

The Effect of Inquiry-Based Learning on Students' Critical Thinking Skills in Science Learning (Junior High School-Senior High School): Meta-Analysis

Sang Nyoman Putra Darma^{1*}, I Wayan Redhana¹, I Nyoman Tika¹

¹ Program Studi Pendidikan IPA, Program Pascasarjana, Universitas Pendidikan Ganesha, Singaraja, Indonesia.

Received: July 18, 2025

Revised: September 20, 2025

Accepted: October 25, 2025

Published: October 31, 2025

Corresponding Author:

Sang Nyoman Putra Darma

sang.putra@student.undiksha.ac.id

DOI:

© 2023 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Critical thinking skills are crucial 21st-century skills. However, students' critical thinking skills are still considered low in several studies. Science learning is closely related to this ability. One learning model believed to effectively improve critical thinking skills is the inquiry-based learning model. This study is a meta-analysis study that aims to examine and determine the effect of the inquiry learning model on improving secondary school students' critical thinking skills in science learning as a whole. Article searches were conducted using PoP on Google Scholar and obtained 11 final articles for analysis. The analysis process used Comprehensive Meta-Analysis (CMA) with the Hedges formula. The results of this study indicate that the fixed-effects model has an effect size of 1.07 (std. error 0.08), while the random-effects model has an effect size of 1.16 (std. error 0.37). This means that inquiry learning has a significant effect on improving critical thinking skills despite study variations. These results are not easily influenced by the possibility of publication bias.

Keywords: Critical Thinking Skills; Inquiry Learning; Meta-Analysis; Science Learning

Introduction

Science learning provides students with the opportunity to think critically and solve problems in real life (Hugerat et al., 2021; Suendarti & Virgana, 2022). Critical thinking skills are core skills in 21st century education which are very important in facing global challenges (Patras et al., 2024; Rahim, 2023; Rendi et al., 2024; Yulianti et al., 2022). 21st-century learning refers to the 4Cs, namely the skills possessed, such as problem-solving, critical thinking, collaboration, and communication skills (Taufiqurrahman, 2023).

Science is closely related to this ability. Critical thinking helps students make rational, reflective, and reasoned decisions (Fajari et al., 2020; Lestari et al., 2020). In addition, critical thinking as the basis of students' scientific literacy faces global and technological challenges through analyzing information, evaluating

arguments, solving complex problems, and making the right decisions (Azmi et al., 2025; Fitriyah et al., 2021; Ramdani et al., 2021).

However, the main problem encountered in science learning is the failure to achieve appropriate critical thinking competencies. Several studies have shown that Indonesian students' critical thinking skills are still low and need to be improved (Dewi et al., 2023; Haris et al., 2024; Hatria et al., 2022; Lidiawati et al., 2022; Selvi et al., 2025; Sugiharti & Gayatri, 2024). This low ability is due to science learning tending to be teacher-centered, minimal student involvement, and a lack of learning innovation so that material concepts are difficult to understand (Annisa et al., 2022; Puspita et al., 2023; Rahman et al., 2023).

Based on analysis conducted by PISA 2022, Indonesian students' critical thinking skills are also still considered low. PISA 2022 results show that Indonesia's

How to Cite:

Darma, S. N. P., Redhana, I. W., & Tika, I. N. (2025). The Effect of Inquiry-Based Learning on Students' Critical Thinking Skills in Science Learning (Junior High School-Senior High School): Meta-Analysis. *Jurnal Penelitian Pendidikan IPA*, 11(10). <https://doi.org/10.29303/jppipa.v11i10.12222>

creative thinking score is only 19 out of 60, far below the OECD average of 33. Only 31% achieved level 3, compared to 78% of OECD students. Indonesia also remains lowly ranked, ranking 70th (mathematics), 71st (reading literacy), and 67th (science) out of 81 countries (OECD, 2024).

Efforts to improve critical thinking skills in schools often face obstacles, both on the part of teachers and schools. In this regard, it is crucial that the learning process and environment be directed or focused on these skills (Fajriati et al., 2024). Inquiry-based learning can be a solution to address these issues. Inquiry-based learning provides students with the opportunity to actively participate, seek information, discuss, and analyze problems in depth and systematically, thereby fostering critical thinking (Ningsih, 2025; Sonia et al., 2023; Sutiani et al., 2021). This is in accordance with constructivism theory that understanding is formed through a process of investigation and direct involvement (Suryana et al., 2022).

Inquiry-based learning can have a significant influence and improve students' critical thinking skills (Martatis, 2023; Bakri et al., 2021; Utami, 2022). In addition, inquiry in science learning also encourages students to reason deductively, so that there is an increase in understanding and skills in the science process (Suherta et al., 2023). This learning produces a more effective learning process than conventional learning because it is more student-centered and meaningful (Suwardani et al., 2021).

