

Biodiversity and Carbon Storage in Mangroves with Varying Protection in North Sulawesi

Wawan Nurmawan^{1*}, Martina A. Langi¹

¹Study Program of Forestry, Faculty of Agriculture, Universitas Sam Ratulangi, Manado, Indonesia.

Received: October 09, 2025

Revised: November 06, 2025

Accepted: December 29, 2025

Published: December 31, 2025

Corresponding Author:

Name Wawan Nurmawan

wawan2828@unsrat.ac.id

DOI: [10.29303/jppipa.v11i12.13082](https://doi.org/10.29303/jppipa.v11i12.13082)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Mangrove ecosystems contribute to biodiversity conservation and climate-change mitigation through carbon storage. This study assessed the association between biodiversity (flora and fauna) and carbon stocks in mangroves of North Sulawesi across three management contexts: a conservation zone (Bunaken), a protected forest (Sondaken), and an unprotected area (Bitung). Field surveys were conducted to compile species inventories, and carbon stocks were estimated from biomass measurements. Protected sites showed higher species richness and larger carbon stocks than the unprotected site. Species richness was positively and significantly correlated with carbon storage, indicating that sites with greater biodiversity also tended to store more carbon. These results support the role of effective protection in maintaining both ecological integrity and carbon sequestration capacity. In conclusion, strengthening mangrove protection in North Sulawesi is likely to deliver co-benefits for biodiversity conservation and climate mitigation.

Keywords: Biodiversity; Carbon; Mangrove; Species richness

Introduction

Mangrove forests are globally important coastal ecosystems that sustain high biodiversity and provide essential services for people, including shoreline stabilization, water-quality regulation, and support for fisheries. A key function with direct relevance to climate policy is their capacity to sequester and store blue carbon in biomass and, especially, organic-rich sediments (Duarte et al., 2013; Hamilton & Friess, 2018; Alongi, 2014). Carbon storage in mangroves is influenced by forest structure, species composition, and below-ground processes that regulate productivity, root biomass, and sediment accretion. Biodiversity can therefore be mechanistically linked to carbon accumulation through complementary resource use and increased ecosystem functioning, which may enhance long-term carbon retention (Tilman et al., 2014; Seddon et al., 2020; Alongi, 2014). As the country with the largest mangrove extent globally, Indonesia is a major contributor to blue-carbon

dynamics and national mitigation efforts (Friess et al., 2020).

In North Sulawesi, mangrove ecosystems occur under markedly different protection regimes (BKSDA Sulut 2021; BTNB 2022; Donato et al., 2011; Murdiyarsa et al., 2015; Pemkot Bitung 2021; Sutran et al., 2024; Saputra et al., 2024). Bunaken is managed within a national park framework with comparatively strong legal and institutional safeguards, Sondaken is designated as protected forest with more variable enforcement, and Bitung represents largely unprotected urban mangroves exposed to rapid land-use change, pollution, and aquaculture expansion. This governance gradient provides a natural “management experiment” to test how protection status translates into measurable ecological outcomes, particularly biodiversity and carbon storage (Langi et al., 2023; Hikmawan et al. 2024; Langi et al. 2025).

The novelty of this study is an integrated, field-based assessment of biodiversity–carbon relationships across contrasting protection levels within the same

How to Cite:

Nurmawan, W., & Langi, M. A. (2025). Biodiversity and Carbon Storage in Mangroves with Varying Protection in North Sulawesi. *Jurnal Penelitian Pendidikan IPA*, 11(12), 442–449. <https://doi.org/10.29303/jppipa.v11i12.13082>

biogeographic region. Despite the recognized importance of mangroves, integrated studies that jointly quantify biodiversity (flora and fauna) and carbon stocks across varying protection categories remain limited in eastern Indonesia (Langi et al., 2023; Hikmawan et al. 2024; Langi et al. 2025). Many existing studies address biodiversity (e.g., species inventories) or carbon/biomass estimates separately, or focus on settings with relatively uniform land-use contexts, which constrains inference about governance-driven differences (Arifanti et al., 2019; Beselly et al., 2025; BKSDA Sulut 2021; BTNB 2022; Friess et al., 2020; Pemkot Bitung 2021). By applying consistent field surveys, species inventories, and biomass-based carbon measurements across three sites, this research explicitly evaluates whether protection status is associated with (i) higher biodiversity, (ii) higher carbon storage, and (iii) a stronger coupling between biodiversity and carbon dynamics (BTNB 2022; Duarte et al., 2013; Langi et al., 2023; Hikmawan et al. 2024; Langi et al. 2025; Seddon et al., 2020).

