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Abstract: This research discusses the use of the Internet of Things in the 
monitoring of humidity, temperature, and light intensity conditions in a room 
that is connected to a mesh network. The objective of this research is to build 
a system that can monitor room conditions based on microcontrollers which 
are interconnected in a mesh network. The data are then displayed on a 
dashboard and categorized as either a comfortable or uncomfortable room 
based on existing standards. To ensure the accuracy of the system’s values, it 
is compared to commercial tools, then accuracy and precision are calculated. 
The system’s standard deviation for temperature is 0.12–0.19%, while its 
RMSE is 0.16–0.48%, and for humidity, the RMSE is 0.54–0.77%, with a 
standard deviation of 0.33–0.69%. For light intensity, with the outlier 
removed, the RMSE is 1.1–4.90% and the standard deviation is 0.79–2.76%. All 
these values are still comparable to the commercial tools’ accuracy listed in 
specification sheets. For packet loss, the system is run continuously for nine 
days, and at the end, the total data sent and data received at the server are 
calculated to count the differences. The packet loss after nine days and 777,600 
data points is 0.00103–0.00193% from all six sensors used in the system. 
 
Keywords: Humidity; IoT; Mesh network; SDG 11; SDG 13 

  

Introduction  
 
Reducing dependence on fossil fuels has become a 

global imperative, especially in regions where access to 
renewable energy infrastructure remains limited 
(Sukmawati et al., 2022). One fundamental approach to 
supporting this transition involves minimizing 
unnecessary energy usage, such as by switching off 
lights and electronic devices when not in operation. 
However, energy efficiency becomes substantially more 
complex in the context of buildings, where consumption 
is concentrated in specific systems. Heating, ventilation, 
and air conditioning (HVAC) systems, along with 
lighting, represent the most significant contributors to 
building energy demand, accounting for approximately 
38% and 20% of total usage, respectively (González-
Torres et al., 2022; Hong & Rahmat, 2022). These 

challenges are particularly pronounced in older 
buildings, which often lack energy-efficient construction 
materials and are typically not equipped to support 
contemporary energy monitoring and control 
technologies (Kim et al., 2019). 

While simple steps like turning off lights remain 
important, a more comprehensive approach is needed. 
This can be achieved by installing systems that monitor 
HVAC and lighting usage in each room, providing real-
time data on whether the air conditioning or lights are 
on. Implementing these practices will significantly 
reduce energy consumption, leading to lower costs and 
a reduced environmental impact from fossil fuel use 
(Zhao et al., 2023). However, a standard energy 
management system might not be ideal for older 
buildings. Instead, a self-contained system independent 
of the existing electrical network offers several 
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advantages. This independence not only avoids 
compatibility issues but also allows the system to be 
easily expanded to serve more buildings (Carli et al., 
2020). The more buildings that can be integrated, the 
greater the collective impact on energy savings and 
fossil fuel reduction (Zhang et al., 2023). 

In older buildings with decentralized HVAC 
systems, mesh networking offers a viable solution for 
Internet of Things (IoT) implementation. Mesh networks 
consist of interconnected devices that communicate 
directly with each other, eliminating the need for a 
central router or server . This decentralized architecture 
allows for flexible deployment and adaptability to 
varying building configurations. Additionally, mesh 
networks increase reliability as each node communicates 
with others; if one node is removed or goes offline, other 
nodes can take its place as relays, ensuring the network 
remains functional (Jiang et al., 2021). Nevertheless, a 
good system goes beyond just being independent. It also 
needs to be accurate in monitoring room conditions. 
Users must have complete confidence in the system's 
readings to make informed decisions about energy use. 
Additionally, the system must reliably transmit data 
from each room to a central location. Data loss during 
transmission should be minimal to ensure users have 
complete information for making informed choices 
(Harb et al., 2022; Liu et al., 2020). 