Several experimental studies have shown that inquiry-based learning does not always produce significant improvements in these skills compared to conventional learning. These inconsistent findings create uncertainty in instructional decision-making, particularly in science learning at the junior and senior high school levels. These discrepancies indicate a research gap that needs to be addressed through a more systematic approach. Therefore, a meta-analysis of several studies is needed to integrate the various results and obtain a more concrete picture.

In addition, similar meta-analysis studies have been conducted, including Arifin et al. (2025) who studied the influence of the inquiry learning model on critical thinking skills in science education. Other researchers, namely Syahgiah et al. (2023) examine the influence of science learning on process skills and critical thinking. Susanto & Indarini (2022) This study also examined the effects of inquiry-based learning on the critical thinking skills of elementary school students in thematic areas. However, it did not focus on secondary education, which is a crucial stage in the development of critical thinking skills. The urgency of this research lies in providing empirical evidence to determine effective

science learning strategies in accordance with curriculum requirements.

Based on this background, a more systematic study is needed to provide a holistic view. This meta-analysis will examine various primary studies in several published studies, hopefully providing a comprehensive picture of the extent to which inquiry-based learning can improve critical thinking skills.

Method

This study used a meta-analysis approach, a systematic method used to integrate and analyze findings from various studies related to the implementation of inquiry-based learning in science education and efforts to improve critical thinking skills in secondary school students.

Meta-analysis is a research methodology that evaluates and synthesizes findings from various previous studies containing quantitative data that can be analyzed statistically (Chen et al., 2022). Through this study, the effect of inquiry-based learning on critical thinking skills as a whole will be examined. The systematic steps in conducting a meta-analysis are as follows.

Formulating Questions

Formulating research questions:

RQ1. Does inquiry-based learning have a significant impact on critical thinking skills?

RQ2. What is the overall effect size of inquiry-based learning on critical thinking skills?

Study Selection Criteria

The researchers determined inclusion criteria, including publications from 2016-2025; experimental (quasi-experimental) articles; articles containing mean data, sample size, and SD; full-text and open access articles; and articles in Indonesian or English.

Data Collection

The article selection process was conducted using the PRISMA 2020 method, which ensures transparency and accountability in the literature search process. A search was conducted on Google Scholar using the keywords "the influence of inquiry learning on critical thinking," "inquiry models," and "science learning." The selection process based on the PRISMA stages is presented in Figure 1.

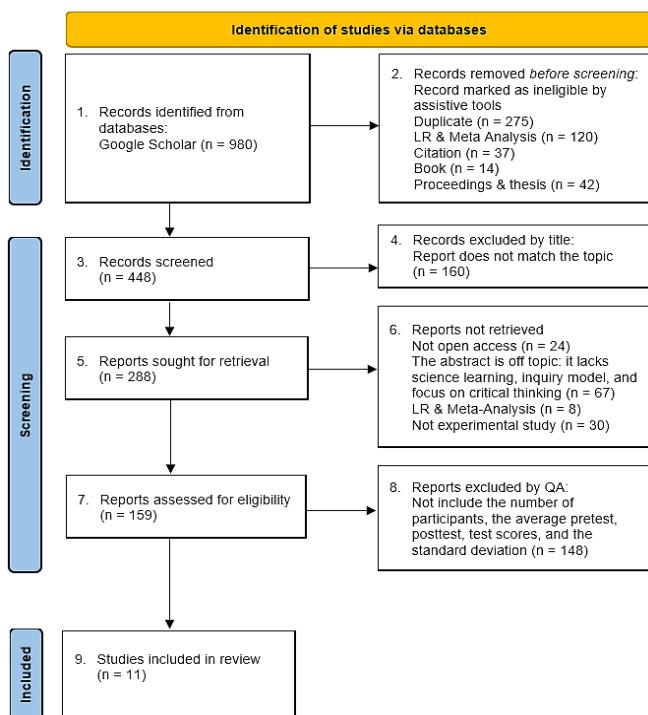


Figure 1. Article Search Results

Data encoding

Pengkodean data dalam meta-analysis bertujuan untuk mempermudah analisis data (Chamdani et al., 2022). Proses pengkodean dilakukan dengan memisahkan dan merangkum deskripsi lengkap terkait dengan kode artikel dan informasi termasuk ukuran sampel (N), rata-rata, dan SD untuk kelompok eksperimen dan kontrol. Data ini akan digunakan sebagai basis untuk menentukan ukuran efek dari beberapa studi. Hasil pengkodean data ditunjukkan dalam Tabel 3.

