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Abstract: Mega-infrastructure development is a major driver of agricultural 
landscape transformation in Indonesia. This study quantitatively assesses the 
impacts of strategic projects—the Cisumdawu Toll Road and three major 
reservoirs—on agricultural land dynamics in Sumedang Regency. The 
methodology integrates multi-temporal Landsat imagery (2013-2024) with 
MLPNN-Markov-based predictive modeling to project land use/land cover to 
2038. The predictive model was validated with a high degree of accuracy 
(kappa = 0.82). Spatial fragmentation was evaluated using landscape metrics 
synthesized via Principal Component Analysis (PCA). Results show a 
significant decline in agricultural land, primarily converted to built-up areas 
and water bodies, alongside intensified landscape fragmentation around 
infrastructure corridors. Projections indicate these trends will continue, 
revealing two distinct impact mechanisms: a rapid "pulse" impact from 
reservoirs and a sustained "press" impact from the toll road. These findings 
underscore the urgent need for integrated spatial planning and agricultural 
land protection policies in future infrastructure strategies. 
 
Keywords: Fragmentation; Land use; Mega infrastructure; Predictive 

modeling 

  

Introduction 
 
Mega infrastructure development has emerged as a 

major driver of landscape transformation in developing 
countries (Xiong et al., 2018). This phenomenon is 
reflected in Indonesia, one example being in Sumedang 
Regency, West Java (Wardana et al., 2023). Various 
national strategic projects, such as the Tol Cileunyi–
Sumedang–Dawuan (Cisumdawu) Toll Road and the 
Jatigede Reservoir, have triggered rapid and extensive 
land use changes within their development area 
(Makbul et al., 2024), making Sumedang a suitable area 
to be used as a ‘laboratory’ for regional development. 
Flyvbjerg (2014) defines mega infrastructure as projects 
with broad and complex social, economic, and 
environmental impacts, serving as key catalysts for land 
use transformation in affected regions.  

The most apparent primary impact of mega 
infrastructure development is the conversion of 
agricultural land, driven by the land demands of 
construction projects with most common form of 
conversion involves the transformation of agricultural 
land into non-agricultural uses, primarily due to 
development pressures and urbanization (Lambin & 
Meyfroidt, 2011). This phenomenon is closely linked to 
the process of deagrarianization, a long-term 
transformation in which rural populations gradually 
abandon agricultural activities through changes in 
occupation, income orientation, social identity, and 
spatial relocation (Makwana & Elizabeth, 2024). 
Consequently, the large-scale conversion of rice fields in 
key regions such as West Java, has contributed to a 
significant decline in agricultural land area and 
fluctuations in rice production (Panuju et al., 2013).  
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Empirical studies have demonstrated that such 
land conversion directly reduces food production, 
decreases the availability of cultivable land, and 
increases the vulnerability of regional food security (Fitri 
et al., 2022; Govindaprasad & Manikandan, 2016). 
Infrastructure development, such as roads and new 
transportation networks, not only facilitates urban 
expansion but also directly alters land use patterns, 
highlighting the critical role of infrastructure in shaping 
land dynamics and reinforcing local spatial 
dependencies in land cover transformation (Pravitasari 
et al., 2015, 2024; Savitri et al., 2023). Furthermore, 
several recent analyses in East Java, Ciamis Regency, 
and Serang Regency indicate a recurring mismatch 
between actual land cover transformation and 
designated spatial plans (RTRW), particularly in rapidly 
urbanizing and infrastructure-affected regions 
(Nurfaizah et al., 2023; Pravitasari et al., 2021), 
highlighting a gap in similar analyses for regions like 
Sumedang, which are currently at the epicenter of 
national strategic project development. 

Equally significant yet often overlooked impact is 
the fragmentation of agricultural land (Marealle et al., 
2016). Land fragmentation occurs when agricultural 
holdings are subdivided into spatially scattered small 
plots, reducing the economic viability of individual land 
management, giving an impact of increases production 
costs, impedes agricultural mechanization, and leads to 
tenure insecurity, which in turn contributes to land 
degradation (Sklenicka, 2016). Furthermore, 
fragmentation poses a threat to ecosystem integrity and 
ecological connectivity, ultimately diminishing the 
land's capacity to support sustainable agricultural 
practices (Mitchell et al., 2015; Pravitasari et al., 2018). 

The relationship between infrastructure 
development and agricultural land fragmentation 
manifests through two primary mechanisms. First, the 
construction of linear infrastructure such as toll roads 
directly disrupts agricultural landscapes, leading to 
physical fragmentation and altering the surrounding 
environmental quality (Latruffe & Piet, 2014). Second, 
infrastructure enhances regional accessibility, attracts 
further investments in residential, industrial, and other 
economic developments, thereby causing indirect 
fragmentation that is spatially complex and difficult to 
manage (van Noorloos & Kloosterboer, 2018). 

