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Abstract: Satellite-based rainfall products such as CHIRPS are essential in 
data-scarce tropical regions, but they require bias correction to improve 
reliability. This study compares five correction techniques—Linear 
Regression, Linear Scaling, a static Correction Factor, a Genetic Algorithm 
(GA)-optimized Correction Factor, and a Python-based Temporal Analysis—
against gauge observations in the Petung Watershed, East Java, Indonesia. The 
GA method optimized nonlinear correction coefficient by minimizing RMSE 
through iterative selection and mutation processes. The Temporal Analysis 
applied monthly dynamic scaling using Python scripts to account for seasonal 
rainfall variability. Model performance was assessed using the Nash–Sutcliffe 
Efficiency (NSE), Pearson correlation (R), and the RMSE–Standard Deviation 
Ratio (RSR). Linear Scaling achieved the best results (R = 0.857, NSE = 0.724, 
RSR = 0.547), followed by Linear Regression. The GA-based approach showed 
marginal improvement over the static factor (NSE = 0.658 versus 0.639). 
Temporal Analysis improved correlation (R = 0.813) but showed poor 
performance overall (RSR = 1.425), indicating residual errors exceeding 
natural data variability. While statistical methods performed best in this case, 
the poor results of the complex methods reflect implementation limitations—
rather than inherent inferiority. This study also highlights the importance of 
including RSR alongside conventional metrics to expose residual structures 
often masked by high correlation. 
 
Keywords: Bias correction; Calibration; CHIRPS; Hydrological model; 
Satellite rainfall; Statistical validation 

  

Introduction  
 

Satellite-based precipitation products such as 
CHIRPS (Climate Hazards Group InfraRed Precipitation 
with Station Data) have emerged as critical tools in 
hydrology and climate research, particularly in regions 
with limited in situ rainfall monitoring infrastructure. By 
combining infrared satellite imagery with ground 
station data, CHIRPS offers global rainfall estimates at a 
high spatial and temporal resolution (Funk, Peterson, et 
al., 2015). Nevertheless, research into CHIRPS remains 
challenging due to persistent biases in satellite-derived 
estimates caused by factors such as cloud interference, 
topographical complexity, and gauge sparsity (Dinku et 

al., 2018). A specific challenge arises in correcting 
CHIRPS data for bias, particularly in tropical watersheds 
like Petung, where high variability in rainfall further 
complicates the calibration process. These biases, if not 
properly addressed, can lead to significant errors in 
hydrological modeling and water resource planning. 
This research is novel in combining a comparative 
analysis of both standard and algorithmic bias correction 
methods in a tropical watershed, while also integrating 
the underutilized RSR metric to capture error dispersion 
more comprehensively. 

Although CHIRPS is widely used, it consistently 
underestimates extreme rainfall and overestimates light 
precipitation, leading to inaccuracies in rainfall 
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distribution, especially during seasonal transitions 
(Supari et al., 2016; Bhattacharyya & Sreekesh, 2021). 
Correction methods such as linear regression, linear 
scaling, and optimization-based models (Genetic 
Algorithms) have been proposed to adjust these 
discrepancies. Despite the availability of satellite-based 
rainfall products such as TRMM and GSMaP, 
comparative assessments with CHIRPS remain limited 
in tropical catchments like the Petung Watershed, 
especially in Indonesia. These products sometimes 
outperform CHIRPS under extreme rainfall conditions 
due to different retrieval algorithms and calibration 
strategies (Luo et al., 2019), yet a systematic local-scale 
evaluation and calibration study remains 
underexplored. This study is important because accurate 
satellite rainfall estimation is essential for flood 
forecasting, drought monitoring, and sustainable water 
resource planning in tropical regions with limited 
observation networks like Indonesia. Another 
underexplored parameter is the Root Mean Square Error 
Standard Deviation Ratio (RSR), which offers valuable 
insight into model residual errors but remains 
overlooked in many validation studies (Zeng et al., 2023; 
Bayissa et al., 2017). This study attempts to close these 
gaps by offering a comparative evaluation of five 
correction methods and incorporating key but 
underutilized validation metrics. 

The central problem of this study is the insufficient 
accuracy of raw CHIRPS rainfall estimates for reliable 
hydrological analysis in tropical regions. This leads to 
the formulation of the following hypothesis: different 
correction methods will yield significantly different 
performance levels in reducing CHIRPS bias in rainfall 
estimation. To address this, five correction approaches 
are employed—Linear Regression, Linear Scaling, 
Correction Factor, Correction Factor with Genetic 
Algorithm, and Temporal Analysis using Python. The 
Temporal Analysis method utilizes monthly dynamic 
scaling to adjust for seasonal variability, implemented 
through Python scripting to iteratively calibrate time-
series rainfall data. This research contributes to the 
literature by providing a systematic performance 
comparison using statistical indicators such as NSE, R, 
and RSR, while highlighting the calibration challenges 
and trade-offs associated with each method. 