Data Analysis

Dalam meta-analysis, proses analisis data melibatkan menentukan nilai ukuran efek berdasarkan data studi utama, pengujian untuk membiaskan publikasi, pengembangan model perkiraan, pengujian untuk membiaskan publikasi, dan menghitung nilai p untuk membuktikan hipotesis (Joseph, 2023). Proses analisis dilakukan menggunakan alat Comprehensive Meta-Analysis (CMA). Analisis ini mencakup data kuantitatif dan deskriptif. Kriteria untuk menentukan ukuran efek berdasarkan pada kriteria Cohen (1998), yang dapat dilihat dalam Tabel 1.

Table 1. Effect Size Level Categories (Cohen, 1998)

Effect Size (ES)	Interpretation
0.00 ≤ ES < 0.20	Ignore
0.20 ≤ ES < 0.50	Small
0.50 ≤ ES < 0.80	Moderate
0.80 ≤ ES < 1.30	Large
1.30 ≤ ES	Very Large

Results and Discussion

Hasil pengambilan sampel menunjukkan bahwa 11 artikel memenuhi kriteria pengambilan. Artikel ini dilanjutkan dengan analisis meta-analisis sebagai sumber data utama untuk judul penelitian ini. Hasil pengambilan sampel menunjukkan bahwa sebagian besar merupakan studi eksperimental kuantitatif. Analisis 11 artikel ini ditunjukkan dalam Tabel 2.

Table 2. Results of the Selected Articles

Code	Author/Year	Method
A01	(Ernawati et al., 2025)	Quasi Experiment
A02	(Ritli & Adlini, 2022)	Quasi Experiment
A03	(Maryam et al., 2020)	Quasi Experiment
A04	(Carolina et al., 2020)	Experiment
A05	(Carolina et al., 2020)	Quasi Experiment
A06	(Santoso & Arif, 2021)	Experiment
A07	(Suhidi et al., 2021)	Quasi Experiment
A08	(Nerli et al., 2023)	Quasi Experiment
A09	(Danisa et al., 2016)	Quasi Experiment
A10	(Irma et al., 2023)	Quasi Experiment
A11	(Zai et al., 2023)	Quasi Experiment

Menurut artikel, proses pengambilan sampel dilakukan dengan mengidentifikasi dan merangkum deskripsi lengkap terkait dengan kode artikel dan informasi termasuk ukuran sampel (N), rata-rata, dan SD untuk kelompok eksperimen dan kontrol. Data ini akan digunakan sebagai basis untuk menentukan ukuran efek dari beberapa studi. Hasil pengambilan sampel menunjukkan bahwa sebagian besar merupakan studi eksperimental kuantitatif. Analisis 11 artikel ini ditunjukkan dalam Tabel 2.

Table 3. Primary Data Results for Both Groups

Code	Data Search Results					
	Experiment			Control		
	N	Mean	SD	N	Mean	SD
A01	22	75.79	7.21	21	64.98	10.28
A02	26	26	10.147	26	60.58	7.393
A03	40	81.785	6.569	38	68.519	13.449
A04	32	79.68	9.840	32	66.48	9.070
A05	77	69.2	13.0	77	60.4	11.9
A06	28	80.18	8.02	30	52.58	7.41
A07	76	69.58	9.13	76	63.4	8.09
A08	27	80.37	8.195	27	70.19	7.136
A09	36	80.37	9.554	34	63.09	11.104
A10	35	80.83	1.16190	36	76.71	1.02321
A11	25	80.07	3.31	25	75.20	2.77

Hasil analisis menunjukkan bahwa ukuran efek data dari N, Mean, dan SD dianalisis menggunakan alat Comprehensive Meta-Analysis (CMA). Berdasarkan analisis ini, data terkait dengan ukuran efek, standar kesalahan, dan interval kepercayaan diperoleh, yang menentukan magnitudo ukuran efek studi ini. Hasil ini ditunjukkan dalam Tabel 4.

Table 4. Analysis Results (Effect Sizes, Standard Errors, and Confidence Intervals)

Code	Effect Size	Standard Error	Confidence Intervals	
			Lower Limit	Upper Limit
A01	0.65	0.31	0.04	1.25
A02	-3.84	0.46	-4.75	-2.93
A03	1.25	0.25	0.77	1.73
A04	1.38	0.28	0.84	1.92
A05	0.70	0.17	0.38	1.03
A06	3.53	0.42	2.71	4.35
A07	0.71	0.17	0.39	1.04
A08	1.31	0.30	0.73	1.89
A09	1.65	0.27	1.12	2.19
A10	3.73	0.39	2.96	4.49
A11	1.57	0.32	0.94	2.20

Based on Table 4, the highest effect size values were found in six studies, namely A04 (1.38), A06 (3.53), A08 (1.31), A09 (1.65), A10 (3.73), and A11 (1.57). One study, A02 (-3.84), showed a negative effect size. Furthermore, the standard error ranged from 0.17 to 0.46, indicating good precision for the estimated effect size. The results also indicated that the confidence interval was significant. The distribution of the study's effect size levels based on the established levels (Cohen 1998) can be seen in Figure 2.