The implications of fragmentation on agricultural 
productivity include increased transportation costs, 
challenges in managing scattered land parcels, land 
losses for access roads and boundaries, and inefficiencies 
in the use of agricultural inputs.  Globally, agricultural 
land fragmentation recognized as a major constraint to 
agricultural modernization, production efficiency, and 
food security efforts (Mayele et al., 2024). 

While numerous studies have addressed the issues 
of land conversion and fragmentation due to 
infrastructure development, there remains a significant 
gap in research that explicitly integrates three key 

aspects—land conversion, fragmentation, and land use 
change prediction—within a single analytical 
framework (Alaei et al., 2022; Jaya et al., 2021). Such 
integration is crucial for a holistic understanding of 
landscape dynamics, while in turn enables the 
formulation of more effective and evidence-based policy 
recommendations for spatial planning and agricultural 
land protection (Más-López et al., 2023). This need is 
particularly pronounced in Indonesia, where land use 
change studies  have largely focused on agricultural land 
conversion into non-agricultural uses (Ivanka et al., 
2024), such as settlements, urban areas, or monoculture 
plantat, while comprehensive assessments that explicitly 
incorporate land fragmentation in response to and mega 
infrastructure development remain limited. Therefore, 
this study aims to address the identified gap. This 
research provides an integrated analysis of agricultural 
land conversion, spatial-temporal fragmentation 
patterns, and land use change prediction in a region 
undergoing rapid transformation. 

Sumedang Regency, West Java, was selected as the 
study site due to its high relevance in illustrating the 
tangible impacts of multiple national strategic 
infrastructure projects (Akhyadi et al., 2016) and its 
strategic position within the regional development 
structure of West Java (Noviyanti et al., 2020). 
Geographically (Figure 1), the regency covers 
approximately 155,871.98 hectares with a diverse 
topography, and its location within three major 
watersheds (Cimanuk, Citarum, and Cipunegara) 
supports extensive agricultural systems that are 
particularly sensitive to large-scale land transformation. 

 

 
Figure 1. Map of research location 

 
This vulnerability is being tested by recent projects, 

which include the ±59-kilometer Cisumdawu Toll Road, 
fully operational operate since June 2023; the Jatigede 
Dam, operation operate since 2017 with an inundation 
area of approximately ±4,980 hectares; and the Cipanas 
and Sadawarna Reservoirs, both completed in 2024 
(Perda Kabupaten Sumedang No. 4 Tahun 2018). The 
presence of these infrastructures has intensified 
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development and urbanization pressures, contributing 
to increased land conversion and spatial fragmentation 
of rice fields (Pravitasari et al., 2019). This situation 
presents an urgent challenge, as Sumedang’s economy is 
reliant on its agricultural sector,  with approximately 
27,552 hectares of productive rice fields, the area is under 
substantial conversion pressure, reflected in the 
declining trend of rice field area and fluctuating rice 
production (BPS, 2025.) These conditions underscore the 
importance of this research to provides in-depth insights 
into the impacts of mega infrastructure development on 
agricultural landscapes, particularly within rapidly 
urbanizing corridors like the Jakarta–Bandung mega 
urban region (Pravitasari et al., 2022). 

By employing a spatial analysis approach using 
proven landscape metrics land (Che Man & Salihin, 
2018; Mitchell et al., 2015), this study is expected to 
contribute both theoretically and practically to regional 
planning. The findings are not be locally relevant for 

addressing sustainable development challenges in 
Sumedang but will also applicable to other regions 
across Indonesia that facing similar pressures from mega 
infrastructure expansion. 

 

Method 
 
This study utilizes secondary data obtained from 

ESRI World Imagery Wayback, and Landsat 8 OLI Level 
-2 satellite imagery from 2013, 2018, and 2024, sourced 
from the United States Geological Survey (USGS) via the 
Earth Explorer website, and topographic base maps 
(Rupa Bumi Indonesia/RBI). The analytical tools used 
include QGIS 3.34, ArcGIS 10.8, TerrSet, and R Studio. 
This quantitative analysis is contextualized and 
supported by a review of relevant scientific literature 
and policy documents.  

 

 
Figure 2. Research flow chart 

 
This research is structured around an integrative 

analytical framework, as illustrated in figure 2, designed 
to provide a comprehensive understanding of the 
impacts of mega infrastructure development in 
Sumedang Regency. The framework consists of three 
interrelated methodological phases: an analysis of 
historical Land Use/Land Cover (LULC) change, a 
prediction of future LULC transformation, and a spatial-
temporal evaluation of agricultural land fragmentation. 
Each phase is not isolated; instead, the output of one 
stage serves as the primary input for the next, forming a 
coherent and mutually reinforcing chain of analysis. 