By integrating these energy-saving strategies with 
innovative technologies, people can revitalize older 
buildings. This approach not only reduces reliance on 
fossil fuels and lowers energy costs but also fosters a 
more sustainable future (Filippidou et al., 2019). The use 
of IoT for monitoring has gained substantial traction, 
particularly in industrial settings. However, prior 
research has primarily focused on industrial 
applications rather than domestic or indoor use cases. 
For example, IoT has been utilized in Industry 4.0 for 
predictive maintenance and in the construction industry 
through proprietary platforms and machine learning 
(Bertino et al., 2021). These methods often result in costly 
and inflexible systems, impeding their widespread 
adoption and limiting their effectiveness in combating 
climate change. 

In the healthcare industry, IoT applications also 
face challenges, particularly in connecting devices to the 
internet. The most common solution involves Global 
System for Mobile Communications (GSM) for data 
transmission (Kulkarni et al., 2022). However, 
employing GSM for building monitoring can lead to 
inflated costs and inefficiencies, rendering it unsuitable 
for this purpose. Previous research has explored the use 
of multiple sensors, often employing Modbus for inter-
sensor communication. This approach complicates 
network expansion and sensor addition, as it introduces 
additional costs. Other studies have utilized Universal 

Asynchronous Receiver/ Transmitter (UART) for inter-
sensor communication and connected a microcontroller 
to the internet via existing Wi-Fi networks. This method, 
however, is limited by the availability of Wi-Fi networks 
and requires an internet connection for operation. 

LoRa (Long Range) has also been employed for 
inter-sensor communication before connecting to the 
internet via GSM. This approach is constrained by 
LoRa's limited Line of Sight (LOS) range, necessitating 
minimal obstructions between sensors. Additionally, 
Zigbee, a closed-source protocol requiring costly 
licenses, has been used. However, Zigbee is outdated 
and possesses security vulnerabilities. Mesh networks 
based on Wi-Fi protocols can address these issues. 

Regarding controllers, some previous studies have 
replaced microcontrollers with Raspberry Pi. While this 
significantly enhances computational capabilities, these 
capabilities remain largely untapped, as Raspberry Pi is 
primarily used for sensor data acquisition and relay 
control. This approach also limits further network 
expansion due to Raspberry Pi's higher cost compared to 
microcontrollers like ESP8266 or ESP32. 

Other research has employed Arduino Mega and 
the AT&T M2X protocol (Rahman et al., 2020). This 
microcontroller falls between Raspberry Pi and ESP32 in 
terms of capabilities. However, Arduino Mega 2560 
lacks networking capabilities, necessitating an Ethernet 
HAT to connect sensors to the network before using the 
M2X protocol for internet access. This method 
introduces cabling complexities and limits scalability. 
The AT&T M2X protocol is also closed-source, 
proprietary, and relies on a third party (AT&T) for 
operation. Additionally, DHT11 is commonly used as a 
temperature and humidity sensor (Awaludin et al., 
2021). This sensor employs one-wire protocol, which is 
known for its unreliability. Based on the author's 
experience, DHT11 sensors often fail to transmit data 
when used in systems with complex algorithms. 

For light sensing, some previous studies have 
utilized LDRs (Light Dependent Resistors). These 
sensors rely on resistance to detect light intensity, 
necessitating pre-calibration before use. While less 
expensive than BH1750 sensors, LDRs are unreliable due 
to temperature sensitivity and slow response times 
caused by light-induced chemical reactions (Casals et al., 
2020). 

To address the limitations of existing IoT 
monitoring systems, this research proposes a novel 
system utilizing ESP32 microcontrollers, AHT10 
temperature and humidity sensors, and BH1750 light 
intensity sensors. The proposed system offers several 
advantages over previous works, one of which is the 
reliability of the new sensors running on I2C 
communication and a mesh network based on Wi-Fi. 
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Old buildings often suffer from outdated design 
and construction methods that do not align with modern 
standards of energy efficiency. These structures 
typically have poor insulation, inefficient heating and 
cooling systems, and limited integration with smart 
technologies. As global concerns over energy 
consumption and environmental sustainability increase, 
there is an urgent need to improve the energy 
performance of existing buildings, particularly those of 
historical or functional importance. Monitoring 
environmental parameters such as temperature, 
humidity, and light intensity provides essential data to 
evaluate energy use patterns, detect inefficiencies, and 
guide retrofitting strategies. Without effective 
monitoring, efforts to reduce energy consumption in old 
buildings risk being inefficient or misdirected, leading to 
higher operational costs and environmental impact. This 
study introduces a novel approach by integrating real-
time environmental data specifically temperature, 
humidity, and light intensity to assess the effectiveness 
of energy usage in old buildings. While previous 
research has focused largely on theoretical models or 
energy audits, this study emphasizes empirical, sensor-
based monitoring to capture the dynamic environmental 
behavior of aging structures. The innovation lies in 
using this real-time data to create a responsive and 
adaptive framework for energy management that is both 
low-cost and scalable. This method not only provides a 
more accurate understanding of energy performance but 
also enables practical interventions tailored to the 
specific environmental context of each building. 
 