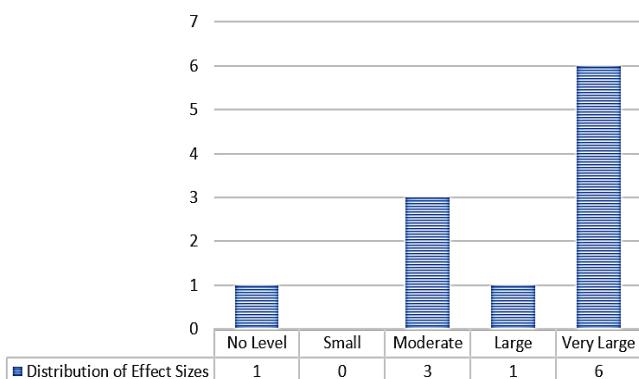

Figure 2. Distribution Effect Size

Figure 2 shows that the effect sizes are mostly in the medium to very high category, indicating that inquiry-based learning has a positive influence on critical thinking skills. In this study, publication bias was assessed using a funnel plot to determine whether there is a tendency for significant study results to be published more often than non-significant ones.

The funnel plot visualizes the distribution of effect sizes (Hedges's g) against the standard error of each study. The funnel plot shows that the distribution of studies is not completely symmetrical around the combined effect. Several studies fall outside the funnel area, particularly on the left and right sides, which could indicate potential publication bias or heterogeneity

between studies. Publication bias based on the analysis is shown in Figure 3.

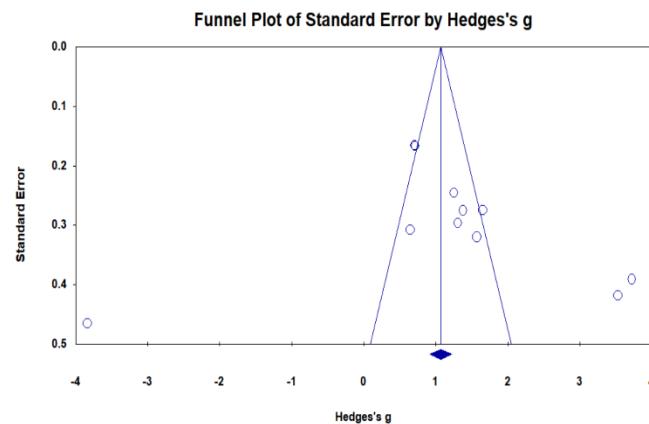

Figure 3. Publication Bias (Funnel Plot)

Figure 3 shows that the funnel plot indicates publication bias between studies. The distribution of points on the funnel shows that there are studies far to the left and far to the right, which may be influenced by external factors, such as differences in study subjects or sample size. Therefore, further statistical testing using Egger's Test is important to confirm whether publication bias is indeed present. The results of Egger's Test are presented in Table 5.

Table 5. Egger's Test Results

Statistics	Value
Intercept	2.31975
Std error	4.49312
95% lower limit (2-tailed)	-7.84440
95% upper limit (2-tailed)	12.48390
t-value	0.51629
df	9.00000
P-value (1-tailed)	0.30905
P-value (2-tailed)	0.61810

Based on Table 5, the results show an intercept value of 2.31975 with a p-value > 0.05 ($0.618 > 0.05$), indicating no indication of publication bias, as indicated by the less asymmetric funnel plot. Furthermore, these results are supported by the fail-safe N value in Table 6.

Table 6. Results of Fail-safe N Analysis

Statistics	Value
Z-value	13.80764
P-value	0.00000
Alpha	0.05000
Tails	2.00000
Z for alpha	1.95996
Number of observed studies	11.00000
Number of missing studies that would bring p-value to $> \alpha$	535.00000

The fail-safe N value indicates that at least 535 additional studies that did not show a significant effect are needed for the meta-analysis to lose significance ($p > 0.05$). This number is significantly larger than the 11 studies analyzed, making the findings of this meta-analysis robust and resistant to possible publication bias. Furthermore, to answer the research hypothesis, we analyzed the effect size and 95% confidence interval (CI) for both the fixed and random models.

