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Introduction

Reducing dependence on fossil fuels has become a

Abstract: This research discusses the use of the Internet of Things in the
monitoring of humidity, temperature, and light intensity conditions in a room
that is connected to a mesh network. The objective of this research is to build
a system that can monitor room conditions based on microcontrollers which
are interconnected in a mesh network. The data are then displayed on a
dashboard and categorized as either a comfortable or uncomfortable room
based on existing standards. To ensure the accuracy of the system’s values, it
is compared to commercial tools, then accuracy and precision are calculated.
The system’s standard deviation for temperature is 0.12-0.19%, while its
RMSE is 0.16-0.48%, and for humidity, the RMSE is 0.54-0.77%, with a
standard deviation of 0.33-0.69%. For light intensity, with the outlier
removed, the RMSE is 1.1-4.90% and the standard deviation is 0.79-2.76%. All
these values are still comparable to the commercial tools” accuracy listed in
specification sheets. For packet loss, the system is run continuously for nine
days, and at the end, the total data sent and data received at the server are
calculated to count the differences. The packet loss after nine days and 777,600
data points is 0.00103-0.00193% from all six sensors used in the system.
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challenges are particularly pronounced in older
buildings, which often lack energy-efficient construction
materials and are typically not equipped to support

global imperative, especially in regions where access to ~ contemporary energy monitoring and control
renewable energy infrastructure remains limited technologies (Kim et al., 2019).

(Sukmawati et al., 2022). One fundamental approach to While simple steps like turning off lights remain
supporting this transition involves minimizing important, a more comprehensive approach is needed.

unnecessary energy usage, such as by switching off
lights and electronic devices when not in operation.
However, energy efficiency becomes substantially more
complex in the context of buildings, where consumption
is concentrated in specific systems. Heating, ventilation,
and air conditioning (HVAC) systems, along with
lighting, represent the most significant contributors to
building energy demand, accounting for approximately
38% and 20% of total usage, respectively (Gonzalez-
Torres et al., 2022, Hong & Rahmat, 2022). These

How to Cite:

This can be achieved by installing systems that monitor
HVAC and lighting usage in each room, providing real-
time data on whether the air conditioning or lights are
on. Implementing these practices will significantly
reduce energy consumption, leading to lower costs and
a reduced environmental impact from fossil fuel use
(Zhao et al, 2023). However, a standard energy
management system might not be ideal for older
buildings. Instead, a self-contained system independent
of the existing electrical network offers several
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advantages. This independence not only avoids
compatibility issues but also allows the system to be
easily expanded to serve more buildings (Carli et al,,
2020). The more buildings that can be integrated, the
greater the collective impact on energy savings and
fossil fuel reduction (Zhang et al., 2023).

In older buildings with decentralized HVAC
systems, mesh networking offers a viable solution for
Internet of Things (IoT) implementation. Mesh networks
consist of interconnected devices that communicate
directly with each other, eliminating the need for a
central router or server . This decentralized architecture
allows for flexible deployment and adaptability to
varying building configurations. Additionally, mesh
networks increase reliability as each node communicates
with others; if one node is removed or goes offline, other
nodes can take its place as relays, ensuring the network
remains functional (Jiang et al., 2021). Nevertheless, a
good system goes beyond just being independent. It also
needs to be accurate in monitoring room conditions.
Users must have complete confidence in the system's
readings to make informed decisions about energy use.
Additionally, the system must reliably transmit data
from each room to a central location. Data loss during
transmission should be minimal to ensure users have
complete information for making informed choices
(Harb et al., 2022; Liu et al., 2020).

