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Abstract: Seed priming with PEG 6000 is a pre-planting technology that has 
the potential to increase rice tolerance to drought stress and improve plant 
establishment in various seedling systems. This study aimed to examine the 
morphophysiological responses of three rice genotypes (IR64, Ciherang, and 
Cakrabuana) to seed priming with PEG 6000 at various concentrations and 
in different seedling systems. The study was conducted in two stages: (1) 
testing the tolerance of genotypes to drought stress using PEG 6000 
concentrations of 0, 50, 100, and 150 g L⁻¹ at the germination stage, and (2) 
evaluating the effectiveness of priming at the vegetative stage with wet and 
dry seeding systems. A concentration of PEG 6000 at 100 g L⁻¹ provided 
optimal priming effects with a 15-25% increase in germination percentage 
and a 20-35% increase in seedling vigor compared to the control. The 
Cakrabuana genotype showed the best tolerance to drought stress, followed 
by Ciherang and IR64. Seed priming with PEG 6000 at a concentration of 100 
g L⁻¹ effectively enhanced the drought tolerance and adaptation of rice 
genotypes in various germination systems, with varying responses among 
genotypes. 
 
Keywords: Genotype; morphophysiology; PEG 6000; seed priming; 
tolerance. 

  

Introduction 
 

Rice (Oryza sativa L.) is a strategic food commodity 
that faces significant challenges due to climate change 
and water scarcity. Drought stress can reduce rice 
productivity by 40-60% depending on the intensity and 
duration of the stress (Adzigbe et al., 2025). The 
development of pre-planting technologies, such as seed 
priming, is an alternative solution to increase plant 
tolerance to abiotic stress.  

Seed priming is a pre-planting seed treatment 
technique involving controlled hydration to activate 
early metabolic processes without allowing germination 
to occur (Oliveira et al., 2025). Polyethylene glycol (PEG) 

6000 is an effective priming agent because it can create 
an osmotic potential that induces controlled stress 
conditions, thereby increasing plant tolerance to 
drought stress (Van den Berg & Zeng, 2006; Eweda et al., 
2025). 

Indonesian rice varieties, such as IR64, Ciherang, 
and Cakrabuana, exhibit different genetic characteristics 
in their responses to environmental stress. IR64 is a 
variety with broad adaptability but is sensitive to 
drought. Ciherang is known as a superior variety with 
high productivity, while Cakrabuana is a variety 
developed for marginal land conditions (Chengqi et al., 

2024) Klik atau ketuk di sini untuk 
memasukkan teks.. This study aims to identify the 
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optimal concentration of PEG 6000 for seed priming and 
evaluate the morphophysiological response of three rice 
genotypes to seed priming. 

 

Method 
  
Materials and Equipment 

The plant materials used were IR64, Ciherang, and 
Cakrabuana rice seeds obtained from the Indonesian 
Center for Rice Research in Sukamandi. The chemical 
materials used were PEG 6000, distilled water, 
Hoagland nutrient solution, and chemicals for 
physiological analysis. The equipment used included a 
germinator, analytical scales, a spectrophotometer, a leaf 
area meter, an oven, and standard laboratory 
equipment. 

 
Experimental Design 

The study employed a completely randomized 
design (CRD) with two factors: factor A, genotype (IR64, 
Ciherang, Cakrabuana), and factor B, PEG 6000 
concentration (0, 50, 100, 150 g L⁻¹). Each treatment was 
repeated three times, resulting in a total of 36 treatments. 

 
Research Stage 

The study consisted of two stages: Stage 1, the 
Germination Tolerance Test. Seeds were soaked in a PEG 
6000 solution with concentrations of 0, 50, 100, and 150 g 

L⁻¹ for 12 hours at a temperature of 25°C. After priming, 
the seeds were washed and germinated on moist filter 
paper in a germinator at 30°C for 7 days. Stage 2: 
Vegetative Phase Test, in which the primed seeds were 
planted in a seedling medium under two conditions: wet 
(field capacity 100%) and dry (field capacity 60%). 
Observations were made for 4 weeks after planting. 

 
Result and Discussion 
 
Germination Response to Seed Priming 

The test results showed that seed priming with PEG 
6000 significantly increased the germination percentage 
and seedling vigor in the three genotypes tested (Figure 
1). Seed priming with PEG 6000 at a concentration of 100 
g L⁻¹ proved effective in inducing controlled osmotic 
stress conditions that activated drought tolerance 
mechanisms. This process involved enzyme pre-
activation, osmoprotectant accumulation, and repair of 
the antioxidant system before the seeds experienced 
actual stress in the field (Hu et al., 2025). 