Table 7. Effect Size and 95% Confidence Interval

Model	Effect Size and 95% Confidence Interval				
	N	Z-value	P-value	Effect Size	Std. Error
Fixed	11	13.74	0.00	1.07	0.08
Random	11	3.11	0.00	1.16	0.37

The results of a meta-analysis of 11 studies indicate that the inquiry learning model studied significantly impacted critical thinking skills. Based on the fixed effects model, the effect size was 1.07 with a standard error of 0.08, and a Z-value of 13.74 ($p < 0.001$). This value indicates a statistically significant effect on improving critical thinking, assuming that all studies had a uniform effect.

However, because the data showed significant variation between studies, a random effects model was used as the primary basis for interpretation. In this model, the effect size was 1.16 with a standard error of 0.37 and a Z-value of 3.11 ($p < 0.001$), also indicating a significant effect. Based on Cohen's (1988) interpretation, an effect size value above 0.80 is categorized as a large effect, indicating that the learning model studied generally had a significant effect on improving critical thinking skills. This effect would be considered educationally meaningful, not merely statistically significant.

Table 8. Results of Prediction Intervals and Heterogeneity

Prediction Interval		Other Heterogeneity Statistics				
Lower	Upper	Q-value	df (Q)	P-value	I-squared	
-1.67	4.00	213.03	10.00	0.00	95.31	

Analysis of the heterogeneity level revealed a Q value of 213.03 with 10 degrees of freedom (df) and $p < 0.001$, indicating significant differences between studies. An I^2 value of 95.31% indicates that approximately 95% of the variation in effect size between studies is due to significant differences in study characteristics (such as design, context, population, or learning model implementation), rather than sampling error. This very high heterogeneity reinforces the rationale for using a random effects model (Selvi et al., 2025).

The random effects model also yielded a prediction interval ranging from -1.67 to 4.00. This interval provides an indication of the potential variation in effect size if the study were repeated under different conditions. The wide range, including negative values, indicates that in some contexts, the learning model may produce small or even negative effects. This confirms that the effectiveness of learning models is not universal, but rather depends on the implementation context and student characteristics. Furthermore, considering the fail-safe N value, which demonstrates the stability of meta-analysis results against potential publication bias, the findings are robust and reliable.

Conclusion

The results of this meta-analysis indicate that inquiry-based learning has a significant impact on improving critical thinking skills. The effect size for both the fixed-effects model was 1.07 (std. error 0.08) and the random-effects model was 1.16 (std. error 0.37). This suggests that inquiry-based learning significantly impacts critical thinking skills and is recommended for science learning. This research is limited to secondary education and the number of studies reviewed, requiring careful generalization. Future research is recommended to expand the sample size and further examine moderating variables such as the type of inquiry or science topic.

Acknowledgment

The author would like to express his gratitude to all parties involved directly and indirectly so that this research can be completed.

Author Contributions

S.N.P.D. article search, analysis, writing, submission; I.W.R. article review; I.N.T. article review.

Funding

This research received no funding from any individual or institution.

Conflict of Interest

The authors declare no internal or external conflicts of interest.

References

- Annisa, Asrin, & Khair, B. N. (2022). Pengaruh Model Pembelajaran Problem Based Learning (PBL) terhadap Hasil Belajar IPA Siswa Kelas IV SDN Gugus I Kecamatan Kuripan Tahun Ajaran 2021/2022. *Jurnal Ilmiah Profesi Pendidikan*, 7(2b), 620-627. <https://doi.org/10.29303/jipp.v7i2b.547>.
- Arifin, Z., Sukarmin, Saputro, S., & Kamari, A. (2025). The effect of inquiry-based learning on students' critical thinking skills in science education: A