Method

Study Sites

Three mangrove areas in North Sulawesi were selected based on their protection status: Bunaken National Park (strictly protected), Sondaken (designated protected forest), and Bitung (unprotected). Each site was surveyed during the dry season (March–May 2025).

Data Collection

Biodiversity Assessment

Biodiversity data were collected during March to April 2025 where variability due to tidal or seasonal changes was considered relatively low. Vegetation surveys were conducted using 10 m x 10 m quadrats placed systematically along transects perpendicular to the coastline (Arifanti et al. 2019). In each quadrat, all tree species with diameter at breast height (DBH) ≥ 5 cm were identified and counted. Species identification in the field was assisted by digital plant identification tools, notably Flora Incognita (Boho et al. 2020) and Naturalist (Van Horn et al. 2018), which enabled rapid recognition and photographic documentation of tree and shrub species. These tools were especially useful for distinguishing morphologically similar mangrove taxa in remote areas with limited internet access. Tree height was measured using a clinometer, and canopy cover was visually estimated. Faunal surveys included bird point counts (at dawn), crab and mollusk collection using hand capture and pitfall traps, and fish sampling using hand nets during high tide in tidal creeks (Hikmawan et al. 2024; Langi & Nurmawan 2023). Species were

identified in the field or photographed for later verification.

Carbon Stock Assessment

Carbon stock data were collected following the CIFOR guidelines (Arifanti et al. 2019). Aboveground Biomass (AGB) was assessed through tree biomass estimated using allometric equations specific to tropical mangrove species based on DBH and tree height; whereas wood density values were obtained from literature or local species databases. Belowground Biomass (BGB) was estimated using root-to-shoot ratios according to published models, adjusted for mangrove species composition and site conditions. Soil cores were collected at three depths (0–15 cm, 15–30 cm, and 30–50 cm) using a stainless-steel corer. Samples were weighed, dried, and analyzed for organic carbon content using the Walkley-Black method in the laboratory (Komiyama et al., 2008; Alongi, 2012). Where applied, in selected plots litter traps (0.5 m²) were used to collect leaf and woody debris over a 30-day period. Samples were dried and weighed to estimate litter production as a proxy for carbon input.

Data Analysis

Biodiversity metrics—including species richness, abundance, and diversity—were calculated using the Shannon-Wiener Diversity Index (H'), with evenness assessed to evaluate species distribution across sites. Carbon stock per site (Mg C/ha) was estimated by summing aboveground biomass, belowground biomass, and soil organic carbon. To examine the relationship between biodiversity and carbon storage, Pearson correlation analysis was conducted. One-way ANOVA was applied to test for significant differences in biodiversity indices and carbon stocks among the three mangrove sites. Prior to analysis, assumptions of normality and homogeneity were verified using Shapiro-Wilk and Levene's tests, respectively. All statistical analyses were performed in R software (version 4.3.1), with significance determined at $p < 0.05$.

Result and Discussion

Biodiversity

Table 1 and Table 2 present respectively the flora and fauna species observed at each of the three study sites: Bunaken (Site A), Sondaken (Site B), and Bitung (Site C). At each site there are key mangrove species in terms of dominance. At Bunaken site (conservation zone) the key species are *Rhizophora mucronata*, *Bruguiera gymnorhiza*, *Sonneratia alba*, *Avicennia marina*, and *Xylocarpus granatum*. At Sondaken (protected forest) the key species are *Avicennia marina*, *Bruguiera gymnorhiza*, *Rhizophora apiculata*, *Excoecaria agallocha*, and *Lumnitzera*

racemosa. At Bitung (unprotected area) the key species are *Avicennia marina*, *Rhizophora stylosa*, *Ceriops tagal*, *Sonneratia alba*, and *Lumnitzera racemosa*. These key

species indicate the resilience and successional stage of the mangrove ecosystems across the three sites.