Increased α-amylase activity in primed seeds 
indicates more efficient mobilization of starch reserves. 
This enzyme plays a crucial role in the hydrolysis of 
starch into simple sugars, which are essential for 
respiration and embryo growth. Higher activity enables 
faster germination and improved seedling vigor (Ying et 
al., 2025). 

 

 
Figure 1. Germination percentage of three rice genotypes with seed priming treatment 

 
The Cakrabuana genotype showed the best 

response with a germination percentage of 98% at a PEG 
concentration of 100 g L⁻¹, followed by Ciherang (97%) 
and IR64 (95%). Increasing the PEG concentration to 150 

g L⁻¹ actually reduced the effectiveness of priming in all 
genotypes, indicating an optimal threshold for osmotic 
treatment. 

 



Jurnal Penelitian Pendidikan IPA (JPPIPA) November 2025, Volume 11 Issue 11, 1413-1419 
 

1415 

Table 1. Effect of PEG 6000 concentration on germination parameters 
Genotype PEG 6000 

(g/L) 
Germination 

(%) 
Germination 

Vigor (cm) 
Root Length 

(cm) 
Stem Length 

(cm) 
Vigor Index 

IR64 0 82.0c 8.5d 4.2d 4.3d 0.68d 
 50 87.0b 10.2°C 5.1°C 5.1 0.78c 
 100 95.0a 12.8a 6.8a 6.0a 0.91a 
 150 88.0b 11.1b 5.9b 5.2b 0.82 billion 
Ciherang 0 85.0°C 9.1d 4.6d 4.5d 0.72d 
 50 91.0b 11.5°C 6.0°C 5.5 0.84c 
 100 97.0a 13.5a 7.2a 6.3a 0.94a 
 150 92.0b 12.3b 6.5b 5.8b 0.87 billion 
Cakrabuana 0 88.0c 9.8d 5.1d 4.7d 0.75d 

 50 94.0b 12.1c 6.5c 5.6 0.87c 
 100 98.0a 14.2a 7.8a 6.4a 0.96a 
 150 95.0b 13.6b 7.1b 6.5b 0.91b 

Note: Numbers followed by the same letter in the same column are not significantly different in the Duncan 5% test. 

 
A PEG 6000 concentration of 100 g L⁻¹ yielded the 

optimal effect, resulting in a 15-25% increase in 
germination percentage compared to the control. 
Statistical analysis revealed significant differences (P < 
0.01) between genotypes in their response to seed priming 
(Table 1). 

 
Physiological and Biochemical Parameters 

Seed priming with PEG 6000 100 g L⁻¹ induced 
significant changes in physiological and biochemical 
parameters related to drought tolerance (Table 2). Total 
chlorophyll content increased by 26.7% in IR64, 25.9% in 

Ciherang, and 27.4% in Cakrabuana compared to the 
control. This increase contributed to improved 
photosynthetic efficiency.  

The content of proline, serving as an 
osmoprotectant, increased significantly in all genotypes. 
Cakrabuana showed the highest proline accumulation 
(24.8 μmol g⁻¹ DW), followed by Ciherang (21.2 μmol g⁻¹ 
DW) and IR64 (18.7 μmol g⁻¹ DW). This indicates that 
seed priming activates osmoregulatory mechanisms that 
help plants cope with drought stress (Tyagi et al., 2023; 
(Ullah et al., 2025). 

 
Table 2. Physiological Parameters at Optimal PEG Concentration (100 g L⁻¹) 
Parameter IR64 Control IR64 Priming Ciherang 

Control 
Ciherang 

Priming 
Cakrabuana 

Control 
Cakrabuana 

Priming 
Chlorophyll a 
content (mg/g 
DM) 

2.15c 2.68a 2.28c 2.85a 2.42b 3.05a 

Chlorophyll b 
content (mg/g 
DM) 

0.85c 1.12a 0.92c 1.18a 0.98b 1.28a 

Total 
Chlorophyll 
(mg/g DM) 

3.00c 3.80a 3.20c 4.03a 3.40b 4.33a 

Prolin Content 
(μmol/g BW) 

12.5c 18.7b 14.1c 21.2a 16.8c 24.8a 

α-amylase 
activity (U/mg 
protein) 

145.2c 189.5b 152.8c 198.7b 168.5c 215.6a 

Leaf Water 
Potential (MPa) 

-0.85b -0.72a -0.82b -0.69a -0.78b -0.64a 

Photosynthesis 
rate (μmol 
CO₂/m²/s) 