- systematic review and meta-analysis. *Eurasia Journal of Mathematics, Science and Technology Education*, 21(3). <https://doi.org/10.29333/ejmste/15988>.
- Azmi, I., Sabda, D., & Prasetya, B. (2025). Profil Berpikir Kritis Siswa SMP pada Mata Pelajaran IPA. *Journal of Classroom Action Research*, 7(1), 163-175. <https://doi.org/10.29303/jcar.v7i1.10570>.
- Bakri, A., Mulyono, M., & Syahputra, E. (2021). Pengaruh Model Pembelajaran Inkuiri Terhadap Kemampuan Berpikir Kritis dan Karakter Siswa Kelas VII SMP Negeri 3 Langsa. *Paradikma: Jurnal Pendidikan Matematika*, 14(2), 56-64. <https://doi.org/10.24114/paradikma.v14i2.32030>.
- Carolina, H. S., Dewi, A. F., Sari, T. M., Alpiah, A., & Hakim, A. (2020). Implementasi Model Pembelajaran Inkuiri Terpimpin Terhadap Kemampuan Berpikir Kritis. *Al Jahiz: Journal of Biology Education Research*, 1(1), 15. <https://doi.org/10.32332/al-jahiz.v1i1.2002>.
- Chamdani, M., Yusuf, F. A., Salimi, M., & Fajari, L. E. W. (2022). Meta-Analysis Study: the Relationship Between Reflective Thinking and Learning Achievement. *Journal on Efficiency and Responsibility in Education and Science*, 15(3), 181-188. <https://doi.org/10.7160/eriesj.2022.150305>.
- Danisa, V., Dwiastuti, S., & Suciati. (2016). Pengaruh Model Guided Inquiry Terhadap Kemampuan Berpikir Kritis pada Pembelajaran Biologi. *Prosiding SNPBS (Seminar Nasional Pendidikan Biologi Dan Saintek)*, 610-616.
- Dewi, A. S., Rusilowati, A., Sumarni, W., Mufid, A., & Naim, K. (2023). Analysis of Elementary School Students' Critical Thinking Skills in the Subjects of Natural Science and Social Studies. *EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi*, 10(3), 1167-1180. <https://doi.org/10.47668/edusaintek.v10i3.953>.
- Ernawati, E., Sari, T. M., & Haris, I. N. (2025). Meningkatkan Kemampuan Berpikir Kritis Peserta Didik Melalui Model Guided Inquiry. *Jurnal Pendidikan Ilmu Pengetahuan Alam (JP-IPA)*, 6(01), 33-42. <https://doi.org/10.56842/jp-ipa.v6i01.511>.
- Fajari, L. E. W., Sarwanto, & Chumdar. (2020). Student critical thinking skills and learning motivation in elementary students. *Journal of Physics: Conference Series*, 1440(1), 0-9. <https://doi.org/10.1088/1742-6596/1440/1/012104>.
- Fajriati, A. S., Humaira, M. A., & Efendi, I. (2024). Hambatan Kemampuan Berpikir Kritis Siswa dalam Pembelajaran Bahasa Indonesia Menggunakan Aplikasi Quizizz. *Karimah Tauhid*, 3(4), 5036-5047. <https://doi.org/10.30997/karimahtauhid.v3i4.13029>.
- Fitriyah, I. J., Affriyenni, Y., & Hamimi, E. (2021). Efektifitas Model Pembelajaran Inkuiri Terbimbing untuk Meningkatkan Kemampuan Berpikir Kritis Mahasiswa. *Biomatika: Jurnal Ilmiah Fakultas Keguruan Dan Ilmu Pendidikan*, 7(2), 122-129. <https://doi.org/10.35569/biomatika.v7i2.1017>.
- Haris, A., Martawijaya, M. A., Dahlan, A., Yulianti, E., & Nua, M. T. P. (2024). Analysis of Critical Thinking Skills of High School Students. *Jurnal Pendidikan Fisika*, 12(1), 23-32. <https://doi.org/10.26618/jpf.v12i1.12677>.
- Hatria, J. D., Putri, R., & Gunawan, R. G. (2022). Analisis Kemampuan Berpikir Kritis Matematis Siswa Kelas VIII dalam Soal High Order Thinking Skill. *Jurnal Educatio FKIP UNMA*, 8(1), 271-279. <https://doi.org/10.31949/educatio.v8i1.1958>.
- Hugerat, M., Kortam, N., Kassom, F., Algamal, S., & Asli, S. (2021). Improving the Motivation and the Classroom Climate of Secondary School Biology Students Using Problem-Based - Jigsaw Discussion (PBL-JD) Learning. *Eurasia Journal of Mathematics, Science and Technology Education*, 17(12). <https://doi.org/10.29333/ejmste/11304>.
- Irma, P. P., Saal, A., Kapu, K., & Marida, E. (2023). Pengaruh Model Inkuiri Terbimbing Berbantuan Modul Materi Sistem Reproduksi Terhadap Kemampuan Berpikir Kritis Siswa Kelas XI Ipa Sma Negeri 2 Kupang. *Jurnal Pendidikan Biologi*, 01(03), 188-196. <https://journal.unwira.ac.id/index.php/JBIOEDRA>.
- Lestari, H., Setiawan, W., & Siskandar, R. (2020). Science Literacy Ability of Elementary Students Through Nature of Science-based Learning with the Utilization of the Ministry of Education and Culture's "Learning House." *Jurnal Penelitian Pendidikan IPA*, 6(2), 215-220. <https://doi.org/10.29303/jppipa.v6i2.410>.
- Lidiawati, L., Pursitasari, I. D., & Heliawati, L. (2022). Critical Thinking Skills and Self-Regulated Learning Of Students during the Covid-19 Pandemic. *EduChemia (Jurnal Kimia Dan Pendidikan)*, 7(1), 1. <https://doi.org/10.30870/educhemia.v7i1.10627>.
- Martatis. (2023). Pengaruh Model Pembelajaran Inkuiri Terbimbing Terhadap Berpikir Kritis Siswa Pada Mata Pelajaran Fisika. *Journal of Educational Research and Humaniora (JERH)*, 1, 24-33. <https://doi.org/10.51178/jerh.v1i2.1367>.
- Maryam, M., Kusmiyati, K., Merta, I. W., & Artayasa, I. P. (2020). Pengaruh Model Pembelajaran Inkuiri Terhadap Keterampilan Berpikir Kritis Siswa. <https://doi.org/10.30997/karimahtauhid.v3i4.13029>.