By integrating these energy-saving strategies with
innovative technologies, people can revitalize older
buildings. This approach not only reduces reliance on
fossil fuels and lowers energy costs but also fosters a
more sustainable future (Filippidou et al., 2019). The use
of IoT for monitoring has gained substantial traction,
particularly in industrial settings. However, prior
research has primarily focused on industrial
applications rather than domestic or indoor use cases.
For example, IoT has been utilized in Industry 4.0 for
predictive maintenance and in the construction industry
through proprietary platforms and machine learning
(Bertino et al., 2021). These methods often result in costly
and inflexible systems, impeding their widespread
adoption and limiting their effectiveness in combating
climate change.

In the healthcare industry, IoT applications also
face challenges, particularly in connecting devices to the
internet. The most common solution involves Global
System for Mobile Communications (GSM) for data
transmission (Kulkarni et al, 2022). However,
employing GSM for building monitoring can lead to
inflated costs and inefficiencies, rendering it unsuitable
for this purpose. Previous research has explored the use
of multiple sensors, often employing Modbus for inter-
sensor communication. This approach complicates
network expansion and sensor addition, as it introduces
additional costs. Other studies have utilized Universal
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Asynchronous Receiver/ Transmitter (UART) for inter-
sensor communication and connected a microcontroller
to the internet via existing Wi-Fi networks. This method,
however, is limited by the availability of Wi-Fi networks
and requires an internet connection for operation.

LoRa (Long Range) has also been employed for
inter-sensor communication before connecting to the
internet via GSM. This approach is constrained by
LoRa's limited Line of Sight (LOS) range, necessitating
minimal obstructions between sensors. Additionally,
Zigbee, a closed-source protocol requiring costly
licenses, has been used. However, Zigbee is outdated
and possesses security vulnerabilities. Mesh networks
based on Wi-Fi protocols can address these issues.

Regarding controllers, some previous studies have
replaced microcontrollers with Raspberry Pi. While this
significantly enhances computational capabilities, these
capabilities remain largely untapped, as Raspberry Pi is
primarily used for sensor data acquisition and relay
control. This approach also limits further network
expansion due to Raspberry Pi's higher cost compared to
microcontrollers like ESP8266 or ESP32.

Other research has employed Arduino Mega and
the AT&T M2X protocol (Rahman et al., 2020). This
microcontroller falls between Raspberry Piand ESP32 in
terms of capabilities. However, Arduino Mega 2560
lacks networking capabilities, necessitating an Ethernet
HAT to connect sensors to the network before using the
M2X protocol for internet access. This method
introduces cabling complexities and limits scalability.
The AT&T M2X protocol is also closed-source,
proprietary, and relies on a third party (AT&T) for
operation. Additionally, DHT11 is commonly used as a
temperature and humidity sensor (Awaludin et al,
2021). This sensor employs one-wire protocol, which is
known for its unreliability. Based on the author's
experience, DHT11 sensors often fail to transmit data
when used in systems with complex algorithms.

For light sensing, some previous studies have
utilized LDRs (Light Dependent Resistors). These
sensors rely on resistance to detect light intensity,
necessitating pre-calibration before use. While less
expensive than BH1750 sensors, LDRs are unreliable due
to temperature sensitivity and slow response times
caused by light-induced chemical reactions (Casals et al.,
2020).

To address the limitations of existing IoT
monitoring systems, this research proposes a novel
system utilizing ESP32 microcontrollers, AHT10
temperature and humidity sensors, and BH1750 light
intensity sensors. The proposed system offers several
advantages over previous works, one of which is the
reliability of the new sensors running on I2C
communication and a mesh network based on Wi-Fi.
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Old buildings often suffer from outdated design
and construction methods that do not align with modern
standards of energy efficiency. These structures
typically have poor insulation, inefficient heating and
cooling systems, and limited integration with smart
technologies. As global concerns over energy
consumption and environmental sustainability increase,
there is an urgent need to improve the energy
performance of existing buildings, particularly those of
historical or functional importance. Monitoring
environmental parameters such as temperature,
humidity, and light intensity provides essential data to
evaluate energy use patterns, detect inefficiencies, and
guide retrofitting strategies. ~Without effective
monitoring, efforts to reduce energy consumption in old
buildings risk being inefficient or misdirected, leading to
higher operational costs and environmental impact. This
study introduces a novel approach by integrating real-
time environmental data specifically temperature,
humidity, and light intensity to assess the effectiveness
of energy usage in old buildings. While previous
research has focused largely on theoretical models or
energy audits, this study emphasizes empirical, sensor-
based monitoring to capture the dynamic environmental
behavior of aging structures. The innovation lies in
using this real-time data to create a responsive and
adaptive framework for energy management that is both
low-cost and scalable. This method not only provides a
more accurate understanding of energy performance but
also enables practical interventions tailored to the
specific environmental context of each building.