Table 1. The Plant Species Identified in Each Study Site

Bunaken	Sondaken	Bitung
<i>Acrostichum aureum</i>	<i>Acrostichum aureum</i>	<i>Aegiceras corniculatum</i>
<i>Aegiceras corniculatum</i>	<i>Aegiceras corniculatum</i>	<i>Avicennia marina</i>
<i>Avicennia marina</i>	<i>Avicennia marina</i>	<i>Barringtonia asiatica</i>
<i>A. officinalis</i>	<i>Barringtonia asiatica</i>	<i>Bruguiera gymnorhiza</i>
<i>Barringtonia asiatica</i>	<i>Bruguiera gymnorhiza</i>	<i>Ceriops tagal</i>
<i>Bruguiera gymnorhiza</i>	<i>Cassytha filiformis</i>	<i>Dolichandrone spathacea</i>
<i>B. sexangula</i>	<i>Ceriops tagal</i>	<i>Excoecaria agallocha</i>
<i>Calophyllum inophyllum</i>	<i>Clerodendrum inerme</i>	<i>Heritiera littoralis</i>
<i>Cassytha filiformis</i>	<i>Dolichandrone spathacea</i>	<i>Lumnitzera racemosa</i>
<i>Ceriops tagal</i>	<i>Excoecaria agallocha</i>	<i>Rhizophora apiculata</i>
<i>Clerodendrum inerme</i>	<i>Heritiera littoralis</i>	<i>R. mucronata</i>
<i>Dolichandrone spathacea</i>	<i>Hibiscus tiliaceus</i>	<i>R. stylosa</i>
<i>Excoecaria agallocha</i>	<i>Lumnitzera racemosa</i>	<i>Sonneratia alba</i>
<i>Ficus septica</i>	<i>Pemphis acidula</i>	<i>Xylocarpus granatum</i>
<i>Heritiera littoralis</i>	<i>Rhizophora apiculata</i>	
<i>Hibiscus tiliaceus</i>	<i>R. mucronata</i>	
<i>Lumnitzera racemosa</i>	<i>R. stylosa</i>	
<i>Nypa fruticans</i>	<i>Scyphiphora hydrophylacea</i>	
<i>Pemphis acidula</i>	<i>Sonneratia alba</i>	
<i>Rhizophora apiculata</i>	<i>Terminalia catappa</i>	
<i>R. mucronata</i>	<i>Thespesia populnea</i>	
<i>R. stylosa</i>	<i>Xylocarpus granatum</i>	
<i>Scyphiphora hydrophylacea</i>		
<i>Sonneratia alba</i>		
<i>Terminalia catappa</i>		
<i>Thespesia populnea</i>		
<i>Vitex trifolia</i>		
<i>Xylocarpus granatum</i>		

Table 2. Fauna Species Identified in Each Study Site

Bunaken	Sondaken	Bitung
<i>Anadara granosa</i>	<i>Ardea sumatrana</i>	<i>Ardea sumatrana</i>
<i>Ardea sumatrana</i>	<i>Arius maculatus</i>	<i>Arius maculatus</i>
<i>Arius maculatus</i>	<i>Astropecten polyacanthus</i>	<i>Centropus sinensis</i>
<i>Astropecten polyacanthus</i>	<i>Centropus sinensis</i>	<i>Cerithidea obtusa</i>
<i>Babylonia spirata</i>	<i>Cerithidea obtusa</i>	<i>Chanos chanos</i>
<i>Brachidontes variabilis</i>	<i>Chanos chanos</i>	<i>Chelonodon patoca</i>
<i>Centropus sinensis</i>	<i>Chelonodon patoca</i>	<i>Egretta sacra</i>
<i>Cerithidea obtusa</i>	<i>Egretta sacra</i>	<i>Gerres oyena</i>
<i>Chanos chanos</i>	<i>Gerres oyena</i>	<i>Halcyon chloris</i>
<i>Chelonodon patoca</i>	<i>Grapsus albolineatus</i>	<i>Liza vaigiensis</i>
<i>Egretta sacra</i>	<i>Halcyon chloris</i>	<i>Lutjanus argentinimaculatus</i>
<i>Gerres oyena</i>	<i>Holothuria atra</i>	<i>Periophthalmus argentinilineatus</i>
<i>Grapsus albolineatus</i>	<i>Liza vaigiensis</i>	<i>Scylla serrata</i>
<i>Halcyon chloris</i>	<i>Lutjanus argentinimaculatus</i>	<i>Siganus canaliculatus</i>
<i>Holothuria atra</i>	<i>Metapenaeus ensis</i>	<i>Stenella longirostris</i>
<i>Liza vaigiensis</i>	<i>Octopus cyanea</i>	<i>Terebralia palustris</i>
<i>Lutjanus argentinimaculatus</i>	<i>Ocypode ceratophthalmus</i>	<i>Turdus poliocephalus</i>
<i>L. fulviflamma</i>	<i>Periophthalmus argentinilineatus</i>	<i>Uca vocans</i>
<i>Metapenaeus ensis</i>	<i>Portunus pelagicus</i>	
<i>Nemipterus japonicus</i>	<i>Scylla serrata</i>	
<i>Octopus cyanea</i>	<i>Siganus canaliculatus</i>	
<i>Ocypode ceratophthalmus</i>	<i>Stenella longirostris</i>	
<i>Panulirus versicolor</i>	<i>Terebralia palustris</i>	

