

Phytochemical Screening of Gogauke Bio Oil as an Excellent Bio-Product for Natural Resource Management Solutions in Papua

Mingle A Pistanty^{1*}, Sarima¹, Wahyu Purwanjani²

¹Universitas Cenderawasih, Jayapura, Indonesia.

¹Universitas Cenderawasih, Jayapura, Indonesia.

²Universitas An Nuur, Grobogan, Indonesia.

Received: September 15, 2025

Revised: October 03, 2025

Accepted: November 25, 2025

Published: November 30, 2025

Corresponding Author:

Mingle A Pistanty

minglepistanty@gmail.com

DOI: [10.29303/jppipa.v11i11.13031](https://doi.org/10.29303/jppipa.v11i11.13031)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: The Potential of Papua's Gogauke for Bio-Excellent Superior Products Papua possesses abundant biodiversity, and the Provincial Government is committed to green growth and sustainable natural resource management. Based on Special Autonomy, the rights of indigenous communities to protect the forests are also recognized. Local plants are often overlooked, despite having great potential. One such plant is Gogauke (*Centella asiatica*), traditionally used by Papuans as medicine. This plant is known to have various benefits, such as anti-inflammatory properties, wound healing, and pain relief. The objective of this research is to determine the potential of *gogauke* as a natural raw material for the superior product "Bio-Excellent" through phytochemical screening of the bio-oil produced. Using an experimental method, the study shows that *Gogauke* bio-oil has very strong potential for development. Phytochemical tests prove the product is rich in secondary metabolite compounds, including Alkaloids, Flavonoids, Triterpenoids, Tannins, Phenols, Steroids, and Glycosides. This combination of compounds provides a scientific basis for broad biological activities (antioxidant, anti-inflammatory, and antifungal). Furthermore, physical parameters (water content 9.8%, yield 44.14%) and microbiological test results (TBC and YMK) indicate that the bio-oil is safe and stable, meeting the BPOM standards for natural medicinal products. Conclusion: *Gogauke* bio-oil has a superior biochemical profile and high market potential, making it a promising "Bio-Excellent" product derived from Papua's sustainably managed natural resources.

Keywords: Bio oil; Gogauke; Phytochemicals

Introduction

The preservation of natural resources in Papua is a progressive and important step that reflects a strong commitment to protecting life sources, improving the quality of life, and strengthening the economy and cultural identity of local indigenous communities. Papua is blessed with invaluable natural resources that enable sustainable management of natural resources (Smith, 2011; AR et al., 2019; Boissiere et al., 2004; Radi

et al., 2023). Papua Province has a potential land area of 3,513,552,000 hectares, with a breakdown of 102,588 hectares or 2.29% already utilized and 3,410,964,000 hectares or 97.08% still untapped. The potential area of land for developing food crops and horticulture in Papua province reaches 14,269,376 Ha or 71.32% with details that have been utilized 190,632 Ha or 13.36% of which is used for rice fields 25,127 or 1.76%, yards 77,461 Ha, or 5.43% and plantations 88,044 Ha or 6.17%, while unused land area of 14,078,744 Ha or 98.66% (Papua

How to Cite:

Pistanty, M. A., Sarima, Sarima, & Purwanjani, W. (2025). Phytochemical Screening of Gogauke Bio Oil as an Excellent Bio-Product for Natural Resource Management Solutions in Papua. *Jurnal Penelitian Pendidikan IPA*, 11(11), 717-724. <https://doi.org/10.29303/jppipa.v11i11.13031>

Provincial Government, 2024). This shows that there is still a large opportunity for the abundance of gogouke in Papua seeing the habitat of this plant which is able to grow in various places, such as plantations, rice fields, roadsides, and between grasses can also grow in lowlands to highlands (Burhan et al., 2022; Djoko et al., 2020; Jasmansyah et al., 2020; Susetyarini et al., 2020; Bouyahya et al., 2021).