 
Historical LULC Change Analysis 

LULC classification was conducted on Landsat 8 for 
the years 2013, 2018, and 2024. The classification method 
employed was supervised classification using the 
Maximum Likelihood algorithm, implemented through 
the Semi-Automatic Classification Plugin (SCP) in QGIS 
software. This classification process resulted in five 
primary LULC classes: water bodies, agricultural land, 
mixed forest/plantation, bare land, and built-up areas. 
The selection of these five classes was adapted from the 
socio-economic function dimension as described by 
Danoedoro (2008). 

The distinction between agricultural land and 
mixed forest/plantation during the training set 
collection was performed visually based on spatial 
pattern interpretation; agricultural land is characterized 
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by regular geometric patches and a homogenous texture 
(anthropogenic), mixed forest/plantation exhibits 
irregular patterns and a coarser texture (organic). The 
mixed forest/plantation class is a composite category, 
representing perennial tree-vegetated areas that are 
spectrally and texturally difficult to distinguish in 
medium-resolution satellite imagery. This class includes 
natural forest areas, agroforestry systems such as mixed 
gardens, plantations, and fallow land that has 
undergone secondary vegetation succession. 

Classification accuracy validation was conducted 
using the AcATaMa plugin in QGIS, with reference data 
sourced from ESRI World Imagery Wayback. This 
service provides high-resolution satellite imagery with 
detailed acquisition date metadata, enabling precise 
validation for specific time periods directly within the 
QGIS environment. This approach aligns with the 
recommendations of Olofsson et al. (2014), which 
emphasize probability-based sampling and the use of a 
confusion matrix. The Process employed a stratified 
random sampling approach based on the proportional 
area of each class, with sampling performed with a 
standard error of 0.01, a minimum of 50 samples per 
class, and a minimum spatial separation of 150 meters 
between samples. The AcATaMa plugin calculated 
metrics from the confusion matrix, including producer's 
accuracy, user's accuracy, and overall accuracy, which 
reflects the proportion of correctly classified points. The 
total number of validation points collected was 516 
(2013), 502 (2018), and 496 (2024), resulting in overall 
accuracy rates of 89.7% (2013), 91.25% (2018), and 91.39% 
(2024), respectively. 
 
Predictive Modeling of LULC Change 

Future LULC prediction analysis was conducted by 
developing two models within a systematic CA-Markov 
validation framework (Surabuddin et al., 2019). Model 1 
was constructed to simulate the 2024 LULC using 
historical data from 2013 and 2018, while Model 2 
projected the 2038 LULC based on data from 2018 and 
2024 (Memarian et al., 2012) The core principle of the 
CA-Markov method lies in calculating transition 
probabilities, represented by a probability matrix that 
indicates the likelihood of each pixel changing from one 
land use/cover type to another between two time points 
(Hamad et al., 2018). This method was selected for its 
ability to probabilistically model future LULC dynamics 
based on the temporal trends observed in the past (Li & 
Yeh, 2002). 

LULC prediction was carried out using the Land 
Change Modeler (LCM) approach within the TerrSet 
software. This approach consists of three main stages: 
historical change analysis (Change Analysis), modeling 
of transition potential (Transition Potential), and future 
LULC prediction (Change Prediction). The historical 
change analysis stage utilized the 2013–2018 transition 
matrix as the basis for identifying LULC dynamics. 
Transition categories accounting for less than 0.1% of the 
total area were excluded from the modeling process to 
ensure that the model focused on significant changes. 

In the transition potential modeling stage, a 
Multilayer Perceptron Neural Network (MLPNN) was 
applied to capture the non-linear relationships between 
LULC change drivers and actual LULC transitions. The 
driving variables included several spatial and 
demographic factors, namely distance to reservoirs, 
distance to toll roads, population density, distance to 
primary roads, and slope gradient. The statistical 
relevance of these variables was tested using Cramer’s 
V, and only variables with values greater than 0.1 were 
included in the model. 

Validation of the LULC prediction performed by 
comparing the predicted 2024 LULC map (Model 1) with 
the actual 2024 LULC map. The validation results 
yielded a kappa coefficient of 0.82, indicating high 
prediction accuracy and thus confirming the model’s 
reliability (Surabuddin et al., 2019). Thus, Model 2, aims 
to predict LULC change for the year 2038. In this study, 
the Business as Usual (BAU) scenario was chosen, which 
assumes no significant policy intervention in land 
change patterns, so that the projection results reflect the 
natural trend of change. 
 