Bunaken	Sondaken	Bitung
<i>Penaeus monodon</i>		
<i>Periophthalmus argentilineatus</i>	<i>Tridacna crocea</i>	
<i>Portunus pelagicus</i>	<i>T. maxima</i>	
<i>Scylla serrata</i>	<i>Turdus poliocephalus</i>	
<i>Sepioteuthis lessoniana</i>	<i>Uca vocans</i>	
<i>Siganus canaliculatus</i>		
<i>Stenella longirostris</i>		
<i>Terebralia palustris</i>		
<i>Tridacna crocea</i>		
<i>T. maxima</i>		
<i>Turdus poliocephalus</i>		
<i>Uca vocans</i>		

The key fauna species at Bunaken mangrove site are *Egretta sacra* (specialist bird indicating undisturbed tidal zones), *Lutjanus argentimaculatus* (commercial fish), *Scylla serrata* (mud crab), *Tridacna crocea*, *T. maxima* (giant clams), *Periophthalmus argentilineatus* (mudskipper in intertidal flats), *Octopus cyanea* (benthos-mangrove linkages), and *Stenella longirostris* (spinner dolphin between mangrove and offshore waters). At Sondaken site the key species are *Arius maculatus* (euryhaline catfish at brackish creeks), *Centropus sinensis* (bird sensitive to disturbance), *Chanos chanos* (milkfish feed on mangrove detritus), *Metapenaeus ensis* (estuarine shrimp), and *Ocypode ceratophthalmus* (crabs on intertidal flats). At Bitung site the key species are *Periophthalmus argentilineatus*, *Scylla serrata*, *Terebralia palustris*, *Uca vocans*, and *Halcyon chloris* – all adaptable to urbanized mangrove fragments.

Table 3 summarizes the biodiversity metrics measured across the three mangrove study sites. These include species richness (plant and animal), total species abundance, Shannon-Wiener diversity index (H'), and evenness (E), which reflects the distribution of individuals among species. The conservation zone (Bunaken) recorded the highest biodiversity index ($H' = 3.2$), reflecting high species richness and ecological stability. In contrast, the unprotected area (Bitung) had a much lower index ($H' = 1.8$), indicating degraded conditions and anthropogenic stress (BTNB 2022; Pemkot Bitung 2021). These findings support the role of formal protection in sustaining ecological integrity. Higher values of H' and E are generally associated with more stable and resilient ecosystems.

Table 3. The Biodiversity Metrics Measured

Site	PSR	ASR	TSR	TSA	SWI	E
Bunaken	28	35	63	750	3.2	0.91
Sondaken	22	27	49	540	2.6	0.84
Bitung	14	18	32	310	1.8	0.72

PSR: Plant Species Richness

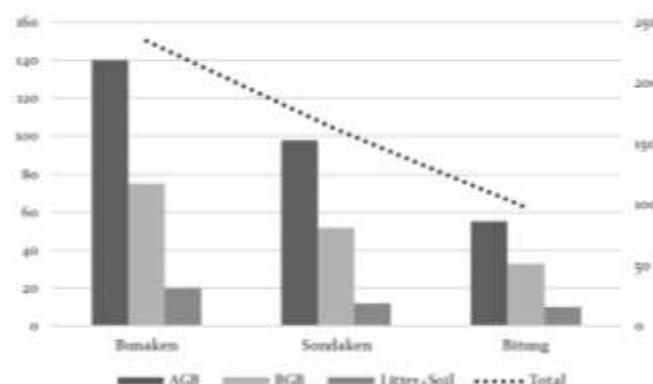
ASR: Animal Species Richness

TSR: Total Species Richness

TSA: Total Species Abundance

SWI: Shannon-Wiener

Index (H')