Method

The device is built using an ESP32 as the control
unit. The ESP32 was chosen because the ESP8266 was
not designed with mesh networking in mind. The mesh
networking implementation and data transmission
follow the research of Aquino et al. (2021) and are
adapted to the sensors used. The sensors used in this
research are AHT10 and BH1750. These sensors use
Inter-Integrated Circuit (I2C) communication to address
communication problems with DHT11. BH1750 uses a
photodiode to sense light intensity, which addresses
temperature-related problems associated with LDRs.
These sensors are then connected to the ESP32
microcontroller, and each ESP32 microcontroller is
connected to others using a mesh network. This mesh
network is extended to the server, and the data are
handled using the MQTT protocol via the Mosquitto
Broker. The data are then distributed to Node-RED
before being stored in a CSV file and displayed on the
dashboard. This process is illustrated in Figure 1.
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Before the experiment began, a 30 x 30 x 30 cm
cardboard box was prepared as the testing medium.
Two types of testing media were created: one for
temperature and humidity testing, and the other for
light intensity testing.
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Figure 1. Overview of the suggested system

For temperature and humidity testing, the testing
media were made with holes on the left and right sides
for water to enter and exit, and another hole for the
power cable to exit. Inside the testing media box, a 300
W thermoelectric cooler was placed with the cold side in
contact with a heatsink equipped with a fan, while the
hot side was in contact with a water block that was
circulated with water by a pump. Both the pump and the
Peltier cooler were connected to a power supply that was
set with a timer to cool for five minutes and heat for five
minutes.
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This testing medium can be seen in Figure 2. In the
upper left part, the position of the commercial device
and sensors can be seen during the preparation for
measurement. In the upper right part, the placement of
the Peltier cooler can be seen, and in the lower part, it
can be seen that when the testing media box is closed,
the power supply and timer are on top of the box, and
the pump is on the side.

Figure 2. Temperature and humidity measuring medium

For light intensity testing, an 3W 8x8 LED matrix
was attached to the top of the testing media box. The
LED matrix was connected to an ESP8266
microcontroller that controlled the lighting level from
256 brightness levels, changing from 0 to 255 over 5
minutes and from 255 to 0 over 5 minutes.

This testing medium can be seen in Figure 3. On the
left, the light source, sensors, and commercial device can
be seen placed for testing. Once arranged, the testing
media box is closed, and measurements are taken. On
the upper right, the sensors are placed on a 3D-printed
bracket that ensures the sensors are at the same distance
from each other. On the lower right, the light source
from the LED matrix controlled by the ESP8266 can be
seen.

Figure 3. Light intensity measuring medium
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The ground truth used in this experiment is the
Benetech GM1030 for light intensity and the Benetech
GM1360A for temperature and humidity. The sensors
were compared to these two commercial tools to assess
their performance. These sensors were placed inside the
testing medium according to the tested parameters.

For testing packet loss, the devices were placed in
six rooms, and every device sent data every second to
the Raspberry Pi server. This was done for nine days,
and the average loss for every device was observed. The
amount of data received by the server was compared to
the amount of data sent by using time as a reference. This
experiment was conducted in a room with gypsum
walls. The devices were distributed in six rooms with an
average distance of 6 m, arranged in three columns and
two rows, as shown in Figure 4.