Spatio-Temporal Analysis of Landscape Fragmentation 

The analysis of agricultural land fragmentation 
aims to evaluate the impact of infrastructure 
development at the village scale in Sumedang Regency. 
The analysis conducted on LULC data from 2013, 2024, 
and predicted LULC data from 2038, using village 
administrative boundaries as the unit of analysis.  

Eight indicators of farmland fragmentation were 
selected (Che Man & Salihin, 2018; Mitchell et al., 2015; 
Peng et al., 2010) namely patch density (PD), mean patch 
area (AMN), edge density (ED), area-weighted mean 
fractal dimension indeks (FMN), division index (DI), 
aggregation index (AI), and mean Euclidean nearest 
neighbour distance (ENN). An explanation of each 
indicator can be seen in the following Table 1. 

 
Table 1. Indicator of Farmland Fragmentation in Use 
Indicator Description Unit 

PD Number of agricultural patches per 100 hectares Patch/100 ha 

AMN Average area of each agricultural patch Hectar 

ED Total edge length of patches per unit area of the village m/ha 
FMN Mean patch shape complexity 1-2 

DI Patch isolation level in the landscape; a higher value indicates greater fragmentation 0–1 

AI Patch aggregation level; a higher value indicates patches are more clustered % 

ENN Average distance between the closest patches meter 
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Indicator normalization was performed using the 
min-max scaling method before PCA to equalize the 
scale of the fragmentation metric data, as the indicators 
have different units and scales. This normalization 
ensures that fragmentation indicators contribute 
proportionally to PCA without bias due to differences in 
data scale. The normalization formula used is as follows: 

 

𝑋𝑛𝑜𝑟𝑚 = {

𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋min  
 ;  𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

𝑋𝑚𝑎𝑥−𝑋 

𝑋𝑚𝑎𝑥−𝑋min  
 ;  𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 

  (1) 

 
where Xnorm is the indicator value after normalization, 
X is the indicator value before normalization, and Xmin 
and Xmax are the minimum and maximum values of the 
indicator, respectively. 

The weighting of fragmentation indicators was 
done through Principal Component Analysis (PCA), due 
to its ability to reduce the dimensions of highly 
correlated fragmentation indicators into fewer 
independent components but still retain most of the 
information (variance) of the original indicators (Jollife 
& Cadima, 2016). PCA is also useful for simplifying the 
interpretation of spatial patterns of fragmentation in an 
effective and transparent manner. 

Before PCA is performed, the data is tested for 
feasibility using the Kaiser-Meyer-Olkin (KMO) test to 
ensure sample adequacy and data suitability. The KMO 
test results show a value of 0.64 with the MSA value of 
each indicator in the range of 0.50-0.84. KMO value >0.60 
indicates that the data is good enough for PCA. In 
addition, Bartlett's Test produces a chi-square value of 
2101.329 with a p-value <0.01, indicating a significant 
correlation between indicators, so PCA is feasible. 

After PCA was performed, the weight value 
(loading factor) for each indicator was obtained. 
Furthermore, the level of agricultural land 
fragmentation was calculated through the agricultural 
fragmentation score (SFP). The SFP value is obtained by 
multiplying the normalized indicator value (𝑋𝑁𝑜𝑟𝑚) with 
the PCA loading weight (𝑊𝑖), then summing the results 
into a total fragmentation score for each village. The 
formula is as follows: 

 
𝑆𝐹𝑃 = ∑ (𝑋𝑁𝑜𝑟𝑚 ×  𝑊𝑖)

𝑛
𝑖=0     (2) 

After obtaining th agricultural fragmentation score 
(SFP) for each observation period, the annual average 
change in SFP was calculated to determine the pattern of 
agricultural land fragmentation dynamics. The 
calculation is done by using the SFP value at the 
beginning of the period 𝑆𝐹𝑃𝑏  and the end of the period 
𝑆𝐹𝑃𝑒, then calculating the annual average change over a 
period of T years. The formula for the annual average 
change in SFP (R) is as follows: 

 

𝑅 =
𝑆𝐹𝑃𝑒−𝑆𝐹𝑃𝑏

𝑆𝐹𝑃𝑏
 ×

1

𝑇
 × 100%    (3) 

The R value indicates whether the level of 
fragmentation of agricultural land has increased or 
decreased each year on average. Positive values indicate 
an increase in fragmentation, while negative values 
indicate a decrease in fragmentation. 

 

Result and Discussion 
 
The Impact of Mega Infrastructure on Agricultural Land 
Conversion  

Analysis of LULC change in Sumedang Regency 
between 2013-2024 reveals significant dynamics as a 
direct result of the mega infrastructure development 
projects in the region. Table 2 reflects a consistent decline 
in agricultural land, which falls from 59,982.16 ha in 2013 
to 53,718.66 ha in 2024, equivalent to a reduction of 
approximately 10.4%. Mixed forest/plantation is also 
under similar pressure, with a decrease in area from 
84,099.26 ha (2013) to 80,905.07 ha (2024). 