Gogouke, or *Centella asiatica* in Latin, has long been considered a weed by the local community (B. A. Putri et al., 2023; Sabila & Muhartono, 2020; La et al., 2020). Facing major challenges in sustainable natural resource management, one potential natural resource that has not been optimal is the gogouke plant, which is believed to have great potential in the development of phytochemical-based products (Dewi et al., 2018; Reubun et al., 2020; Susetyarini & Nurrohman, 2022). This plant is known for its bioactive compounds such as triterpenoids (asiaticoside, madecassoside), flavonoids, and saponins, which have great potential in the pharmaceutical, cosmetic, and health sectors (Prasetyo et al., 2022; Pistanty, 2022; Hussein et al., 2016). In previous studies, Gogouke has been shown to have anti-inflammatory activity, wound healing, and improve blood circulation (Singh et al., 2025; Azizah, 2022; Mohamed et al., 2020; Agustini et al., 2020). This plant grows in the forests of Papua and has great potential to be developed as a raw material for bio-oil, which is not only therapeutic but also environmentally friendly. This bio-oil has the potential to be an exclusive bio-solution that can be utilized in various sectors, from the energy industry and pharmaceuticals to agriculture (Burhan et al., 2022; Zinoviadou et al., 2009; Valeeva et al., 2019; Hyldgaard et al., 2012). In previous studies, gogouke has been shown to have anti-inflammatory activity, wound healing, and improve blood circulation (Azizah, 2022). Extracting bio-oil from local plants like Gogouke involves efficient technology to process raw materials into valuable products. Extraction technologies such as hydrodistillation and solvent extraction are common methods used in plant processing to produce essential oils (Wahyuningtyas et al., 2021; Safitri & Syafitri, 2022). Specifically, bio-oil produced from Gogouke is thought to contain phytochemicals that have the potential to be an alternative solution for environmentally friendly natural resource management and support the bioenergy industry and other nature-based products (Singh et al., 2025; Hadrian et al., 2023; Obuetibe et al., 2023). However, to date, research related to the phytochemical potential of Gogouke bio-oil as a bio-excellent product remains very limited. Furthermore, sustainable natural resource management in Papua remains a major challenge, particularly in the context of poorly managed exploitation that has the potential to damage local ecosystems (Bermawie et al., 2015).

Therefore, phytochemical screening of Gogouke bio-oil is necessary to utilize its potential bioactive compounds to reduce dependence on synthetic chemicals. The phytochemical potential of gogouke can be utilized to support greener and more sustainable development in Papua, which is in line with environmental conservation efforts and local community empowerment (Botahala et al., 2020).

Method

Tools and Materials

The tools used in this study were test tubes (iwaki), stirrers (iwaki), water baths, 60-mesh sieves (sieve), 1 set of hydrodistillation, pycnometer (iwaki), hotplates (bante), analytical scales (D-Scale), object glass (pyrex), separatory funnel (pyrex), Bunsen burners, ovens (memmert), sample bottles (duran), measuring flasks (iwaki), UV-Vis spectrophotometers (Hitachi), dropper pipettes, Erlenmeyer flasks, measuring cups, stirring rods, filter paper, porcelain cups, spatulas, knives, label paper.

The materials used in the study were gogouke (*Centella asiatica*), H₂O distillate, ethanol 96% methanol p.a (Merck), Na₂CO₃ (Merck)®, folin-ciocalteu reagent (Merck)®, gallic acid standard (sigma)®, ascorbic acid (Merck)®, quercentin (Merck)®, AlCl₃ (Merck)®, DPPH (sigma)®, H₂SO₄ (sigma), Dragendorff reagent (sigma), Liebermann-Burchard reagent (sigma), Mg (sigma), HCl (sigma), FeCl₃ (sigma), mayer (sigma), chloroform (sigma), CH₃COOH (sigma), HNO₃ (sigma), Perchloric acid (sigma).

Research Stages

Making Gogouke Simplesia

Collecting Gogouke plants from various regions in Papua will be the first step in this research. Identification of locations with the highest quality Gogouke plants will be carried out to ensure that the raw materials used contain optimal bioactive compounds. Furthermore, mapping the potential of Gogouke plants in various regions of Papua is also necessary to determine the distribution of this plant.

Making Gogouke Bio oil

At this stage, efficient and environmentally friendly extraction technologies will be implemented. Hydrodistillation and extraction methods using organic solvents or green chemistry will be tested to ensure the resulting bio-oil product is of high quality and safe for use. Cleaned and finely chopped gogouke plant samples are then distilled using a steam-water distillation method. The resulting oil is then added with anhydrous Na₂SO₄ to obtain pure oil. Tests on the active compounds in gogouke essential oil will also be

conducted to ensure its effectiveness in various applications.

Phytochemical Screening

Phytochemical screening is performed by identifying secondary metabolite compounds such as flavonoids, phenolics, tannins, alkaloids, terpenoids, and steroids. The extract is weighed, extracted with a specific solvent and method, and then subjected to TLC analysis (Depkes, 2000). Generally, chromatograms are made on silica gel plates with various types of mobile phases according to the chemical content groups as the target of analysis. Evaluation can be done by photographic documentation of the results of chromatography plate coloring with appropriate reagents. The thin chromatography plate is activated by heating it in an oven at a temperature of 50-60 0C for 30 minutes, then removed and a straight line is drawn on the plate with a distance of approximately 1 cm as the lower limit and 0.5 cm as the upper limit (Base, 2018).