Room Room Room
1 2 3
Room Room Room
4 5 6

Figure 4. Six rooms used for testing package loss

All data were then evaluated in three categories:
accuracy of the system by calculating the Root Mean
Square Error (RMSE) of each device, precision by
calculating the standard deviation of each device, and
finally, evaluating network capability by counting
packet loss. The accuracy of the data was evaluated by
calculating the RMSE compared to a commercial device.
RMSE is a statistical measure of the average difference
between the predicted values and the actual values. A
lower RMSE value indicates a more accurate system. In
the case of temperature and humidity data, the RMSE
was calculated by comparing the temperature and
humidity readings from the system's sensors to the
readings from the commercial device. The RMSE was
calculated for every second and then averaged over the
entire 100-cycle test period. For light intensity data, the
RMSE was calculated by comparing the light intensity
readings from the system's sensors to the light intensity
readings from the commercial device. The RMSE was
calculated for every second and then averaged over the
entire 100-cycle test period.

Data precision was assessed by calculating the
standard deviation in comparison to a commercial
device. Standard deviation measures the dispersion of
data points from the mean, with a lower value indicating
higher precision. For temperature and humidity data,
the standard deviation was calculated from the sensor
readings at each second and averaged over the entire
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100-cycle test period. The same approach was used for
light intensity data, with standard deviation calculated
for each second and averaged over the 100-cycle period.

Data loss was determined by counting the number
of data packets that were not received by the Raspberry
Pi. This data loss is expressed as a percentage of the total
packets sent, with a lower percentage indicating a more
reliable system. The data loss calculation was based on
nine days of data, totalling nearly 800,000 packets per
node. For data management and visualization, Node-
RED is utilized. A Node-RED dashboard logs sensor
data into a CSV file, with a function that appends time
and date columns to the data received from the MQTT
broker before saving it to the file. The CSV file is then
saved to the Raspberry Pi for further analysis. This data
flow is translated into a Node-RED flow, as shown in
Figure 5.
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Figure 5. Flow on node-red for storing sensor data

Data for each room are presented on a dashboard
within a single sheet. The data, received from the MQTT
node, are divided into six outputs: three are displayed as
gauges, and three as text. For the text outputs, the ISO
CIE 8995-2002 and OSHA 1910.1000 room standards are
utilized. The process flow is illustrated in Figure 6. A
workspace is deemed comfortable if it meets the
following conditions: light levels exceed 200 lux,
temperature ranges from 19.5 °C to 27.8 °C, and
humidity remains below 65%. Figure 6 shows the flow
of the dashboard, while Figure 7 shows the dashboard
itself.
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Figure 6. Flow of the node-red dashboard
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Figure 7. Appearance of the dashboard
If the sensor reading is not up to standard each text

on top of the gauge for every room will notify the user
about the condition. The color of the gauge itself will
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change according to the value of sensor reading
compared to the standard used.

Results and Discussion

Testing Sensor for Light Intensity

In contrast to temperature and humidity
measurements, light intensity is affected by the
centralized light source within a relatively small area
compared to the measurement room. The light intensity
value will vary based on the distance from the source to
the sensor, with higher light intensity values decreasing
quadratically as the distance from the light source
increases.

Figure 8. The first 3000 data of light intensity against time
from all 6 sensors

This variation in sensor placement results in
differing intensity readings across sensors. As illustrated
in Figure 8, although the sensors generally follow the
trend of the reference sensor, discrepancies become
more pronounced at higher light intensities due to the
varying sensor positions. Figure 8 displays the initial
3000 data points from all six sensors. When the light
source is observed to undergo irregular changes, each
sensor measures the change with the same trend
direction. If the Pearson correlation is calculated
between the commercial reference lux meter and each
sensor, the values in

Table 1 are obtained.