Meanwhile, the built-up land increase 46.8%, rising 
from 9,259.24 ha to 13,591.05 ha. This is closely related to 
the construction of the 59km Cisumdawu Toll Road, 
which began construction in early 2014 and fully 
operational in June 2023. The construction of this toll 
road led to considerable conversion into built-up areas 
and encouraged the expansion of urban areas. In 
addition, the high increase around water bodies that 
reached 292.7%, from 1,494.26 ha to 5,868.15 ha, was due 
to the full operation of Jatigede Dam since 2017, with an 
inundation area of approximately 4,980 ha, as well as the 
construction of Cipanas Reservoir and Sadawarna 
Reservoir, each of which was completed in 2024. 

 

 
Table 2. LULC Conversion to Built-up Land 

LULC 
LULC Area (Ha) Difference in Area 2013-2024 

2013 2018 2024 Ha % 

Water Body 1494.26 4780.86 5868.15 4373.89 292.71 
Agriculture 59982.16 55694.52 53718.66 -6263.50 -10.44 
mixed forest /plantation 84099.26 81382.72 80905.07 -3194.19 -3.80 
Bare Land 2091.23 2682.44 2843.21 751.99 35.96 
Built up  9259.24 12385.60 13591.05 4331.81 46.78 
Total 156926.14 156926.14 156926.14   

Bare land also increased, although at a smaller 
scale, from 2,091.23 hectares in 2013 to a significant 
2,682.44 hectares in 2018, and further to 2,843.21 hectares 

in 2024. This increase was largely the result of land 
clearing activities during infrastructure development, 
particularly in 2018 when construction was at its peak. 
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In addition, quarrying activities in the southern area of 
Mount Tampomas—serving as a source of construction 
materials—have also contributed to the ongoing 
expansion of bare land. Overall, land change in 
Sumedang is heavily influenced by mega infrastructure 
developments that not only change the ecological 
structure of the region but also put serious pressure on 
the agricultural and mixed forest /plantation sectors. 

Specifically, the land use transition matrix for the 
period 2013–2024, as presented in Table 2 reveals notable 
patterns of change. Agricultural land underwent large-
scale conversion into several other LULC classes, with 
the majority transforming into mixed forest /plantation 
(4,975.92 hectares), water bodies (2,952.63 hectares), and 
built-up areas (3,166.56 hectares). These conversions 

reflect the direct impact of the construction of the 
Jatigede Dam, as well as the Cipanas and Sadawarna 
reservoirs, which transformed productive agricultural 
areas into inundated zones (Figure 3). 

Mixed forest/plantation, also experienced 
conversion pressure, with 1,849.95 hectares transformed 
into built-up areas and 1,630.98 hectares into water 
bodies. Development expansion was not limited to 
agricultural land but also significantly affected 
vegetated areas. The bare land formed during this 
period was caused by two main activities: land clearing 
for the Cisumdawu Toll Road project site and the 
expansion of the quarry area. A quarry is a surface 
mining location to extract rock and sand materials used 
as raw materials for construction. 

 
Table 3. Matrix of LULC Change in Sumedang Regency 2013-2024 

LULC 

2024 

Water Body Agricultural Land 
mixed forest 
/plantation 

Bare Land Built up Land Total 

2013 

Water Body 1431.35 28.35 9.99 6.21 18.36 1494.26 

Agricultural Land 2048.56 49972.94 3875.92 918.18 3166.56 59982.16 

Mixed forest /plantation 2180.38 3579.36 76924.48 422.64 992.40 84099.26 

Bare Land 40.33 77.35 65.25 1438.50 469.80 2091.23 

Built up Land 167.53 60.66 29.43 57.69 8943.93 9259.24 

Total 5868.15 53718.66 80905.07 2843.21 13591.05 156926.14 

Difference Area 4373.89 -6263.50 -3194.19 751.99 4331.81   

 
Figure 3. LULC map of Sumedang regency 

Theoretically, in land systems, conversion to built-
up land is considered to have a high degree of 
irreversibility due to large capital investments 
(Meyfroidt et al., 2022). However, the finding of reverse 
conversion from built-up land to other LULC classes in 
the transition matrix is not a classification error but 
rather an empirical manifestation of an uncommon 
dynamic, triggered by mega-infrastructure intervention 
during the 2013-2024 period. 