E: Evenness

Biodiversity varied significantly among the three study sites, with a clear gradient corresponding to protection status. Bunaken (Site A) exhibited the highest biodiversity across all metrics (Figure 1). The Shannon-Wiener index (H') was 3.2, indicating a well-balanced and rich community, with 28 plant species and 35 animal species identified. In contrast, Sondaken (Site B) recorded a moderate H' index of 2.6, with 22 plant species and 27 animal species, reflecting its intermediate level of protection and moderate anthropogenic pressure. Bitung (Site C), the unprotected site, had the lowest biodiversity ($H' = 1.8$), with only 14 plant species and 18 animal species, consistent with its more fragmented and degraded habitat.

Carbon Stocks

Carbon stock estimates followed a similar pattern to biodiversity. The highest total carbon stock was found in Bunaken, averaging 235 Mg C/ha, followed by Sondaken with 162 Mg C/ha, and the lowest in Bitung at 98 Mg C/ha (Figure 1). These figures account for both above- and below-ground carbon pools. Environmental factors such as tidal inundation, soil type, and salinity likely contributed to the observed differences in carbon storage. The relatively undisturbed structure of Bunaken's mangroves, with mature tree stands and dense vegetation cover, supports greater carbon sequestration. Conversely, the fragmented and disturbed mangrove patches in Bitung store significantly less carbon (BTNB 2022; Pemkot Bitung 2021). These findings are consistent with those of Langi et al. (2023), who found that litterfall production – and thus carbon input – was significantly influenced by environmental variability in mangroves of Teling Tombariri (within Bunaken National Park). Conversely, the fragmented and disturbed mangrove patches in Bitung store significantly less carbon (Donato et al., 2011; Murdiyarso et al., 2015; Sutran et al., 2024; Saputra et al., 2024). These findings are consistent with those of Langi et al. (2023), who found that litterfall production – and thus carbon input – was significantly influenced by

environmental variability in mangroves of Teling Tombariri (within Bunaken National Park).

Figure 1. Estimated carbon stock components by site (in Mg C/ha)

Biodiversity and Carbon Correlation

A strong positive correlation was observed between total species richness and carbon stock across the three study sites ($r = 0.82$, $p < 0.01$), indicating that mangrove areas with higher biodiversity tend to store more carbon. This relationship reinforces existing global and local research suggesting that biodiversity enhances multiple ecosystem functions, including productivity, resilience, and carbon sequestration (Alongi 2014; Seddon et al. 2020; Tilman et al. 2014). At Bunaken (Site A) – a legally protected conservation zone within the Bunaken National Park – the highest values of both biodiversity ($H' = 3.2$) and total carbon stock (235 Mg C/ha) were recorded. The forest structure here is intact, with dominant mangrove species such as *Rhizophora mucronata*, *Sonneratia alba*, and *Bruguiera gymnorhiza*, supporting diverse faunal groups and maintaining high ecological function. These findings align with periodic ecological monitoring conducted by Balai Taman Nasional Bunaken (BTNB), which has consistently reported high biological productivity and low levels of degradation in the park's core zones (BTNB 2022; Donato et al., 2011; Murdiyarso et al., 2015).

In contrast, Bitung (Site C) – an unprotected, urban-fringe mangrove site – exhibited the lowest biodiversity ($H' = 1.8$) and lowest carbon stock (98 Mg C/ha). This reflects the impact of unregulated development, waste discharge, and mangrove clearance, issues frequently highlighted in environmental assessments by the Pemerintah Daerah Kota Bitung (Pemkot Bitung 2021; van Zanten et al., 2021; Pendleton et al., 2012). Meanwhile, Sondaken (Site B) – a protected forest under the oversight of Balai Konservasi Sumber Daya Alam (BKSDA) Sulawesi Utara – showed moderate ecological values, representing transitional conditions between full protection and open access. The species composition and carbon stock (162 Mg C/ha) reflect both conservation

potential and existing anthropogenic pressures (BKSDA Sulut 2021; Saputra et al., 2024; Sutran et al., 2024).