Method  
 

The device is built using an ESP32 as the control 
unit. The ESP32 was chosen because the ESP8266 was 
not designed with mesh networking in mind. The mesh 
networking implementation and data transmission 
follow the research of Aquino et al. (2021) and are 
adapted to the sensors used. The sensors used in this 
research are AHT10 and BH1750. These sensors use 
Inter-Integrated Circuit (I2C) communication to address 
communication problems with DHT11. BH1750 uses a 
photodiode to sense light intensity, which addresses 
temperature-related problems associated with LDRs. 
These sensors are then connected to the ESP32 
microcontroller, and each ESP32 microcontroller is 
connected to others using a mesh network. This mesh 
network is extended to the server, and the data are 
handled using the MQTT protocol via the Mosquitto 
Broker. The data are then distributed to Node-RED 
before being stored in a CSV file and displayed on the 
dashboard. This process is illustrated in Figure 1. 

 

Before the experiment began, a 30 × 30 × 30 cm 
cardboard box was prepared as the testing medium. 
Two types of testing media were created: one for 
temperature and humidity testing, and the other for 
light intensity testing. 

 
 

 
Figure 1. Overview of the suggested system 

 
For temperature and humidity testing, the testing 

media were made with holes on the left and right sides 
for water to enter and exit, and another hole for the 
power cable to exit. Inside the testing media box, a 300 
W thermoelectric cooler was placed with the cold side in 
contact with a heatsink equipped with a fan, while the 
hot side was in contact with a water block that was 
circulated with water by a pump. Both the pump and the 
Peltier cooler were connected to a power supply that was 
set with a timer to cool for five minutes and heat for five 
minutes. 
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This testing medium can be seen in Figure 2. In the 
upper left part, the position of the commercial device 
and sensors can be seen during the preparation for 
measurement. In the upper right part, the placement of 
the Peltier cooler can be seen, and in the lower part, it 
can be seen that when the testing media box is closed, 
the power supply and timer are on top of the box, and 
the pump is on the side. 

 

 
Figure 2. Temperature and humidity measuring medium 

 
For light intensity testing, an 3W 8x8 LED matrix 

was attached to the top of the testing media box. The 
LED matrix was connected to an ESP8266 
microcontroller that controlled the lighting level from 
256 brightness levels, changing from 0 to 255 over 5 
minutes and from 255 to 0 over 5 minutes. 

This testing medium can be seen in Figure 3. On the 
left, the light source, sensors, and commercial device can 
be seen placed for testing. Once arranged, the testing 
media box is closed, and measurements are taken. On 
the upper right, the sensors are placed on a 3D-printed 
bracket that ensures the sensors are at the same distance 
from each other. On the lower right, the light source 
from the LED matrix controlled by the ESP8266 can be 
seen. 

 

 
Figure 3. Light intensity measuring medium 

The ground truth used in this experiment is the 
Benetech GM1030 for light intensity and the Benetech 
GM1360A for temperature and humidity. The sensors 
were compared to these two commercial tools to assess 
their performance. These sensors were placed inside the 
testing medium according to the tested parameters. 

For testing packet loss, the devices were placed in 
six rooms, and every device sent data every second to 
the Raspberry Pi server. This was done for nine days, 
and the average loss for every device was observed. The 
amount of data received by the server was compared to 
the amount of data sent by using time as a reference. This 
experiment was conducted in a room with gypsum 
walls. The devices were distributed in six rooms with an 
average distance of 6 m, arranged in three columns and 
two rows, as shown in Figure 4. 