This process is driven by two primary mechanisms. 
First, the conversion of built-up land into water bodies 
(an area of 167.53 ha) is a direct consequence of large-
scale inundation by reservoirs. This data represents built 
assets such as settlements and local infrastructure 
networks that were permanently submerged. Second, 
the conversion of built-up land into bare land, mixed 
forest/plantation, and even agricultural land was 
predominantly identified along the Cisumdawu Toll 
Road construction corridor. Existing low-density built-
up areas in this corridor, such as scattered rural 
settlements, underwent demolition and land 
reclamation to meet the project's right-of-way 
requirements. This land was then temporarily 
repurposed as construction support areas (bare land) or 
revegetated as part of infrastructure slope stabilization 
efforts (mixed forest/plantation). Thus, this seemingly 
anomalous transition is a significant finding that reflects 
the magnitude of mega-infrastructure intervention, 
which is capable of fundamentally re-engineering the 
existing landscape structure. 
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Projections for 2038 and the Evolution of the Impact of Mega 
Infrastructure 

The LULC change prediction for the 2024–2038 
period was conducted under a Business as Usual (BAU) 
scenario. As shown in Figure 4, this expansion is 
projected to creep along the perimeter of the Jatigede 
Reservoir and follow the access corridors leading to the 
Cisumdawu Toll Road. This projection assumes that no 
policy interventions are designed to address the 
development impacts that emerged in the previous 
period, thus allowing the historical trends of change to 
continue. The modeling results show that pressure on 
agricultural land and mixed forest/plantation areas will 
remain high, concurrent with the increasingly massive 
expansion of built-up land. 

The LULC transformation between 2013 (pre-
development) and 2024 (post-development) reveals not 
only significant aggregate landscape changes but also 
spatially heterogeneous impacts driven by different 
types of infrastructure. An analysis of agricultural land 
conversion density based on distance from 
infrastructure confirms that each project possesses a 
distinct impact character. 

During the pre-development period, the reservoirs 
demonstrated a localized "epicenter" impact. As seen in 
Table 4, the nearest zone (0-2 km) experienced an 
agricultural land conversion density of 72.00%, visually 
identifiable as a dense, concentrated cluster of 
conversion around the reservoir's perimeter. This high 
number is attributed to a combination of direct physical 
impacts (inundation) and speculative development 
along the new waterfront (e.g., tourism and settlements). 
This influence decreases drastically with distance. In 
contrast, the Cisumdawu Toll Road exhibited a more 
diffuse "corridor" impact. While the conversion density 
in its nearest zone (12.88%) was significant, its influence 
extended further, reflecting the toll road's role as a 
trigger for linear urbanization by improving accessibility 

along its route. Interestingly, in the furthest zone (>10 
km), the conversion density slightly increased again for 
both the reservoir (7.23%) and the toll road (8.69%), 
confirming a hypothesis of interacting and overlapping 
influences. This indicates that Sumedang's agricultural 
landscape is under dual pressure from multiple 
simultaneous infrastructure projects. 

 

 
Figure 4. Sumedang regency LULC prediction map on 2038 

 
Looking toward the future, the predictive model 

indicates a shift in these dynamics. The impact of the 
reservoir is predicted to evolve, confirming a spatial 
saturation phenomenon. While the conversion density 
in its nearest zone remains high at 65.17%, the slight 
decrease from the historical period suggests the area is 
entering a consolidation phase as the most vulnerable 
land has already been converted. This pattern is 
characteristic of a pulse impact—a massive, high-
acceleration shock in the initial phase that later reaches 
saturation. 

 
Table 4. Comparison of Agricultural LULC Conversion Density Based on Distance from Reservoirs and Highways 
Distance Zone 
(km) 

Conversion Density from Reservoirs (%) Conversion Density from Toll Roads (%) 

2013-2024 2024-2038 2013-2024 2024-2038 

0-2 65.17 72.00 12.27 12.88 
2-5 26.51 42.86 3.34 6.25 
5-10 1.85 4.03 2.24 4.15 
>10 7.18 7.23 3.38 8.69 

Conversely, the toll road is predicted to continue 
functioning as a persistent driver of corridor 
urbanization, following a press impact pattern 
sustained, incremental pressure that slowly transforms 
the landscape, similar to the results of research by Zhao 
et al. (2021) and Zhixue et al. (2021). The projected 
conversion density of 12.27% in its nearest zone indicates 
that the accessibility it provides will continue to trigger 
the conversion of agricultural land. This finding is 
crucial as it signifies a shift in primary driving factors. 
While the physical-destructive impact of reservoir 

construction was dominant historically (2013-2024), the 
functional-accessibility impact from the toll road's 
operation is predicted to play a relatively larger role in 
shaping Sumedang's landscape in the future (post-2024). 