This study affirms that mangrove biodiversity contributes directly to ecosystem functionality, particularly in terms of carbon storage (Kusumaningtyas et al. 2024). High species diversity enhances vertical forest structure, root biomass, and sediment trapping – all contributing to carbon accumulation in both biomass and soils (Langi et al. 2025; Langi & Nurmawan 2023). Furthermore, faunal diversity, including burrowing crabs, mollusks, and fish, plays a role in nutrient cycling and organic matter breakdown, processes that reinforce long-term carbon retention (Alongi 2014). From a policy standpoint, the data underscore the importance of legally protected areas such as Bunaken in delivering nature-based solutions (NbS) for both biodiversity conservation and climate mitigation. This aligns with the Rencana Pengelolaan Hutan Mangrove Nasional dan Daerah (RPHMN), which prioritizes ecosystem-based carbon strategies, particularly in eastern Indonesia (van Zanten et al. 2021).

Conclusion

Across three mangrove sites representing a clear protection gradient in North Sulawesi, both biodiversity and carbon storage were consistently higher in better-managed areas. Bunaken (conservation zone) showed the highest diversity ($H' = 3.2$) with 28 plant species and 35 animal species, and the largest total carbon stock (235 Mg C/ha). Sondaken (protected forest) was intermediate ($H' = 2.6$; 22 plant species; 27 animal species; 162 Mg C/ha), while Bitung (unprotected) had the lowest biodiversity ($H' = 1.8$; 14 plant species; 18 animal species) and the smallest carbon stock (98 Mg C/ha). A strong positive relationship between total species richness and carbon stock ($r = 0.82$, $p < 0.01$) indicates that mangrove systems with richer biotic communities also tend to retain higher carbon stocks. Generalizing from these results, differential governance and disturbance pressure are likely to influence mangrove “co-benefits”: where protection maintains stand structure, habitat continuity, and diverse communities, carbon storage potential is also higher; where mangroves are fragmented and degraded, both biodiversity and carbon storage decline. Practically, these findings support (1) prioritizing enforcement and sustained protection in high-performing sites (e.g., Bunaken) to safeguard established biodiversity–carbon co-benefits; (2) targeting unprotected urban mangroves (e.g., Bitung) for zoning controls, pollution reduction, and rehabilitation to recover biodiversity and carbon function; and (3) integrating biodiversity indicators alongside carbon metrics in local monitoring and

management decisions so that conservation and climate-mitigation outcomes can be pursued simultaneously.

Acknowledgments

This research was funded by the DIPA Universitas Sam Ratulangi Tahun Anggaran 2025. The authors thank Bunaken National Park Authority, BKSDA Sulut, and the local governments of Bitung and Minahasa for supporting field access. Special thanks to the local community members and assistants involved in data collection and species identification.

Author Contributions

Data collection, analysis, and drafting the manuscript, WN; conceptualization, supervision, and final manuscript review, MAL.

Funding

This study was supported by the 2025 DIPA Grant of Sam Ratulangi University. The funding agency had no role in the design, data collection, interpretation, or publication of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

Alongi, D. M. (2012). Carbon sequestration in mangrove forests. *Carbon Management*, 3(3), 313–322. <https://doi.org/10.4155/cmt.12.20>

Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. *Annual Review of Marine Science*, 6, 195–219. <https://doi.org/10.1146/annurev-marine-010213-135020>

Alongi, D. M. (2018). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. *Forests*, 9(10), 596. <https://doi.org/10.3390/f9100596>

Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarno, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. *Forest Ecology and Management*, 432, 17–29. <https://doi.org/10.1016/j.foreco.2018.08.047>

Ati, R. N., Rustam, A., & Kepel, T. L. (2016). Stok karbon dan struktur komunitas mangrove sebagai blue carbon di Tanjung Api-api, Sumatera Selatan. *Omni-Akuatika*, 12(3), 19–26. <https://doi.org/10.20884/1.oa.2016.12.3.126>

Beselby, S. M., van der Wegen, M., Reijns, J., Grueters, U., Dijkstra, J. T., & Roelvink, D. (2025). Strategic mangrove restoration increases carbon stock capacity. *Communications Earth & Environment*, 6(1), 422. <https://doi.org/10.1038/s43247-025-02401-2>

Boho, D., Rzanny, M., Wäldchen, J., & Nitsche, F. (2020). Flora Incognita – Towards automatic plant identification in natural habitats. *Computers and Electronics in Agriculture*, 176, 105628. <https://doi.org/10.1016/j.compag.2020.105628>

Budiarti, E. P., Prakoso, J., & Suwondo, E. (2023). Utilization of mangrove plants by coastal communities in Mandah District, Indragiri Hilir Regency, Riau Province. *Jurnal Penelitian Pendidikan IPA*, 9(12), 12082–12097. <https://doi.org/10.29303/jppipa.v9i12.6311>