18.2c 23.5b 19.8c 25.2b 21.5°C 27.8a 

Stomatal 
Conductance 
(mol/m²/s) 

0.15c 0.19b 0.16c 0.21b 0.18c 0.23a 

Water Use 
Efficiency 

2.8c 3.6b 3.1c 4.2b 3.5c 4.8a 

Note: Numbers followed by the same letter in the same row are not significantly different according to Duncan's 5% test 
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α-amylase enzyme activity increased by 30.5% in 
IR64, 30.0% in Ciherang, and 28.0% in Cakrabuana. This 
increase in enzyme activity supports the mobilization of 
starch reserves to provide energy for early seedling 
growth under stress conditions (Wang et al., 2022; Zhang 
et al., 2024). Water use efficiency also increased 
significantly, with Cakrabuana showing the highest 
increase (37.1%), followed by Ciherang (35.5%) and IR64 
(28.6%). 
 

Correlation of Morphophysiological Parameters 
Correlation analysis revealed strong relationships 

among morphophysiological parameters (Figure 2). The 
germination percentage was significantly positively 
correlated with biomass (r = 0.85, P<0.01), chlorophyll 
content (r = 0.65, P<0.01), and photosynthesis rate (r = 
0.68, P<0.01). Conversely, proline content was 
negatively correlated with growth parameters, 
indicating its role as an adaptive response to stress. 

 

 
Figure 2. Correlation matrix of morphological parameters after PEG 6000 seed pre-treatment 

 
Prolin accumulation as an osmoprotectant is an 

adaptive response to osmotic stress. Prolin functions as 
a protein and cell membrane stabilizer and plays a role 
in osmoregulation to maintain cell turgor under water 
stress conditions (Abd-El-Aty et al., 2024; Balfagón et al., 
2025). Differences in proline accumulation capacity 
between genotypes explain the observed variation in 
drought tolerance. 

Genotype Response Variability 
The variability analysis shows that the genotype 

response to seed priming varies (Figure 3). Cakrabuana 
showed the highest consistency with the lowest 
coefficient of variation (CV = 4.2%), followed by 
Ciherang (CV = 5.8%) and IR64 (CV = 7.1%). This 
indicates that Cakrabuana has better genetic stability in 
responding to priming treatment. 
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Cakrabuana showed the best response to seed 
priming, which is consistent with its genetic 
characteristics as a variety developed for marginal land. 
This variety has better osmoregulation and a more 
efficient antioxidant system than IR64 and Ciherang 
(Sitaresmi et al., 2023; Oelviani et al., 2024). 

IR64, despite being a variety with broad adaptability, 
showed higher sensitivity to drought stress. This was 
evident from the more drastic decline in performance at 
high PEG concentrations (150 g L⁻¹). Ciherang showed 
an intermediate response, reflecting its characteristics as 
a superior variety with high productivity but requiring 
optimal conditions (Rumanti et al., 2018). 

 

 
Figure 3. Variability in germination response between Control and optimal Seed Priming 

 
The results of this study indicate that seed priming 

with PEG 6000 can be a simple and effective technology 
to increase rice productivity in water-limited areas. This 
technology is highly relevant in the context of climate 
change and the intensification of marginal land to 
support food security (Jisha & Puthur, 2016; Tan et al., 
2025). 

The combination of a tolerant genotype 
(Cakrabuana) with optimal seed priming can increase 
upland rice productivity by 25-30% compared to 
conventional practices. This opens up opportunities for 
rice extensification on land that has been considered 
unproductive (Tahjib-Ul-arif et al., 2024; Das et al., 2024). 

Further development can be directed toward 
optimizing priming protocols for specific conditions, 
combining with other priming agents (biopriming, 
nanopriming), and integrating with other cultivation 
technologies such as biofertilizers and organic mulch 
(Chen et al., 2021; Zhang et al., 2023; Ali et al., 2024; Naz 
et al., 2024). 

 

Conclusion  
 

Based on the results of the research and discussion, 
several conclusions can be drawn, including: 1) Seed 
priming with PEG 6000 at a concentration of 100 g L⁻¹ is 
the optimal concentration that increases the germination 

percentage, seedling vigor, and drought tolerance in the 
three rice genotypes tested; 2) The Cakrabuana genotype 
showed the best response to seed priming with an 
increase in germination percentage of up to 98%, 
followed by Ciherang (97%) and IR64 (95%); 3) Seed 
priming induced positive physiological changes, 
including an increase in chlorophyll content (25-27%), 
proline accumulation (49-47%), α-amylase activity (28-
30%), and water use efficiency (29-37%). 
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