Identification of Alkaloid Compounds

Identification using the filter layer chromatography method, using ethyl acetate: n-hexane (7: 3) as eluent. After that, the eluent was saturated in the chamber using filter paper. Next, the TLC plate that had been spotted with the extract was inserted into the chamber and then eluted. Observation of the appearance of the spots was carried out using 254 nm UV light, then spot detection by spraying Dragendorff reagent, then calculating the Rf value (Izza AR et al., 2019).

Identification of Flavonoid Compounds

Centella asiatica plant extract solutions were each dissolved with methanol, then spotted on a TLC plate with a stationary phase of silica gel F₂₅₄, then the TLC plate was inserted into a chamber containing the upper phase eluent n-hexane: ethyl acetate (1: 4) left until completely eluted. After that, the spots were observed under UV light at a wavelength of 366 nm and by spraying AlCl₃ and sitroborate reagent which showed a yellow-greenish color (Ahmad et al., 2015).

Identification of Triterpenoid Compounds

Prepare the mobile phase n-hexane: ethyl acetate (4:1) with a standard ratio of β -sitosterol. The mobile phase used for the identification of triterpenoid compounds is n-hexane: ethyl acetate (4:1) with the appearance of stains using an anisaldehyde acid reagent. A positive result for triterpenoids/steroids is when a purple-red or purple color appears (La et al., 2021).

Identification of Tannin Compounds

The mobile phase used to identify tannin compounds is methanol: water (6:4) with the appearance

of 5% FeCl₃ stains, where the positive reaction formed is a black stain (La et al., 2021).

Identification of Phenol Compounds

The methanol extract solution of patikala fruit and leaves was spotted on a TLC plate and eluted using n-butanol: acetic acid: water (4:1:5) solvent, then the spots were observed under a UV lamp and sprayed with iron (III) chloride (FeCl₃) reagent. Positive phenol content is indicated if the stain is green, red, purple, blue, or black in color (Ahmad et al., 2015). The conditions for a good stain are that it has no tail and the distance between one spot and another is clear. The next process is analyzing Rf and comparing it with the theoretical standard Rf value (Kemenkes RI, 2017).

Bio oil safety test

Non-specific parameters are responsible for the quality and safety of a natural material. According to Rustam (2018), non-specific parameters include:

Specific Gravity

Specific gravity is related to contamination or purity of the extract. The purpose of determining specific gravity is to provide an indication of the mass per unit volume, a specific parameter for liquid extracts and concentrated extracts that can still be poured. Specific gravity is also related to the purity of the extract and contamination (Putri, 2014).

Water Content

The water content determination parameter aims to determine the residual water content after drying or thickening the extract. Water content determines the quality and stability of the extract in subsequent dosage forms. A water content above 10% is considered risky (Pramono & Ajastuti, 2004).

Residual Organic Solvents

The purpose of determining residual organic solvents is to determine the remaining ethanol solvent after drying. Ethanol is used as a solvent because it has lower toxicity compared to other solvents such as methanol, chloroform, hexane, etc. Safe and high-quality natural ingredients must be ensured to contain no residual organic solvents (Purgiyanti et al., 2021).

Microbial Contamination

The microbial contamination aspect aims to determine the presence of microbes that can damage the extract so that efforts can be made to prevent contamination or eliminate contamination in accordance with the permitted microbial contamination requirements (Sudimartini et al., 2022; Limarta et al., 2024; Wicaksono et al., 2025).

Data Analysis

Data processing will be carried out descriptively.

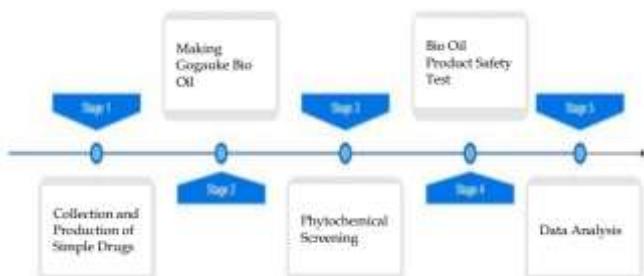


Figure 1. Research flowchart

Result and Discussion

Result

Phytochemical Test

The results obtained from the study aimed to characterize Gogauke bio-oil. The primary focus was on two critical aspects: the phytochemical profile, which identifies the presence of bioactive secondary metabolites, and safety testing, which evaluates the product's physical and microbiological parameters. These results provide an empirical basis for testing the hypothesis that Gogauke bio-oil has the potential to be a high-value natural product, or "Bio-Excellent," rooted in the sustainable use of Papua's endemic natural resources.