 

Room 
1 

Room 
2 

Room 
3 

 

Room 
4 

Room 
5 

Room 
6 

Figure 4. Six rooms used for testing package loss 

 
All data were then evaluated in three categories: 

accuracy of the system by calculating the Root Mean 
Square Error (RMSE) of each device, precision by 
calculating the standard deviation of each device, and 
finally, evaluating network capability by counting 
packet loss. The accuracy of the data was evaluated by 
calculating the RMSE compared to a commercial device. 
RMSE is a statistical measure of the average difference 
between the predicted values and the actual values. A 
lower RMSE value indicates a more accurate system. In 
the case of temperature and humidity data, the RMSE 
was calculated by comparing the temperature and 
humidity readings from the system's sensors to the 
readings from the commercial device. The RMSE was 
calculated for every second and then averaged over the 
entire 100-cycle test period. For light intensity data, the 
RMSE was calculated by comparing the light intensity 
readings from the system's sensors to the light intensity 
readings from the commercial device. The RMSE was 
calculated for every second and then averaged over the 
entire 100-cycle test period. 

Data precision was assessed by calculating the 
standard deviation in comparison to a commercial 
device. Standard deviation measures the dispersion of 
data points from the mean, with a lower value indicating 
higher precision. For temperature and humidity data, 
the standard deviation was calculated from the sensor 
readings at each second and averaged over the entire 
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100-cycle test period. The same approach was used for 
light intensity data, with standard deviation calculated 
for each second and averaged over the 100-cycle period. 

Data loss was determined by counting the number 
of data packets that were not received by the Raspberry 
Pi. This data loss is expressed as a percentage of the total 
packets sent, with a lower percentage indicating a more 
reliable system. The data loss calculation was based on 
nine days of data, totalling nearly 800,000 packets per 
node. For data management and visualization, Node-
RED is utilized. A Node-RED dashboard logs sensor 
data into a CSV file, with a function that appends time 
and date columns to the data received from the MQTT 
broker before saving it to the file. The CSV file is then 
saved to the Raspberry Pi for further analysis. This data 
flow is translated into a Node-RED flow, as shown in 
Figure 5. 

 

 
Figure 5. Flow on node-red for storing sensor data 

 
Data for each room are presented on a dashboard 

within a single sheet. The data, received from the MQTT 
node, are divided into six outputs: three are displayed as 
gauges, and three as text. For the text outputs, the ISO 
CIE 8995-2002 and OSHA 1910.1000 room standards are 
utilized. The process flow is illustrated in Figure 6. A 
workspace is deemed comfortable if it meets the 
following conditions: light levels exceed 200 lux, 
temperature ranges from 19.5 °C to 27.8 °C, and 
humidity remains below 65%. Figure 6 shows the flow 
of the dashboard, while Figure 7 shows the dashboard 
itself. 

 

 
Figure 6. Flow of the node-red dashboard 

 

 
Figure 7. Appearance of the dashboard 

 
If the sensor reading is not up to standard each text 

on top of the gauge for every room will notify the user 
about the condition. The color of the gauge itself will 
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change according to the value of sensor reading 
compared to the standard used. 

 

Results and Discussion 
 
Testing Sensor for Light Intensity 

In contrast to temperature and humidity 
measurements, light intensity is affected by the 
centralized light source within a relatively small area 
compared to the measurement room. The light intensity 
value will vary based on the distance from the source to 
the sensor, with higher light intensity values decreasing 
quadratically as the distance from the light source 
increases. 

 

 
Figure 8. The first 3000 data of light intensity against time 

from all 6 sensors 

 
This variation in sensor placement results in 

differing intensity readings across sensors. As illustrated 
in Figure 8, although the sensors generally follow the 
trend of the reference sensor, discrepancies become 
more pronounced at higher light intensities due to the 
varying sensor positions. Figure 8 displays the initial 
3000 data points from all six sensors. When the light 
source is observed to undergo irregular changes, each 
sensor measures the change with the same trend 
direction. If the Pearson correlation is calculated 
between the commercial reference lux meter and each 
sensor, the values in  

Table 1 are obtained. 
 
