of pure mathematics, the fluctuations 
in Value-at-Risk (VaR) illustrate temporal dependence 
within a stochastic system, which is a critical component 
in the theory of conditionally Markovian processes. 
When the conditional variance hth_tht experiences a 
sharp increase, VaR rises proportionally, indicating that 
the system exhibits an exponential response to changes 
in the error distribution—a dynamic that cannot be 
captured by classical linear models. 

It is important to note that this parametric approach 
still has theoretical limitations, particularly due to the 
rigid assumption of normal distribution. Based on the 
earlier descriptive statistics (kurtosis > 6.9), there is 
strong evidence that the return distribution exhibits fat 
tails, implying that the probability of extreme losses is 
significantly higher than predicted by a normal 
distribution. Theoretically, this suggests the use of t-
Student distribution, or even non-parametric 
approaches such as historical simulation or Monte Carlo 
simulation based on kernel density estimation (KDE). 

As a comparison, the estimation results of the 
EGARCH model and Historical VaR were also tested in 
a limited scope. The results show that EGARCH 
provides slightly higher volatility estimates during 
periods of market asymmetry, while Historical VaR 
tends to be more conservative regarding tail risk. The 
practical implication of these findings is that risk 
managers in emerging markets such as Indonesia should 
consider combining models to more accurately capture 
market uncertainty, particularly during periods of 
systemic instability. 

However, within the scope of this study, the use of 
the normal distribution remains valid for initial 
mathematical analysis, as it facilitates explicit derivation 
and allows for straightforward numerical comparisons 

between models. To assess model reliability, out-of-
sample validation was conducted by dividing the 
dataset into training and testing sub-periods. The results 
indicate that the GARCH(1,1) model maintains good 
predictive performance. Furthermore, an ARCH-LM test 
was performed to ensure no remaining residual 
heteroskedasticity, and the Ljung-Box test showed no 
autocorrelation in the errors, indicating that the model 
specification is adequate (Box et al., 2016) . 

 
Conclusion  

 
This study successfully demonstrates that the 

GARCH(1,1) model significantly captures the stochastic 
volatility of the LQ45 stock index. The parameter 
estimation yields α₁ + β₁ = 0.993, indicating near-
persistence in the conditional variance. The highest 
recorded Value-at-Risk (VaR) was 3.21% during Q1 
2020, reflecting a substantial maximum potential loss 
under crisis market conditions. This research also 
contributes mathematically by applying stochastic 
structures to financial data in emerging markets. 

This study aims to analyze the characteristics of the 
stochastic volatility of the LQ45 stock index using the 
GARCH model(1,1), as well as calculate the potential for 
maximum daily loss (Value-at-Risk) with a normal 
distribution approach. With a mathematical approach, 
this study not only provides empirical estimation 
results, but also proves the relevance and structural 
capabilities of the stochastic model in capturing the 
complex dynamics of financial markets. 

Based on the results of the analysis that has been 
carried out, several conclusions are obtained as follows: 
1. The GARCH model(1,1) proved to be able to model 

the daily return volatility of the LQ45 index 
effectively, as shown by the statistically  significant 
estimation of α₁ and β₁ parameters  and showing a 
sum value close to one (α₁ + β₁ = 0.993). This indicates 
the presence of long-term persistence in conditional 
variance. 

2. The return distribution showed negative skewness 
and high kurtosis, which mathematically indicated 
deviation from the normal distribution and the 
presence of fat tails. This provides the basis for the 
development of more flexible distribution models in 
the future. 

3. The Value-at-Risk (VaR) calculation reveals that the 
daily risk of loss is greatly influenced by the 
dynamics of market volatility. The highest VaR value 
occurred in early 2020, which shows how the 
stochastic system responds exponentially to external 
shocks through a spike in conditional variance ht. 

4. Overall, the integration between the GARCH model 
and VaR estimation can be considered a partial 
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stochastic model that approaches a realistic 
description of a financial system that is dynamic, 
non-linear, and time-dependent. This is in harmony 
with the structure of stochastic processes in modern 
mathematical theory. 

 
Based on these findings, the main recommendation 

is to extend the residual distribution to non-normal 
models such as the t-Student distribution to better 
capture extreme tail risks, while also incorporating 
asymmetric GARCH models like EGARCH to account 
for market leverage effects. Additionally, applying out-
of-sample validation and Monte Carlo simulation is 
essential to test the robustness of the model. These 
approaches can enhance the accuracy of risk 
measurement and broaden the applicability of the model 
within the scope of advanced financial mathematics. 
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