Table 1 indicates that the readings from each sensor
are highly correlated with those from the reference
device. To assess the error, the RMSE for each sensor is
calculated. Percentages are used for RMSE values to
account for the large range of measurements, which
span from a minimum of 0 to over 1,600 lux. This
approach ensures that the error values effectively reflect
the accuracy of the sensors across all measurement levels
used in the experiment.
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Table 1. Table of R Value from Light Intensity Data

R Value
Sensor A 0.998696
Sensor B 0.999435
Sensor C 0.999717
Sensor D 0.999907
Sensor E 0.999115
Sensor F 0.999770

Table 2 demonstrates significant variability in error
values. This variation arises from the light source’s use
of a PWM mechanism for dimming and turning the light
on and off. In very dark conditions, even minor changes
in sensor readings can lead to substantial errors.
Additionally, each sensor records data at slightly
different times, though for consistency, the data are
aggregated into one reading per second. Both the PWM
mechanism and the consolidation of data into single-
second intervals contribute to high error percentages in
some sensor readings, resulting in numerous outliers.
These outliers become evident when a boxplot is created
for all 100,000 data points.

Table 2. RMSE and Standard Deviation of Light
Intensity Compared to Commercial Tools

RMSE Standard deviation
Sensor A 4.59% 3.97%
Sensor B 6.31% 4.44%
Sensor C 3.91% 2.76%
Sensor D 2.34% 2.18%
Sensor E 4.78% 4.78%
Sensor F 1.77% 1.70%

Table 2 indicates that both the standard deviation
and RMSE are relatively high. To better understand this,
the data are visualized in Figure 9 using a boxplot on the
left. This plot reveals a considerable spread in the data,
highlighting the need for cleanup. Outliers from each
sensor, identified using the interquartile range (IQR),
were removed. The cleaned data are then visualized
again, as shown on the left side of Figure 9.
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Figure 9. Data of light intensity before removing outlier and
after

Both RMSE and standard deviation are much better
than before the outliers were removed, but for sensor B,
RMSE still exceeds the reference value of +4% error. This
value would be much better if the light source intensity
were controlled using voltage or current rather than
Pulse Width Modulation (PWM).

Table 3. RMSE and Standard Deviation of Light
Intensity after Outlier Removed

RMSE Standard Deviation
Sensor A 3.59% 2.76%
Sensor B 4.90% 1.95%
Sensor C 3.12% 1.47%
Sensor D 1.17% 0.79%
Sensor E 2.25% 2.25%
Sensor F 1.25% 1.14%

LEDs were chosen because they are relatively
inexpensive and easier to set up than using current and
voltage. LEDs can also be controlled more precisely for
voltages or currents within the working voltage or
current range. In addition to the light source, the
placement of the sensors also greatly affects the values
read by each sensor. As can be seen from Figure 8, there
is always a deviation among sensors. If the sensor
placement is the same, this deviation can be reduced.
However, according to the literature, the change in light
that can be perceived by humans is 7.4%. The error value
and standard deviation are still below this threshold,
which shows that the BH1750 sensor can still be used for
everyday indoor applications.

Testing Sensor for Temperature

Out of the 100,000 data points that were taken, 1,000
data points were visualized in Figure 10 to see the
difference between each sensor and the reference
temperature. It can be seen that the difference in the
values read is not far off. To clarify the difference in the
values read, a boxplot was then created for the entire
100,000 data points that were taken.