Table 1 indicates that the readings from each sensor 

are highly correlated with those from the reference 
device. To assess the error, the RMSE for each sensor is 
calculated. Percentages are used for RMSE values to 
account for the large range of measurements, which 
span from a minimum of 0 to over 1,600 lux. This 
approach ensures that the error values effectively reflect 
the accuracy of the sensors across all measurement levels 
used in the experiment. 

 
 
Table 1. Table of R Value from Light Intensity Data  

R Value 

Sensor A 0.998696 
Sensor B 0.999435 
Sensor C 0.999717 
Sensor D 0.999907 
Sensor E 0.999115 
Sensor F 0.999770 

 
Table 2 demonstrates significant variability in error 

values. This variation arises from the light source’s use 
of a PWM mechanism for dimming and turning the light 
on and off. In very dark conditions, even minor changes 
in sensor readings can lead to substantial errors. 
Additionally, each sensor records data at slightly 
different times, though for consistency, the data are 
aggregated into one reading per second. Both the PWM 
mechanism and the consolidation of data into single-
second intervals contribute to high error percentages in 
some sensor readings, resulting in numerous outliers. 
These outliers become evident when a boxplot is created 
for all 100,000 data points. 

 
Table 2. RMSE and Standard Deviation of Light 
Intensity Compared to Commercial Tools  

RMSE Standard  deviation 

Sensor A 4.59% 3.97% 
Sensor B 6.31% 4.44% 
Sensor C 3.91% 2.76% 
Sensor D 2.34% 2.18% 
Sensor E 4.78% 4.78% 
Sensor F 1.77% 1.70% 

 
Table 2 indicates that both the standard deviation 

and RMSE are relatively high. To better understand this, 
the data are visualized in Figure 9 using a boxplot on the 
left. This plot reveals a considerable spread in the data, 
highlighting the need for cleanup. Outliers from each 
sensor, identified using the interquartile range (IQR), 
were removed. The cleaned data are then visualized 
again, as shown on the left side of Figure 9. 
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Figure 9. Data of light intensity before removing outlier and 

after 

Both RMSE and standard deviation are much better 
than before the outliers were removed, but for sensor B, 
RMSE still exceeds the reference value of ±4% error. This 
value would be much better if the light source intensity 
were controlled using voltage or current rather than 
Pulse Width Modulation (PWM). 

 
Table 3. RMSE and Standard Deviation of Light 
Intensity after Outlier Removed  

RMSE Standard Deviation 

Sensor A 3.59% 2.76% 
Sensor B 4.90% 1.95% 
Sensor C 3.12% 1.47% 
Sensor D 1.17% 0.79% 
Sensor E 2.25% 2.25% 
Sensor F 1.25% 1.14% 

 
LEDs were chosen because they are relatively 

inexpensive and easier to set up than using current and 
voltage. LEDs can also be controlled more precisely for 
voltages or currents within the working voltage or 
current range. In addition to the light source, the 
placement of the sensors also greatly affects the values 
read by each sensor. As can be seen from Figure 8, there 
is always a deviation among sensors. If the sensor 
placement is the same, this deviation can be reduced. 
However, according to the literature, the change in light 
that can be perceived by humans is 7.4%. The error value 
and standard deviation are still below this threshold, 
which shows that the BH1750 sensor can still be used for 
everyday indoor applications. 

 
Testing Sensor for Temperature 

Out of the 100,000 data points that were taken, 1,000 
data points were visualized in Figure 10 to see the 
difference between each sensor and the reference 
temperature. It can be seen that the difference in the 
values read is not far off. To clarify the difference in the 
values read, a boxplot was then created for the entire 
100,000 data points that were taken. 

 

 
Figure 10. The first 1000 data of temperatur against time from 

all 6 sensors 

Figure 10 shows the difference in sensor values 
compared to the reference. Since this boxplot was 
created with all 100,000 data, the values displayed 
represent the entire population of data measured by the 
6 sensors. From this boxplot, it can be seen that the data 
distribution of each sensor is quite small, which is 
represented by the standard deviation value of less than 
1%. The calculation of the standard deviation for each 
sensor is shown in Table 4. 