- Jurnal Pijar Mipa, 15(3), 206-213. <https://doi.org/10.29303/jpm.v15i3.1355>.
- Nerli, Y., Kaleka, M. B. U., & Doa, H. (2023). Pengaruh Model Pembelajaran Inkuiiri Terhadap Keterampilan Berpikir Kritis Siswa Pada Mata Pelajaran Ipa Siswa Kelas Viii Smp. *Physics and Science Education Journal (PSEJ)*, 3(April), 10-16. <https://doi.org/10.30631/psej.v3i1.1670>.
- Ningsih, Y. S. (2025). Penggunaan Model Inquiry Based Learning untuk Meningkatkan Keterampilan Berpikir Kritis dalam Pembelajaran PAI. 3(1), 104-110. Retrieved from <https://ejournal.edutechjaya.com/index.php/jitk/article/view/1347>.
- Patras, Y. E., Yolanita, C., Wildan, D. A., & Fajrudin, L. (2024). Pembelajaran Berbasis STEM di Sekolah Dasar Guna Meningkatkan Kemampuan Berpikir Kritis Dalam Rangka Menyongsong Pencapaian Kompetensi Siswa Abad 21. *Kalam Cendekia: Jurnal Ilmiah Kependidikan*, 12(2). <https://doi.org/10.20961/jkc.v12i2.87662>.
- Puspita, A. D., Maryani, I., & Sukma, H. H. (2023). Problem-based science learning in elementary schools: A bibliometric analysis. *Journal of Education and Learning*, 17(2), 285-293. <https://doi.org/10.11591/edulearn.v17i2.20856>.
- Rahim, A. (2023). Meningkatkan Keterampilan Berpikir Kritis Melalui Pembelajaran Kritis. *JSE Journal Sains and Education*, 1(3), 80-87. Retrieved from <https://journal.sabajayapublisher.com/index.php/jse/article/download/233/141>.
- Rahman, A. A., Santosa, T. A., Nurtamam, M. E., Widoyo, H., & Rahman, A. (2023). Meta-Analysis: The Effect of Ethnoscience-Based Project Based Learning Model on Students' Critical Thinking Skills. *Jurnal Penelitian Pendidikan IPA*, 9(9), 611-620. <https://doi.org/10.29303/jppipa.v9i9.4871>.
- Ramdani, A., Jufri, A. W., Gunawan, Fahrurrozi, M., & Yustiqvar, M. (2021). Analysis of students' critical thinking skills in terms of gender using science teaching materials based on the 5e learning cycle integrated with local wisdom. *Jurnal Pendidikan IPA Indonesia*, 10(2), 187-199. <https://doi.org/10.15294/jpii.v10i2.29956>.
- Rendi, Marni, Neonane, T., & Lawalata, M. (2024). Peran Logika Dalam Berpikir Kritis Untuk Membangun Kemampuan Memahami Dan Menginterpretasi Informasi. *Sinar Kasih: Jurnal Pendidikan Agama Dan Filsafat*, 2(2), 82-98. <https://doi.org/10.55606/sinarkasih.v2i2.313>.
- Ritli, A. El, & Adlini, M. N. (2022). The effect of guided inquiry learning model on students' critical thinking skills in biology learning. *BIO-INOVED : Jurnal Biologi-Inovasi Pendidikan*, 4(3), 241. <https://doi.org/10.20527/bino.v4i3.13841>.
- Santoso, A. M., & Arif, S. (2021). Efektivitas Model Inquiry dengan Pendekatan STEM Education terhadap Kemampuan Berpikir Kritis Peserta Didik. *Jurnal Tadris IPA Indonesia*, 1(2), 73-86. <https://doi.org/10.21154/jtii.v1i2.123>.
- Selvi, Oktavianty, E., & Arsyid, S. B. (2025). Analisis Profil Kemampuan Berpikir Kritis Peserta Didik SMA dalam Menyelesaikan Soal Hukum Ii Newton. *Jurnal Education and Development Institut Pendidikan Tapanuli Selatan*, 13(2), 148. <https://doi.org/10.37081/ed.v13i2.6983>.
- Suendarti, M., & Virgana, V. (2022). Elevating natural science learning achievement: Cooperative learning and learning interest. *Journal of Education and Learning (EduLearn)*, 16(1), 114-120. <https://doi.org/10.11591/edulearn.v16i1.20419>.
- Sugiharti, N., & Gayatri, Y. (2024). Profil Kemampuan Berpikir Kritis Siswa Sma Muhammadiyah Kota Surabaya Pada Pembelajaran Biologi. *Pedago Biologi : Jurnal Pendidikan Dan Pembelajaran Biologi*, 12(2), 34-40. <https://doi.org/10.30651/pbjppb.v12i2.9339>.
- Suherta, E., Hamid, R., & Yasin, M. (2023). Penerapan Model Pembelajaran Inkuiiri Untuk Meningkatkan Kemampuan Pemahaman Konsep Sains dan Keterampilan Proses Sains Pada Pembelajaran IPA di Kelas V SD Negeri Mataiwo. *Jurnal Wahana Kajian Pendidikan IPS*, 7(1), 61-71. <https://doi.org/10.33772/JWKP-IPS>.
- Suhidi, A., Hasan, R., & Hidayat, T. (2021). Kemampuan Hasil Belajar Dan Berpikir Kritis Siswa Dengan Menggunakan Model Pembelajaran Inkuiiri Melalui Google Classroom. *Jurnal Pendidikan Biologi Dan Sains*, 4(2), 393-401. <https://doi.org/10.31539/bioedusains.v4i2.2684>.
- Suryana, E., Aprina, M. P., & Harto, K. (2022). Teori Konstruktivistik dan Implikasinya dalam Pembelajaran. *JIIP-Jurnal Ilmiah Ilmu Pendidikan*, 5(7), 2070-2080. <https://doi.org/10.54371/jiip.v5i7.666>.
- Susanto, A., & Indarini, E. (2022). Meta Analisis Keefektifan Inquiry Based Learning Terhadap Kemampuan Berpikir Kritis Pembelajaran Tematik Sekolah Dasar. *Proceedings of the National Academy of Sciences*, 7(1), 64-70. <http://dx.doi.org/10.1016/j.bpj.2015.06.056>
- Sutiani, A., Situmorang, M., & Silalahi, A. (2021). Implementation of an Inquiry Learning Model with Science Literacy to Improve Student Critical Thinking Skills. *International Journal of Instruction*, 14(2), 117-138. <https://doi.org/10.29333/iji.2021.1428a>.
- Suwardani, Asrial, & Yelianti, U. (2021). Analisis Model