December 2025, Volume 11, Issue 12, 149-159

ime

Figure 10. The first 1000 data of temperatur against time from
all 6 sensors

Figure 10 shows the difference in sensor values
compared to the reference. Since this boxplot was
created with all 100,000 data, the values displayed
represent the entire population of data measured by the
6 sensors. From this boxplot, it can be seen that the data
distribution of each sensor is quite small, which is
represented by the standard deviation value of less than
1%. The calculation of the standard deviation for each
sensor is shown in Table 4.
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Figure 11. Boxplot of all 100.000 of temperature data from all
6 sensor

Table 4. RMSE and Standard Deviation of Temperature

RMSE Standard Deviation
Sensor A 0.47% 0.15%
Sensor B 0.48% 0.14%
Sensor C 0.47% 0.19%
Sensor D 0.26% 0.16%
Sensor E 0.16% 0.16%
Sensor F 0.27% 0.12%

Referring to the boxplot in Figure 11, which shows
the temperature distribution, it can be seen that the
distribution value is still below +1°C, with some outliers
of -1.03°C, 1.06°C, and 1.07°C in sensors A, B, and C,
respectively. In addition, all of these are still comparable
to the commercial reference device used.
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The RMSE of each sensor is not worse than that of
the reference device, which is a maximum of +1°C. With
a standard deviation of less than 0.2°C and an RMSE of
less than 0.5°C, the AHTI10 sensor is considered
sufficient for measuring room temperature. This refers
to 2 where a temperature change of 0.92°C (0.05°C) can
be perceived by humans with 95% accuracy.

Testing Sensor for Humidity

Temperature and humidity are highly dependent
on each other. The relative humidity value depends on
the current temperature because the ability of air to bind
water vapor depends on the air temperature. The higher
the air temperature, the greater the capacity of air to bind
water vapor. If the amount of water vapor in the air is
constant, the relative humidity value will decrease if the
temperature rises, and vice versa.

Figure 12. Value of temperature and humidity at the same
time

The top portion of Figure 12 shows the humidity
values read by the 6 sensors over time. The graph shows
10 hours or 36,000 data points so that the trend of the
relationship between temperature and humidity can be
seen. The humidity value is change with the changes in
the temperature value in the opposite direction (Laura et
al., 2023).

After ensuring that the sensors are functioning, the
accuracy and precision of the sensors are then
determined by calculating the RMSE and standard
deviation of the sensors. The RMSE and standard
deviation are calculated from the data that has been
collected and written down in Table 5.

Table 5. RMSE and Standard Deviation of Humidity

December 2025, Volume 11, Issue 12, 149-159

Sensor B 1.773866 0.470935
Sensor C 1.223893 0.403527
Sensor D 0.544912 0.342023
Sensor E 0.693869 0.689724
Sensor F 1.062222 0.330923

RMSE Standard deviation

Sensor A 1.260886 0.334768

Table 5 shows that Sensor D, with an RMSE of
0.545%, has the best value among all sensors. However,
all sensors still have values below 3%. Three percent is
used as a reference because the Benetech GM1360A
reference device has an accuracy of £3%.

To see the level of precision of this humidity
measurement, a boxplot is created, as shown in Figure
13.
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Figure 13. Boxplot of all 100.000 of temperature data from all
6 sensors

Figure 13 illustrates the distribution of error for
each sensor, with sensor E exhibiting the widest spread.
This observation aligns with the earlier standard
deviation calculation, which indicated that sensor E has
the highest standard deviation value.

Testing for Data Loss

To minimize disruption to daily operations at the
building where the data was collected, data collection
was scheduled from December 23, 2023, to January 2,
2024. During this period, data was gathered for 9 days,
totaling nearly 780,000 samples.
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Figure 14. Number of packets loss sample every 12 hours for
all 6 sensors

The data were sampled every 12 hours to record the
transmission time, which was then compared to the
reference time. If the recorded time was earlier than the
reference time, it indicated that packets were lost and
data entries were missed. Each missed second
corresponded to one lost packet. As shown in Table 6,
the packet loss does not follow a fixed pattern but results
in an overall loss rate of 0.00103%, or approximately 1
packet lost per 100,000 transmissions.

For sensor B, as indicated in Table 6, the packet loss
at the end of day 9 was 0.00193%, which is higher than
the 0.00103% observed for sensor A. This difference may
be attributed to variations in the sensors' operational
environments. Sensor C, as shown in Table 6, had a
packet loss of 0.00129%, falling between the values of
sensor A and sensor B. Sensor D's packet loss was
0.00167 %, which is close to the values for the other three
sensors, positioning it between sensor A, with the lowest
packet loss, and sensor B, with the highest.