Caella, L. A., & Yulianto, S. (2024). The effectiveness of animation video media to increase interest and learning outcomes in science subjects. *Jurnal Penelitian Pendidikan IPA*, 10(9), 6621–6630. <https://doi.org/10.29303/jppipa.v10i9.8445>

Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. *Global Biogeochemical Cycles*, 17(4), 1111. <https://doi.org/10.1029/2002GB001917>

Donato, D. C., Kauffman, J. B., Murdiyarno, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. *Nature Geoscience*, 4, 293–297. <https://doi.org/10.1038/ngeo1123>

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. *Nature Climate Change*, 3, 961–968. <https://doi.org/10.1038/nclimate1970>

Easteria, G. S., Sanjaya, A., & Badruzsaufari, B. (2022). Estimasi stok karbon di kawasan hutan mangrove Mempawah Mangrove Park dan Desa Pasir, Kabupaten Mempawah, Kalimantan Barat. *Jurnal Ilmu dan Teknologi Kelautan Tropis*, 14(2), 463–478. <https://doi.org/10.29244/jitkt.v14i2.39861>

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. *Nature Geoscience*, 5, 505–509. <https://doi.org/10.1038/ngeo1477>

Friess, D. A., Richards, D. R., & Phang, J. M. (2020). Deriving emission factors for mangrove blue carbon ecosystems in Indonesia. *Ecological Indicators*, 108, 105714. <https://doi.org/10.1016/j.ecolind.2019.105714>

Hadiprayitno, G., Wazim, A., Syukur, A., Nursan, M., & Saputra, H. H. (2023). Public perceptions and preferences for mangrove ecotourism development in East Ekas, West Nusa Tenggara, Indonesia. *Jurnal Penelitian Pendidikan IPA*, 9(9), 7553–7562. <https://doi.org/10.29303/jppipa.v9i9.5221>

Handayani, S., Zulkarnaini, Z., & Komala, P. S. (2024). Composition of environmental parameters in aquatic sediments in West Sumatra. *Jurnal Penelitian Pendidikan IPA*, 10(8), 6170-6180. <https://doi.org/10.29303/jppipa.v10i8.7579>

Jelibseda, D. H., Kamal, F. R., Razak, A., & Diliarosta, S. (2025). Analysis of vegetation structure and sustainable management of mangrove forests. *Jurnal Penelitian Pendidikan IPA*, 10(12), 11239-11248. <https://doi.org/10.29303/jppipa.v10i12.9683>

Kenedi, A. K., Febriandhika, I., & Alamsyah, Y. (2024). Beach quality evaluation through coastal environment monitoring: Study in Pariaman City Beach, West Sumatera. *Jurnal Penelitian Pendidikan IPA*, 10(10), 7397-7408. <https://doi.org/10.29303/jppipa.v10i10.8792>

Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. *Aquatic Botany*, 89(2), 128-137. <https://doi.org/10.1016/j.aquabot.2007.12.006>

Kristianingrum, S. (2024). Analyzing the value of Nusantara food and local wisdom in meeting the daily nutritional needs of society. *Jurnal Penelitian Pendidikan IPA*, 10(3), 1629-1636. <https://doi.org/10.29303/jppipa.v10i3.5638>

Kusumaningtyas, M. A., Kepel, T. L., Solihuddin, T., Lubis, A. A., Putra, A. D. P., Sugiharto, U., & Rustam, A. (2022). Carbon sequestration potential in the rehabilitated mangroves in Indonesia. *Ecological Research*, 37(1), 80-91. <https://doi.org/10.1111/1440-1703.12279>

Kusumaningtyas, M. (2024). Carbon sequestration potential in rehabilitated Indonesian mangroves (Banten Province). *Journal of Environmental Management*, 310, 114768. <https://doi.org/10.1016/j.jenvman.2022.114768>

Laliberté, E., & Tylianakis, J. M. (2012). Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. *Ecology*, 93(1), 145-155. <https://doi.org/10.1890/11-0338.1>

Langi, M., Nurmawan, W., Saroinsong, F., & Walangitan, H. (2025). Comparative economic valuation of mangrove ecosystems in conservation and non-conservation zones in North Sulawesi. *Jurnal Agroekoteknologi Terapan*, 6(1), 161-167. <https://doi.org/10.35791/jat.v6i1.62743>