The methodological approach used in this study involved tube tests and Thin Layer Chromatography (TLC) for qualitative phytochemical screening, as well as a series of standard tests to determine moisture content, specific gravity, yield, Total Germ Count (TGC), and Yeast Mold Count (YMC). The analysis and interpretation presented in this chapter not only describe the raw data but also place the findings in a broader scientific context, evaluate the biological

significance of the detected compounds, and critique the product's compliance with relevant regulatory standards.

Table 1. Phytochemical Test Results of Gogauke Bio Oil

Phytochemical Screening	Replication 1	Replication 2	Replication 3
Alkaloids	+	+	+
Flavonoids	+	+	+
Triterpenoids	+	+	+
Tannin	+	+	+
Phenol	+	+	+
Steroids	+	+	+
Glycosides	+	+	+

Note: The (+) sign indicates a positive result for the presence of the compound.

The test tube test was used to detect the presence of six major secondary metabolite compounds in Gogauke bio-oil. Phytochemical content analysis using TLC was used to identify the presence and distribution of major secondary metabolite compounds in Gogauke bio-oil. The test results showed a positive response for all analyzed compound groups in all three sample replicates, indicating that these compounds were present at detectable concentrations. The components analyzed in Table 1 include alkaloids, flavonoids, saponins, triterpenoids, tannins, and phenols.

Product Safety Testing

The product safety test aims to evaluate the physical and microbiological parameters of gogauke extract. The parameters tested include water content, specific gravity, yield, total bacterial count (TBC), and yeast count (YM). This safety test is essential for determining the quality and stability of the herbal extract, as well as the quality of the resulting bio-oil, as shown in Table 2.

Table 2. Results of Physical and Microbiological Parameter Testing of Gogauke Bio-oil

Security Test	Replication 1	Replication 2	Replication 3	SD	Description
Water content	9.8	9.8	9.80	0.00	< 10 (Fulfil)
Specific Gravity	0.128	0.941	0.135	0.47	Fulfil
Yield	44.14	44.14	44.14	0.00	Fulfil
ALT	1.4×10^3	1.4×10^3	1.4×10^3	0.00	(25-250) (BPOM, 2019) (Fulfil)
AKK	6.9×10^3	6.9×10^3	6.9×10^3	0.00	AKK (10-150) (BPOM, 2019) (Fulfil)

The data in Table 2 shows the results of testing the physical and microbiological parameters of Gogauke bio oil, including water content, specific gravity, yield, ALT, and AKK, which meet the requirements.

Discussion

Phytochemical Test

Phytochemical screening results confirmed the presence of alkaloids, flavonoids, triterpenoids, tannins,

phenols, steroids, and glycosides in Gogauke bio-oil. This finding is highly significant because these secondary metabolites are known to have diverse biological and pharmacological functions. The simultaneous presence of these diverse classes of compounds is a strong initial indication that this bio-oil has broad therapeutic potential. The qualitative test, which showed positive results across all replicates, also indicates the consistent presence of these compounds in

the product, which is an important prerequisite for future product standardization.

The identification of these compounds provides a scientific basis for projecting the potential utilization of Gogauke bio-oil.

Flavonoids and Phenols

This class of polyphenolic compounds is widely known for its potent antioxidant activity. These compounds have the ability to scavenge free radicals and reduce cell damage, which is an important mechanism in preventing premature aging and degenerative diseases. Furthermore, they also act as anti-inflammatory, antibacterial, and antifungal agents. Some of these compounds are capable of activating the Nrf2 signaling pathway, which increases the expression of endogenous antioxidant enzymes, providing more comprehensive cellular protection.

Tannin

Tannins are polyphenolic compounds with unique biological activities. Studies show that tannins have significant antifungal effects by disrupting fungal cell wall permeability, inhibiting metabolic processes, and even damaging cell membranes. This function is highly relevant as a natural plant defense mechanism and can translate into similar benefits in end products.

Saponins, Triterpenoids, and Glycosides

Triterpenoids and steroidal glycosides are often collectively referred to as saponins. This group of compounds shows great potential as pharmaceutical and nutraceutical agents. They have been shown to possess hypocholesterolemic, anticarcinogenic, hepatoprotective, hypoglycemic, immunomodulatory, and antioxidant activities. Furthermore, several studies have linked triterpenoids and related compounds to enhanced wound healing activity and stimulated collagen production, suggesting great potential for cosmetic and dermatological applications.

Alkaloids and Steroids

The presence of alkaloids and steroids also adds a bioactive dimension to the product. While some alkaloids can be toxic in high concentrations, many have important pharmacological activities. Steroids are also essential metabolites, playing a vital role in various biological functions.