Table 6. Packets Loss after 777.600 Data Sent

Percentage Packets Loss

Sensor A 0.00103%
Sensor B 0.00193%
Sensor C 0.00129%
Sensor D 0.00167 %
Sensor E 0.00167 %
Sensor F 0.00180%

The data from sensor E, as shown in Table 6,
indicates a packet loss percentage identical to that of
sensor D. However, sensor E reached this packet loss
value first, at data point 734,400, as illustrated in Figure
14. Sensor F's data, also depicted in Figure 14, shows a
trend similar to sensor E's but experienced one
additional lost packet in the last 12 hours, resulting in a
slightly higher packet loss percentage of 0.00180%
compared to sensor E. This packet loss rate is
significantly lower than the 1% threshold commonly
used for acceptable levels in Voice over Internet Protocol
(VoIP). Unlike VolP, which requires continuous data
transmission, temperature and humidity monitoring
does not need such continuous data collection.
Therefore, the observed packet loss levels are considered
acceptable for this monitoring system.

These results align with prior studies that
emphasize the viability of wireless sensor networks
(WSNSs) in environmental monitoring with minimal data
loss. For example, research conducted on smart building
monitoring systems using Zigbee-based WSNs reported
packet loss rates averaging 0.002% under stable indoor
conditions, which is slightly higher than those observed
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in this study (Marquez, 2021). This suggests that the
communication protocol and hardware configuration
used in the present system are at least equally efficient,
if not superior, in maintaining data integrity.

Furthermore, a study evaluating packet reliability
in IoT-based HVAC monitoring found that packet loss
often increases during peak operational hours due to
electromagnetic interference and network congestion,
especially in older buildings with thick walls or metal
reinforcements (Kychkin et al.,, 2021). In contrast, our
study observed a consistent and minimal packet loss
over time, even in an older building setting, indicating
the robustness of the implemented sensor deployment
and network topology. This stability is particularly
valuable in heritage or aging infrastructure, where the
integration of monitoring technology often faces
physical constraints.

Notably, the packet loss rates in this study are far
below the commonly referenced 1% threshold applied in
latency-sensitive applications such as VoIP (Mohd Ali et
al., 2021). While real-time applications require near-zero
tolerance  for loss, environmental monitoring
particularly of parameters like temperature, humidity,
and light intensity can accommodate minor data gaps
without affecting the reliability of long-term trend
analysis .

In summary, compared to existing literature, the
present system demonstrates enhanced reliability with
negligible data loss, validating its suitability for energy
consumption monitoring in older buildings. These
findings support broader adoption of similar low-
power, high-efficiency sensor networks for building
energy analysis, particularly where retrofitting modern
infrastructure is not feasible.

Conclusion

Based on the experiments, a monitoring system for
light intensity, temperature, and humidity can be
effectively implemented using ESP32, AHT10, and
BH1750 sensors. This system operates independently of
existing wireless networks by utilizing mesh
networking. Over the nine-day period and 777,600 data
points collected, packet loss ranged from 0.00103% to
0.00193%. The sensors used in this experiment show
comparable performance to commercial tools.
Specifically: for temperature, the AHT10 sensor has an
RMSE ranging from 0.16% to 0.48% and a standard
deviation from 0.12% to 0.19%. For humidity, the RMSE
ranges from 0.54% to 1.77%, with a standard deviation
between 0.33% and 0.69%. For light intensity, due to the
PWM-based nature of the experiment, values can be
erratic. After removing outliers, the RMSE ranges from
1.1% to 4.90%, with a standard deviation from 0.79% to
2.76%. All these values remain within the acceptable
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tolerance levels of commercial tools’ accuracy and
precision.
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