Although this analysis is limited to a Business as 
Usual (BAU) scenario, it is precisely this projection that 
underscores the urgency for policy intervention. These 
findings provide a scientific basis for recommending 
targeted spatial planning: consolidation and 
rehabilitation policies around the saturated reservoir 
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areas, and strict development control policies along the 
still-expanding toll road corridor. 
 
Fragmentation of Agricultural Land in Sumedang Regency 

The results from the Principal Component Analysis 
(PCA) were used to construct a composite fragmentation 
index, in which the weight and direction of each 
indicator's relationship were determined by the most 
significant principal component. Table 9 presents the 
decomposition of this index, where the indicators with 
the largest positive weights are Patch Density (PD) at 
0.55 and Edge Density (ED) at 0.54. This logically 
indicates that a higher number and density of patches, 
along with a greater total length of edges between them, 
corresponds to a higher degree of fragmentation. 

 
Table 5. Direction and Weight Fragmentation Indicator 
Indicator Direction Weight 

Patch Density (PD) + 0.55 
Edge Density (ED) + 0.54 
Division Index (DI) + 0.37 
Mean ENN Distance (ENN) + 0.15 
Fractal Index (FMN) + 0.05 
Mean Patch Area (AMN) - 0.37 
Aggregation Index (AI) - 0.30 

 
Conversely, the indicators with a significant 

negative relationship and weight are Mean Patch Area 
(AMN) at -0.37 and Aggregation Index (AI) at -0.30. This 
means that landscapes dominated by agricultural 
patches that are, on average, larger and tend to be more 
clustered or adjacent (aggregated) will be assessed as 
having a lower fragmentation score. In essence, the 
index quantitatively describes the process of 
fragmentation: a condition where the landscape is 
broken down into smaller, and more isolated units. 

To facilitate interpretation, the fragmentation index 
values were classified into five classes using the Natural 

Breaks (Jenks) method. This classification depicts the 
landscape condition continuum, starting from a Very 
Low level, representing a whole and unified agricultural 
expanse; progressing to a Low level, where the expanse 
begins to be slightly dissected by other elements like 
roads or small settlements; and then to a Medium level, 
which shows a balanced mixed pattern of agricultural 
and non-agricultural land, causing efficiency to decline. 
At the High level, agricultural land is already fractured 
into many small, separated patches, culminating in the 
Very High level, where only remnants of agricultural 
land are visible, appearing as small 'islands' in a sea of 
built-up areas. 

These fragmentation levels represent the indirect 
impacts of infrastructure development. Beyond the 
direct impact of physical land splitting by the toll road 
alignment, the more extensive and sustained impact 
comes from increased regional accessibility. This new 
accessibility acts as a magnet, attracting additional 
investment in the form of residential, industrial, and 
other economic activities, which often drives sporadic 
and piecemeal land changes. It is this process that 
gradually transforms a village from a unified landscape 
(Very Low or Low category) to a mixed pattern 
(Medium), and, if it continues uncontrolled, will push it 
towards a fragmented state (High) until only remnants 
of farmland remain (Very High). 

The overall analysis reveals a significant and 
consistent trend of increasing agricultural land 
fragmentation in Sumedang Regency from 2013 through 
the 2038 projection. Based on the proportion of villages 
(Table 10), the percentage of villages falling into the 
"Very High" fragmentation category steadily increases 
from 10.11% in 2013 to 12.27% in 2024 and projected to 
reach 15.88% by 2038.

 
Table 6. Percentage Proportion of Number of Villages by Fragmentation Class Level in Sumedang Regency  
Year Very Low (%) Low (%) Medium (%) High (%) Very High (%) 

2013 9.03 19.49 29.96 31.41 10.11 
2024 8.66 18.77 31.41 28.88 12.27 
2038 3.61 22.74 29.96 27.80 15.88 

This trend did not occur randomly but instead 
exhibited a clear spatial pattern, as visualized in Figure 
5. In 2013, high fragmentation clusters (dark green) were 
already identified in the southwestern region. However, 
by 2024, these clusters appeared more intensive and had 
expanded along the now-operational Cisumdawu Toll 
Road corridor. Simultaneously, significant new 
fragmentation clusters emerged around the Jatigede 
Reservoir area in the southeast, as well as the Sadawarna 
and Cipanas Reservoirs in the north. 

The pattern of high fragmentation around the 
Cisumdawu Toll Road indicates that this linear 
infrastructure plays a crucial role in accelerating radial 
fragmentation, similar to the findings of Yokohari et al. 

(2000), who demonstrated that transportation 
infrastructure often triggers the fragmentation of 
agricultural land. From both economic and ecological 
perspectives, this high degree of fragmentation has 
serious implications for agricultural land management, 
particularly by increasing production costs due to the 
difficulty of applying mechanization to small, isolated 
plots. Ecologically, this condition also risks disrupting 
the connectivity between agricultural and natural mixed 
forest/plantation patches, which could decrease long-
term agricultural productivity and affect biodiversity. 