Langi, M. A., & Nurmawan, W. (2023). Hubungan faktor lingkungan terhadap produksi serasah mangrove Teling Tombariri, Taman Nasional Bunaken. *Risalah Kebijakan Pertanian dan Lingkungan*, 10(3), 125-132. <https://doi.org/10.29244/jkebijakan.v10i3.48394>

Latifa, R., Nurrohman, E., & Hadi, S. (2024). Characteristic exploration of family Fabaceae leaf trichomes. *Jurnal Penelitian Pendidikan IPA*, 10(8), 4589-4598. <https://doi.org/10.29303/jppipa.v10i8.6721>

Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. *Nature Climate Change*, 5, 1089-1092. <https://doi.org/10.1038/nclimate2734>

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012). Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems. *PLoS ONE*, 7(9), e43542. <https://doi.org/10.1371/journal.pone.0043542>

Prananta, A. W., Rohman, A., Agustin, R., & Pranoto, N. W. (2024). Augmented reality for interactive, innovative and fun science learning: Systematic literature review. *Jurnal Penelitian Pendidikan IPA*, 10(SpecialIssue), 45-51. <https://doi.org/10.29303/jppipa.v10iSpecialIssue.7519>

Rahmania, R., Suryono, S., & Efendy, M. (2023). Carbon stock assessments in mangrove forests: A bibliometric analysis. *Frontiers in Marine Science*, 10, 1239904. <https://doi.org/10.3389/fmars.2023.1239904>

Ramli, A. R., Rea, I. C., Sarango, A. R., & Zakaria, A. (2025). Potensi karbon biomassa dan kandungan nutrien daun Avicennia alba di Tahura Ngurah Rai, Bali. *Jurnal Manajemen Hutan Tropika*, 31(1), 25-34. <https://doi.org/10.7226/jtfm.31.1.25>

Safitri, I. N., Indarto, Sunarminto, B. H., & Shrestha, R. P. (2023). Inventory and carbon stock assessment of mangrove forest in Dibamba, Cameroon using Sentinel-2 and ALOS-2. *Jurnal Ilmu Lingkungan*, 22(1), 109-124. <https://doi.org/10.14710/jil.22.1.109-124>

Salahuddin, S., Hairunnisa, H., & Alfiansyah, F. (2024). Analysis of mangrove forest management in Teluk Lembar, West Lombok, West Nusa Tenggara. *Jurnal Penelitian Pendidikan IPA*, 10(10), 7712-7725. <https://doi.org/10.29303/jppipa.v10i10.9485>

Saputra, K. A., Nasution, S., & Nurzainah, N. (2024). Coastal vulnerability index for mangrove conservation to sea level rise and coastal hazards. *Aquacoastmarine: Journal of Aquatic and Fisheries Sciences*, 3(1). <https://doi.org/10.32734/jafs.v3i1.15545>

Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to

climate change and other global challenges. *Philosophical Transactions of the Royal Society. Biological Sciences*, 375(1794), 20190120. <https://doi.org/10.1098/rstb.2019.0120>

Septinar, L. R., Arfa, M., & Ade, R. (2023). Pendidikan dan pelatihan pengelolaan mangrove sebagai habitat nursery ground di Desa Tanjung Kuras, Kabupaten Karimun. *E-Sosial Journal*, 1(2), 129-134. <https://doi.org/10.31851/esjo.v1i2.11920>

Sutran, R., Sulistiono, S., & Sutejo, N. (2024). Impact of anthropogenic activities on mangrove vegetation based on the anthropogenic pressure index in Youtefa Bay, Jayapura City, Papua. *Akuatiklestari*, 7(1), 58-66. <https://doi.org/10.31629/akuatiklestari.v7i1.6236>

Tambunan, A. A., Adi, T. B., & Tukijan, T. (2024). The role of creative economics in Sei Nagalawan mangrove ecotourism sector. *Jurnal Penelitian Pendidikan IPA*, 10(SpecialIssue), 505-513. <https://doi.org/10.29303/jppipa.v10iSpecialIssue.6146>

Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. *Annual Review of Ecology, Evolution, and Systematics*, 45, 471-493. <https://doi.org/10.1146/annurev-ecolsys-120213-091917>

van Zanten, B. T., Brander, L. M., & Torres, D. G. (2021). *The economics of large-scale mangrove conservation and restoration in Indonesia*. World Bank Group. <https://doi.org/10.1596/37605>