This analysis shows that Gogauke bio-oil contains not just one or two bioactive compounds, but rather a synergistic combination of various groups. The combined presence of antioxidants (flavonoids, phenols), anti-inflammatory (saponins), and antifungal (tannins) gives this product a broad and comprehensive spectrum of activity. This synergistic effect can increase

the overall efficacy, stability, and safety of the product compared to extracts that focus solely on a single active component. This biochemical diversity is the primary scientific basis for categorizing Gogauke bio-oil as a "Bio-Excellent" product, a product that is biologically superior and has the potential to provide holistic health benefits.

Security Test

The moisture content test results (9.8%) indicate that Gogauke bio-oil has a low moisture content and is below the recommended maximum limit (<10%). This value is very important because low moisture content significantly inhibits the growth of microorganisms and slows the degradation of chemical compounds, thereby increasing product stability during storage. The yield value (44.14%) and specific gravity also provide important information about the efficiency of the extraction process and the physical characteristics of the product. The high consistency of data between replicates (SD = 0.00) indicates that the production process is stable and replicable, which is a fundamental aspect of quality assurance.

Microbiological analysis, particularly Total Bacterial Count (TBC) and Yeast Mold Count (YMC), is crucial to ensure product safety. Research data shows an TBC value of 1.4×10^3 colonies/g and a TBC of 6.9×10^3 colonies/g. The product can be classified as a natural medicine (e.g., a traditional medicine), so the values found are far below the maximum limits permitted by BPOM Regulation No. 29 of 2023. In this regulation, the TBC limit is no more than 5×10^7 colonies/g and the TBC no more than 5×10^5 colonies/g. Compliance with regulations is highly dependent on the product's position in the market. Product registration strategies and the need to meet the requirements of Good Traditional Medicine Manufacturing Practices (CPOTB) to ensure consistent quality and safety on an ongoing basis.

A synthesis of all the findings confirms that Gogauke bio-oil has a strong scientific basis for development as a superior product from Papua. The concept of "Bio-Excellent," previously used in the context of bioplastics from sago and cassava for environmentally friendly products, can be adapted to define this bio-oil in a layered manner:

Biological Advantages: This product is rich in bioactive secondary metabolite compounds, which provide a strong basis for claims of pharmacological and cosmetic efficacy.

Quality and Safety Excellence: Safety tests show that this product is physically stable and has a very low level of microbiological contamination, especially if it is positioned as a natural medicine or phytopharmaceutical product.

Sustainable Advantage: Utilizing endemic resources such as Gogauke for high-value products can contribute to economic diversification, create local jobs, and encourage responsible natural resource management practices.

Overall, the available data not only confirms the potential of Gogauke bio-oil but also validates the product's viability for further development. Crucial next steps include quantitative testing to determine the specific concentration of each compound, isolation of the active compound for more detailed mechanism-of-action studies, and preclinical and clinical trials to confirm its claimed benefits and safety. These research results provide a promising prototype, demonstrating that Gogauke has real potential to become a "Bio-Excellent" product that makes a significant contribution to the people and environment of Papua.

Conclusion

Based on the research results, it can be concluded that Gogauke bio-oil has very strong potential to be developed as a superior product "Bio-Excellent". Phytochemical tests show that this product is rich in various secondary metabolite compounds, including Alkaloids, Flavonoids, Triterpenoids, Tannins, Phenols, Steroids, and Glycosides. The presence of this combination of compounds provides a solid scientific basis for its potential broad biological activities, such as antioxidant, anti-inflammatory, and antifungal. In terms of safety, Gogauke bio-oil shows promising results. Physical parameters such as water content (9.8%) and yield (44.14%) meet recommended standards. Microbiological testing results for Total Bacterial Count (TBC) and Yeast Mold Count (YMC) demonstrate values that meet the requirements for natural medicinal products according to BPOM regulations. Therefore, this product is considered safe and stable for use. Overall, these findings not only confirm that Gogauke bio-oil has a superior biochemical profile, but also validate its marketability as a high-value product derived from Papua's natural resources in a sustainable manner.

Acknowledgments

All authors would like to thank to all parties who has helped in this research.

Author Contributions

Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing – original draft preparation, M.A.P.; validation, writing – review and editing, visualization, supervision, project administration, S. and W.P. All authors have read and agreed to the published version of the manuscript.

Funding

PNBP LPPM Cendrawasih University in accordance with the research work agreement letter Number: 103/UN20.2.1/PG/2025 dated April 28, 2025.

Conflicts of Interest

The authors declare no conflict of interest.