This fragmentation pattern is projected to intensify 
through 2038, with highly fragmented areas increasingly 
dominating the landscape around these infrastructure 
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nodes. This indicates that mega-infrastructure not only 
has a localized impact but also functions as a nucleus, 
propagating fragmentation pressure into surrounding 
regions over time. To understand the underlying 
mechanisms, we analyzed the spatial correlation of this 
trend with two distinct infrastructure types: concentric 
reservoirs (hydrological) and linear toll roads 
(connectivity). The comparison between the historical 
(2013-2024) and projected (2024-2038) periods reveals 
two fundamentally different processual impacts. 

 

 
Figure 5. Spatial distribution of fragmentation in Sumedang 

Regency 

The dynamics around the reservoirs reveal an 
unusual process. During the 2013-2024 construction 
period, the nearest zone (0–2 km) exhibited a highly 
negative rate of fragmentation change (down to -0.97) 
(Figure 6). This phenomenon confirms a mechanism of 
"landscape removal," where the total loss of agrarian 
function—caused by the disappearance of thousands of 
small rice paddies—statistically increases the average 
size of the remaining patches. This creates a landscape 
that appears simpler but is, in fact, severely degraded 
(Seto et al., 2011). However, in the projected 2024-2038 
period, this pattern is expected to shift. The rate of 
change in the same zone becomes highly positive (up to 
0.39), indicating a transition to secondary fragmentation, 
where the remaining agricultural lands begin to 
fragment due to new development around the reservoirs 
after the initial removal is complete.  

In contrast, the toll road corridor exhibits a more 
conventional "landscape splitting" dynamic, which 
evolves significantly between its construction and 
operational phases. During construction (2013-2024), a 
high positive rate of change (up to 0.43) reflects the 
infrastructure's active role as a physical dividing agent. 
This dynamic is projected to shift during the operational 
period (2024-2038), revealing a "leapfrog" phenomenon 
where the fragmentation rate in the nearest zone (0-2 

km) decelerates. This suggests the formation of a 
"shadow corridor," where physical proximity to the toll 
road no longer correlates with development utility due 
to negative externalities (e.g., noise and air pollution). 
These factors collectively reduce the zone's 
attractiveness for residential and commercial 
development, the primary drivers of fragmentation. 

 

 
Figure 6. Average annual fragmentation change rate based on 

distance zone 

 
Consequently, the functional benefits of the toll 

road are optimally realized in the next zone (2-5 km). Its 
location—far enough to avoid direct negative 
externalities, yet close enough to leverage full regional 
accessibility—makes it the prime location for new 
settlement and economic expansion. The combination of 
high accessibility and initially more affordable land 
prices logically establishes this zone as the new epicenter 
for agricultural land conversion and fragmentation in 
the predicted period. 

This comparative analysis clarifies two distinct 
processual impacts from each infrastructure type. 
Hydrological infrastructure like reservoirs tends to 
deliver a large but short-lived impact; an initial phase of 
massive landscape removal, reflected by extreme 
negative values in fragmentation change, is followed by 
a more moderate, positive rate of secondary 
fragmentation during the operational phase. 
Conversely, connectivity infrastructure like toll roads 
produces a more gradual and sustained impact. The 
strongest effect occurs from construction to early 
operation, marked by significant fragmentation from 
landscape splitting, but the rate of change naturally 
decelerates as the corridor stabilizes. 
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Conclusion 
 
By employing an integrative quantitative approach, 

this study successfully assessed the multifaceted 
impacts of mega infrastructure on agricultural land in 
Sumedang Regency. A key contribution of this approach 
was the ability to distinguish two fundamentally 
different impact pathways based on infrastructure 
typology. The analysis quantitatively confirmed that 
reservoirs induce "landscape removal" through massive, 
concentrated conversion, while the toll road triggers 
incremental "landscape splitting" along its corridor. 
Future projections reveal an evolution of these 
dynamics; the reservoirs' "pulse impact" leads to spatial 
saturation, whereas the toll road's sustained "press 
impact" establishes it as the dominant driver of future 
change. This predictive analysis also uncovered a 
"leapfrog" phenomenon in fragmentation patterns along 
the toll road, where negative externalities create a 
"shadow corridor" immediately adjacent to the road, 
shifting the new epicenter of development further away. 
Therefore, this research provides two primary 
contributions: empirically, it clarifies the distinct, long-
term landscape consequences of different infrastructure 
types, and methodologically, it demonstrates a robust 
framework for evidence-based spatial planning 
applicable to other rapidly urbanizing regions. 
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