- Pembelajaran Inkuiiri Terbimbing Terhadap Keterampilan Proses Sains Siswa pada Mata Pelajaran IPA SMP (Analysis of Guided Inquiry Learning Models on Students ' Science Process Skills in Science Subjects in Junior High School). *Jurnal Ilmiah Pendidikan Biologi*, 07(03), 185-194. Retrieved from <https://online-jurnal.unja.ac.id/biodik/article/view/13072>.
- Syahgiah, L., ZAN, A. M., & Asrizal, A. (2023). Effects of Inquiry Learning on Students' Science Process Skills and Critical Thinking: A Meta-Analysis. *Journal of Innovative Physics Teaching*, 1(1), 16-28. <https://doi.org/10.24036/jipt/vol1-iss1/9>.
- Taufiqurrahman, M. (2023). Pembelajaran Abad 21 Berbasis Kompetensi 4C di Perguruan Tinggi. *PROGRESSA: Journal of Islamic Religious Instruction*, 7(1), 78-90. <https://doi.org/10.32616/pgr.v7.1.441.78-90>.
- Utami, O. Y. (2022). Model Pembelajaran Inkuiiri Terbimbing dalam Meningkatkan Kemampuan Berpikir Kritis Siswa pada Pelajaran IPA SMP. *Intelektium*, 3(2), 338-348. <https://doi.org/10.37010/int.v3i2.1068>.
- Yulianti, Y., Lestari, H., & Rahmawati, I. (2022). Penerapan Model Pembelajaran Radec Terhadap Peningkatan Kemampuan Berpikir Kritis Siswa. *Jurnal Cakrawala Pendas*, 8(1), 47-56. <https://doi.org/10.31949/jcp.v8i1.1915>.
- Zai, Y., Halawa, A. D. S., Susanto, I., & Tampubolon, R. (2023). Pengaruh Model Pembelajaran Inkuiiri Berbasis Konsep Merdeka Belajar Terhadap Kemampuan Berpikir Kritis Materi Suhu Dan Kalor Kelas XI SMA Swasta Gajah Mada Medan. *Jurnal Penelitian Fisikawan*, 6(2), 32-47. <http://dx.doi.org/10.46930/jurnalpenelitianfisikawan.v6i1.3442>.