References

Agustini, V., Simaremare, E. S., Gunawan, E., Awom, J., & Wopi, S. (2020). Phytochemical Screening, Antibacterial and Cytotoxic Activity of *Dendrobium lasianthera* (Papua). *Jurnal Biologi Papua*, 12(2), 93-101. <https://doi.org/10.31957/jbp.1289>

Ahmad, A. R., Juwita, J., & Ratulangi, S. A. D. (2015). Penetapan kadar fenolik dan flavonoid total ekstrak metanol buah dan daun patikala (*Etlingera elatior* (Jack) RM SM). *Pharmaceutical Sciences and Research*, 2(1), 1-10. <https://doi.org/10.7454/psr.v2i1.3481>

Azizah, S. R. (2022). Pemanfaatan Essential Oils Sebagai Aromaterapi Dalam Perawatan Kulit. *MEDFARM: Jurnal Farmasi Dan Kesehatan*, 11(1), 62-77. <https://doi.org/10.48191/medfarm.v11i1.98>

Base, N. H. (2018). Identifikasi Kandungan Senyawa Flavonoid Ekstrak Kulit Buah Jeruk Bali (*Citrus maxima* Merr.) Secara Kromatografi Lapis Tipis. *Jurnal Yamasi*, 2(1), 1-9. Retrieved from https://www.academia.edu/37190689/anti_inflamasi

Bermawie, N., Purwiyanti, S., Penelitian, B., Obat, T., Penelitian, P., Cicurug, K. P., & Germplasm, L. U. (2015). Keragaan Sifat Morfologi, Hasil dan Mutu Plasma Nuftah Pegagan (*Centella asiatica* (L.) Urban.). *Buletin Penelitian Tanaman Rempah Dan Obat*, 19(1), 1-17. Retrieved from <https://repository.pertanian.go.id/handle/123456789/3769>

Boissière, M., van Heist, M., Sheil, D., Basuki, I., Frazier, S., Ginting, U., Wan, M., Hariadi, B., Hariyadi, H., & Kristianto, H. D. (2004). Pentingnya Sumberdaya alam bagi masyarakat Lokal di Daerah Aliran Sungai Mamberamo, Papua, dan Implikasinya Bagi Konservasi. *Journal of Tropical Ethnobiology*, 2(2), 76-95. Retrieved from http://www.cifor.org/mla/download/publication/konservasi_mamberamo.pdf

Botahala, L., Sukarti, Arifuddin, W., Arif, A. R., Ischaidar, Arafah, M., Kartina, D., Armah, Z., Yasser, M., Pratama, I., Patarru, O., Santi, & Hamsah, H. (2020). Deteksi Dini Metabolit Sekunder pada Tanaman. *Mitra Cendikia* Retrieved from

http://repo.untribkalabahi.ac.id/xmlui/handle/123456789/315

Bouyahya, A., El Omari, N., Elmeniyi, N., Guaouguau, F.E., Balahbib, A., Belmehdi, O., Salhi, N., Imtara, H., Mrabti, H.N., El-Shazly, M., & Bakri, Y. (2021). Moroccan Antidiabetic Medicinal Plants: Ethnobotanical Studies, Phytochemical Bioactive Compounds, Preclinical Investigations, Toxicological Validations and Clinical Evidences; Challenges, Guidance and Perspectives for Future Management of Diabetes Worldwide. *Trends Food Science & Technology* 115, 147-254. <https://doi.org/10.1016/j.tifs.2021.03.032>

Burhan, A., Hikma, N., Syahruni, R., Article, I., & Burhan, A. (2022). Profil Komponen Senyawa Herba Pegagan (Centella Asiatica L.) Dari Beberapa Tempat Tumbuh Di Daerah. *Jurnal Ilmiah Farmasi Farmasyifa*, 5(2), 203-211. <https://doi.org/10.29313/jiff.v5i2.9716>

Depkes. (2000). *Parameter Standar Umum Ekstrak Tumbuhan Obat*. Jakarta: Departemen Kesehatan.

Dewi, N.L.A., Adnyani, L.P.S., Pratama, R.B.R., Yanti, N.N.D., Manibuy, J.I., & Warditiani, N. K. (2018). Pemisahan, Isolasi, dan Identifikasi Senyawa Saponin dari Herba Pegagan (Centella asiatica L. Urban). *Jurnal Farmasi Udayana*, 7(2), 68-76. <https://doi.org/10.24843/JFU.2018.v07.i02.p05>

Djoko, W., Taurhesia, S., Djamil, R., & Simanjuntak, P. (2020). Standardisasi Ekstrak Etanol Herba Pegagan (Centella asiatica). *Saintech Farma*, 13(2), 118-123. Retrieved from <https://ejournal.istn.ac.id/index.php/saintechfarma/article/view/765>

Hadrian, E., Rahaja, G. L., Anovolia, K., & Insani, R. M. S. (2023). Identification, Extraction, Phytochemical Screening and Study of Antimicrobial Activities of Native Papuan Tree Bark Extract: Dysoxylum Alliaceum and Aglaia sp. *Indonesian Journal of Life Sciences* 5(2). <https://doi.org/10.54250/ijls.v5i02.174>

Hussein, A. O., Mohammed, G. J., Hadi, M. Y., & Hameed, I. H. (2016). Phytochemical Screening of Methanolic Dried Galls Extract of *Quercus Infectoria* Using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform-Infrared (FT-IR). *Journal of Pharmacognosy and Phytotherapy*, 8(3), 49-59. <https://doi.org/10.5897/JPP2015.0368>

Hyldgaard, M., Mygind, T., & Meyer, R.L. (2012). Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions With food Matrix Components. *National Library of Medicine* 3(1), 1-24. <https://doi.org/10.3389/fmicb.2012.00012>.