 

 
Figure 11. Boxplot of all 100.000 of temperature data from all 

6 sensor 
 

Table 4. RMSE and Standard Deviation of Temperature  
RMSE Standard Deviation 

Sensor A 0.47% 0.15% 
Sensor B 0.48% 0.14% 
Sensor C 0.47% 0.19% 
Sensor D 0.26% 0.16% 
Sensor E 0.16% 0.16% 
Sensor F 0.27% 0.12% 

 
Referring to the boxplot in Figure 11, which shows 

the temperature distribution, it can be seen that the 
distribution value is still below ±1°C, with some outliers 
of -1.03°C, 1.06°C, and 1.07°C in sensors A, B, and C, 
respectively. In addition, all of these are still comparable 
to the commercial reference device used. 
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The RMSE of each sensor is not worse than that of 
the reference device, which is a maximum of ±1°C. With 
a standard deviation of less than 0.2°C and an RMSE of 
less than 0.5°C, the AHT10 sensor is considered 
sufficient for measuring room temperature. This refers 
to 27 where a temperature change of 0.92°C (±0.05°C) can 
be perceived by humans with 95% accuracy. 

 
Testing Sensor for Humidity 

Temperature and humidity are highly dependent 
on each other. The relative humidity value depends on 
the current temperature because the ability of air to bind 
water vapor depends on the air temperature. The higher 
the air temperature, the greater the capacity of air to bind 
water vapor. If the amount of water vapor in the air is 
constant, the relative humidity value will decrease if the 
temperature rises, and vice versa. 

 

 
Figure 12. Value of temperature and humidity at the same 

time 

 
The top portion of Figure 12 shows the humidity 

values read by the 6 sensors over time. The graph shows 
10 hours or 36,000 data points so that the trend of the 
relationship between temperature and humidity can be 
seen. The humidity value is change with the changes in 
the temperature value in the opposite direction (Laura et 
al., 2023). 

After ensuring that the sensors are functioning, the 
accuracy and precision of the sensors are then 
determined by calculating the RMSE and standard 
deviation of the sensors. The RMSE and standard 
deviation are calculated from the data that has been 
collected and written down in Table 5. 

 
Table 5. RMSE and Standard Deviation of Humidity  

RMSE Standard deviation 

Sensor A 1.260886 0.334768 

Sensor B 1.773866 0.470935 
Sensor C 1.223893 0.403527 
Sensor D 0.544912 0.342023 
Sensor E 0.693869 0.689724 
Sensor F 1.062222 0.330923 

Table 5 shows that Sensor D, with an RMSE of 
0.545%, has the best value among all sensors. However, 
all sensors still have values below 3%. Three percent is 
used as a reference because the Benetech GM1360A 
reference device has an accuracy of ±3%. 

To see the level of precision of this humidity 
measurement, a boxplot is created, as shown in Figure 
13. 

 

 
Figure 13. Boxplot of all 100.000 of temperature data from all 

6 sensors 

 
Figure 13 illustrates the distribution of error for 

each sensor, with sensor E exhibiting the widest spread. 
This observation aligns with the earlier standard 
deviation calculation, which indicated that sensor E has 
the highest standard deviation value. 

 
Testing for Data Loss 

To minimize disruption to daily operations at the 
building where the data was collected, data collection 
was scheduled from December 23, 2023, to January 2, 
2024. During this period, data was gathered for 9 days, 
totaling nearly 780,000 samples. 
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Figure 14. Number of packets loss sample every 12 hours for 
all 6 sensors 

 
The data were sampled every 12 hours to record the 

transmission time, which was then compared to the 
reference time. If the recorded time was earlier than the 
reference time, it indicated that packets were lost and 
data entries were missed. Each missed second 
corresponded to one lost packet. As shown in Table 6, 
the packet loss does not follow a fixed pattern but results 
in an overall loss rate of 0.00103%, or approximately 1 
packet lost per 100,000 transmissions. 