Izza AR., N. I., Kadang, Y., & Permatasari, A. (2019). Uji Identifikasi Senyawa Alkaloid Ekstrak Metanol Daun Kelor (Moringa oleifera Lamk) Dari Kab. Ende Nusa Tenggara Timur Secara Kromatografi Lapis Tipis. *Jurnal Farmasi Sandi Karsa*, 5(1), 52-56. <https://doi.org/10.36060/jfs.v5i1.42>

Jasmansyah, J., Fitriyani, P., Sujono, H., & Aisyah, L. S. (2020). Uji Aktivitas Antimikroba Minyak Atsiri Tanaman Pegagan (Centella asiatica (L.) Urb). *Jurnal Kartika Kimia*, 3(1), 43-47. <https://doi.org/10.26874/jkk.v3i1.54>

Kemenkes RI. (2017). *Herbal Indonesia Herbal Edisi II (II)*. Jakarta: Kementerian Kesehatan Republik Indonesia.

La, E. O. J., Sawiji, R. T., & Yuliani, N. M. R. (2021). Identifikasi Kandungan Metabolit Sekunder dan Uji Aktivitas Antioksidan Ekstrak n-Heksana Kulit Jeruk Bali (Citrus maxima Merr.). *Jurnal Surya Medika*, 6(2), 185-200. <https://doi.org/10.33084/jsm.v6i2.2136>

Limarta, K. J., Sudimartini, L. M., Dharmayuda, A. (2024). Microbial Contamination Test of Mimosaleaves Simplicia. *Buletin Veteriner Udayana*, 16(1). <https://doi.org/10.24843/bvu.v16i1.59>

Mohamed, E. A. A., Muddathir, A. M., Oman, M. A. (2020). Antimicrobial Activity, Phytochemical Screening of Crude Extracts, and Essential Oils Constituents of Two *Pulicaria* spp. growing in Sudan. *Scientific Reports*, 13(10), 17148. <https://doi.org/10.1038/s41598-020-74262-y>

Obuetibe, A. A., & Okwonna, O.O. (2023). Production and Phytochemical Analysis of Bio-Based oil Obtained From Nigerian Bambusa Vulgaris. *International Journal of Technical & Scientific Research Engineering*, 6(1), 32-35. Retrieved from <https://ijtsre.org/papers/2023/ev6c1/IJT-44712261.pdf>

Pistanty, M. A. (2022). Effectiveness Aroma Therapy Gotu Kola (Centella Asiatica) Against Insomnia Disorder. Retrieved from <https://up.lublin.pl/wp-content/uploads/2024/10/Wybrane-zagadnienia-z-zakresu-produkcji-surowcow.-t.-4.pdf>

Pramono, S., & Ajastuti, D. (2004). Standardisasi Ekstrak Herba Pegagan (Centella asiatica (L.) Urban) Berdasarkan Kadar Asia-Tikosida Secara KLT-Densitometri. *Majalah Farmasi Indonesia*, 15(3), 118-123. Retrieved from <https://repository.ub.ac.id/124484/1/Zulkarnae.pdf>

Prasetyo, A. B., Imawati, M. F., & Sumadji, A. R. (2022). Pengaruh Metode Maserasi Dan Soxhletasi Terhadap Kadar Flavonoid Ekstrak Etanol Daun Kemangi (Ocimum basilicum L.). *Jurnal Ilmiah*

Manuntung, 8(2), 317-321.
<https://doi.org/10.51352/jim.v8i2.641>

Purgiyanti, Nurcahyo, H., & Muldiyana, T. (2021). Uji Aktivitas Antioksidan Serum Anti Aging Dari Ekstrak Pegagan (Centella asiatica L Urban). *Parapemikir Jurnal Ilmiah Farmasi*, 1-82. Retrieved from <https://ejournal.poltekharber.ac.id/index.php/parapemikir/article/view/3776>

Putri, B. A., Sari, G. K., & Pistanty, M. A. (2023). Testing the Antibacterial Activity of A Serum Preparation of Pegagan Leaf Extract (Centella Asiatica (L.) Urban) Against the Bacteria Propionibacterium Acnes. *Pratama Medika: Jurnal Kesehatan*, 2(1), 37-52. <https://doi.org/10.56480/pratamamedika.v2i1.936>

Putri, E. S. P. S. S. (2014). Pengaruh Perbandingan Surfaktan Tween 80 dan Kosurfaktan PEG 400 Dalam Formulasi Sediaan Mikroemulsi Askorbil Palmitat dan Alfa Tokoferol Untuk Antiaging. Universitas Sanata Dharma.