For sensor B, as indicated in Table 6, the packet loss 
at the end of day 9 was 0.00193%, which is higher than 
the 0.00103% observed for sensor A. This difference may 
be attributed to variations in the sensors' operational 
environments. Sensor C, as shown in Table 6, had a 
packet loss of 0.00129%, falling between the values of 
sensor A and sensor B. Sensor D's packet loss was 
0.00167%, which is close to the values for the other three 
sensors, positioning it between sensor A, with the lowest 
packet loss, and sensor B, with the highest. 

 
Table 6. Packets Loss after 777.600 Data Sent 

  Percentage Packets Loss 

Sensor A 0.00103% 
Sensor B 0.00193% 
Sensor C 0.00129% 
Sensor D 0.00167% 
Sensor E 0.00167% 
Sensor F 0.00180% 

 
The data from sensor E, as shown in Table 6, 

indicates a packet loss percentage identical to that of 
sensor D. However, sensor E reached this packet loss 
value first, at data point 734,400, as illustrated in Figure 
14. Sensor F's data, also depicted in Figure 14, shows a 
trend similar to sensor E's but experienced one 
additional lost packet in the last 12 hours, resulting in a 
slightly higher packet loss percentage of 0.00180% 
compared to sensor E. This packet loss rate is 
significantly lower than the 1% threshold commonly 
used for acceptable levels in Voice over Internet Protocol 
(VoIP). Unlike VoIP, which requires continuous data 
transmission, temperature and humidity monitoring 
does not need such continuous data collection. 
Therefore, the observed packet loss levels are considered 
acceptable for this monitoring system.   

These results align with prior studies that 
emphasize the viability of wireless sensor networks 
(WSNs) in environmental monitoring with minimal data 
loss. For example, research conducted on smart building 
monitoring systems using Zigbee-based WSNs reported 
packet loss rates averaging 0.002% under stable indoor 
conditions, which is slightly higher than those observed 

in this study (Márquez, 2021). This suggests that the 
communication protocol and hardware configuration 
used in the present system are at least equally efficient, 
if not superior, in maintaining data integrity. 

Furthermore, a study evaluating packet reliability 
in IoT-based HVAC monitoring found that packet loss 
often increases during peak operational hours due to 
electromagnetic interference and network congestion, 
especially in older buildings with thick walls or metal 
reinforcements (Kychkin et al., 2021). In contrast, our 
study observed a consistent and minimal packet loss 
over time, even in an older building setting, indicating 
the robustness of the implemented sensor deployment 
and network topology. This stability is particularly 
valuable in heritage or aging infrastructure, where the 
integration of monitoring technology often faces 
physical constraints. 

Notably, the packet loss rates in this study are far 
below the commonly referenced 1% threshold applied in 
latency-sensitive applications such as VoIP (Mohd Ali et 
al., 2021). While real-time applications require near-zero 
tolerance for loss, environmental monitoring 
particularly of parameters like temperature, humidity, 
and light intensity can accommodate minor data gaps 
without affecting the reliability of long-term trend 
analysis . 

In summary, compared to existing literature, the 
present system demonstrates enhanced reliability with 
negligible data loss, validating its suitability for energy 
consumption monitoring in older buildings. These 
findings support broader adoption of similar low-
power, high-efficiency sensor networks for building 
energy analysis, particularly where retrofitting modern 
infrastructure is not feasible. 
 

Conclusion  
 

Based on the experiments, a monitoring system for 
light intensity, temperature, and humidity can be 
effectively implemented using ESP32, AHT10, and 
BH1750 sensors. This system operates independently of 
existing wireless networks by utilizing mesh 
networking. Over the nine-day period and 777,600 data 
points collected, packet loss ranged from 0.00103% to 
0.00193%. The sensors used in this experiment show 
comparable performance to commercial tools. 
Specifically: for temperature, the AHT10 sensor has an 
RMSE ranging from 0.16% to 0.48% and a standard 
deviation from 0.12% to 0.19%. For humidity, the RMSE 
ranges from 0.54% to 1.77%, with a standard deviation 
between 0.33% and 0.69%. For light intensity, due to the 
PWM-based nature of the experiment, values can be 
erratic. After removing outliers, the RMSE ranges from 
1.1% to 4.90%, with a standard deviation from 0.79% to 
2.76%. All these values remain within the acceptable 
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tolerance levels of commercial tools’ accuracy and 
precision. 
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