Radi, F. Z., Bencheikh, N., Anarghou, H., Bouhhrim, M., Alqahtani, A. S., Hawwal, M. F., Noman, O. M., Bnouham, M., & Zair, T. (2023). Quality Control, Phytochemical Profile, and Biological Activities of Crataegus Monogyna Jacq. and Crataegus Lacinata Ucria fruits aqueous extracts. *Saudi Pharmaceutical Journal*, 31(10), 1-15. <https://doi.org/10.1016/j.jsps.2023.101753>

Reubun, Y. T. A., Kumala, S., Setyahadi, S., & Partomuan, S. (2020). Pengeringan beku ekstrak herba pegagan (Centella asiatica). *Sainstech Farma*, 13(2), 113-117. <https://doi.org/10.37277/sfj.v13i2.764>

Sabila, F. C., & Muhartono. (2020). Efektivitas Pemberian Ekstrak Daun Pegagan (Centella asiatica) Terhadap Penyembuhan Luka. *Jurnal Agromedicine Universitas Lampung*, 7, 23-29. Retrieved from <https://juke.kedokteran.unila.ac.id/index.php/agro/article/view/2776>

Safitri, D. W., & Syafitri, M. H. (2022). Phytochemical Screening of Chloroform Extract from Javanese Long Pepper which Dried Through 2 Different Methods. *Journal of Pharmacy and Science*, 7(2), 137. <https://doi.org/10.53342/pharmasci.v7i2.292>

Singh, R. K., Soni, B., Patel, U., Joshi, A. K., & Patel, S. K. S. (2025). Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste. *Fuels*, 6(1), 3. <https://doi.org/10.3390/fuels6010003>

Smith, P. (2011). Sustainable development options for Papua. *International Journal of Technology*, 2(2), 171-178. <https://doi.org/10.14716/ijtech.v2i2.1051>

Sudimartini, L. M., Putranto, G. D. A., Suarjana, I. G. K., & Merdana, I. M. (2022). Standarisasi Cemaran Mikroba Sampel Daun Pegagan sebagai Persyaratan Mutu Bahan Baku Sediaan Obat. *Buletin Veteriner Udayana*, 158, 319. <https://doi.org/10.24843/bulvet.2022.v14.i04.p01>

Susetyarini, E., & Nurrohman, E. (2022). Fitokimia Ekstrak Dan Rebusan Daun Pegagan (Centella Asiatica (L.) Urban.) Langkah Awal Mencari Senyawa Potensial Kandidat Immunomodulator. *Jurnal Sains Riset*, 12(1), 51. Retrieved from <http://journal.unigha.ac.id/index.php/JSR>

Valeeva, A. R., Makarova, N. V., Valiulina, D. F. (2019). Optimisation of conditions for Extracting Bioactive Compounds Exhibiting Antioxidant Properties from Hawthorn Fruit (Crataegus). *Proc. Univ. Appl. Chem. Biotechnol. Proceeding of Universities Applied Chemistry and Biotechnology*, 9(3), 239-249. <https://doi.org/10.21285/2227-2925-2019-9-2-239-249>

Wahyuningtyas, D., Saputra, H. F., & Sunarsih, S. (2021). Optimasi Pengambilan Triterpenoid dari Daun Pegagan (Centella Asiatica) dengan Metode Ekstraksi Bertingkat Optimization of Triterpenoids Extracting from Pegagan Leaves (Centella asiatica) Using Multilevel Extraction Method. *Jurnal Pengendalian Pencemaran Lingkungan*, 3(1), 20-26.

Wicaksono, D. M. P., Mudaliana, S., & Juwita, R. (2025). Uji Cemaran Mikroba Serbuk Pagagan (Centella Asiatica L. Urban) Sebagai Bahan Baku Obat Tradisional. *Proceedings of Life and Applied Sciences*, 3(1). Retrieved from <https://conference.um.ac.id/index.php/LAS/article/view/10153>

Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C.G. (2009). Physico-Chemical Properties of Whey Protein Isolate Films Containing Oregano Oil and Their Antimicrobial Action against spoilage flora of fresh beef. *Meat Science* 82(3), 338-345. <https://doi.org/10.1016/j.meatsci.2009.02.004>