The primary objective of this study is to compare 
the performance of five bias correction techniques for 
CHIRPS satellite rainfall data against ground-based 
observations in the Petung Watershed, Pasuruan 
Regency. The methodology includes bias correction 
using both statistical and optimization techniques, 
temporal analysis for dynamic variability, and 
performance validation using key statistical metrics 
(NSE, R, RSR). By addressing both the lack of local 
CHIRPS calibration studies and the limited use of RSR 

in validation, this study fills a unique research gap that 
links spatial bias correction with improved error 
structure evaluation. Visual interpretations through 
scatter plots are also included to highlight data 
dispersion and correction accuracy. Ultimately, this 
study seeks to recommend the most effective and 
practical correction method for improving CHIRPS 
rainfall estimates in hydrologically complex and data-
scarce environments. 
 

Method 
  

This study was conducted in the Petung Watershed 
(DAS Petung), located in Pasuruan Regency, East Java 
Province, Indonesia. The Petung Watershed covers an 
area of 141.729 km² and is equipped with one water level 
monitoring station, namely the Automatic Water Level 
Recorder (AWLR) Sekar Putih, as well as three rainfall 
observation stations: Oro-Oro Pule, Puspo, and Tutur. 
The observed rainfall data from these stations serve as 
reference data for calibrating CHIRPS satellite rainfall 
estimates, allowing for an evaluation of the feasibility 
and accuracy of using CHIRPS satellite rainfall data in 
the Petung Watershed. 

 

 
Figure 1. Petung Watershed 

 
Data 

The data required for this study consist of rainfall 
data from ground observation stations, obtained from 
relevant agencies, and CHIRPS satellite rainfall data, 
which were acquired from the Google Earth Engine 
platform. The three rainfall observation stations: Oro-
Oro Pule (elevation: 770 m), Puspo (elevation: 960 m), 
and Tutur (elevation: 1125 m) are present at varying 
elevations that may influence rainfall intensity. 
Observational data were available from 2004 to 2023, 
although some minor data gaps (<3%) were identified 
and handled through linear interpolation.  
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Models 
This study employed five methods in the correction 

analysis of CHIRPS satellite rainfall data, namely: 
 

 
Figure 2. Flowchart of the CHIRPS rainfall data evaluation 

methodology in the Petung Watershed 

 
Linear Regression 

Linear Regression Analysis is a fundamental 
method for calibrating CHIRPS satellite rainfall data 
using ground-based observations, especially in areas 
with sparse measurements like the Petung Watershed. 
By applying the least squares method, a regression 
equation is developed to adjust satellite estimates and 
reduce systematic biases (Funk, Verdin, et al., 2015; Guo 
et al., 2017). The calibration effectiveness is evaluated 
through Nash-Sutcliffe Efficiency (NSE), correlation 
coefficient (R), and Root Mean Square Error Standard 
Deviation Ratio (RSR), where higher NSE and R, 
coupled with lower RSR, indicate successful error 
reduction (Hordofa et al., 2021). This method’s 
simplicity, combined with its ability to capture local 
climatic relationships, supports its reliability for 
improving satellite rainfall estimates in hydrological 
studies. 

 
Linear Scaling 

Linear Scaling Analysis is a bias correction 
technique that adjusts CHIRPS satellite rainfall estimates 
based on the ratio between observed and satellite mean 
rainfall, addressing systematic biases while preserving 
temporal variability (Dlamini et al., 2024). This method 
proportionally corrects satellite rainfall data without 
altering the natural sequence of rainfall events. Its 
effectiveness is validated using NSE, R, and RSR, with 
results showing improved correlation and predictive 
accuracy while maintaining rainfall pattern consistency 
(M. W. Kimani et al., 2018). Linear Scaling is thus 
recognized as a practical and efficient approach for 
large-scale bias correction of satellite rainfall datasets. 

 
 

Correction Factor 
Correction Factor Analysis uses a single static 

coefficient, calculated from the ratio of total observed to 
CHIRPS rainfall, to uniformly adjust satellite estimates 
across the study period (Ningrum et al., 2025). While this 
method effectively corrects systematic biases in total 
rainfall, its inability to account for temporal variability 
limits its accuracy in areas with seasonal rainfall 
fluctuations (Dinku et al., 2018). Although validation 
through NSE and R indicates performance 
improvements, static correction often fails during wet or 
dry seasons, suggesting that dynamic or region-specific 
methods may be required for more precise calibration 
(Gumindoga et al., 2019). 

 
Correction Factor with Genetic Algorithm 

Correction Factor with Genetic Algorithm Analysis 
integrates Genetic Algorithm (GA) optimization to 
determine the most effective correction factor by 
iteratively exploring possible solutions using selection, 
crossover, and mutation processes (Kouchi et al., 2017). 
This approach addresses nonlinear relationships often 
missed by static methods. Performance evaluation using 
NSE, R, and RSR confirms that GA optimization 
improves calibration accuracy and reduces error 
compared to traditional correction factors, although it 
requires higher computational resources (Gyawali et al., 
2022). This method offers a robust alternative for 
correcting satellite rainfall data in hydrologically 
complex regions (Rajkovic et al., 2017). 

 
Temporal Analysis 

Temporal Analysis with Python applies dynamic, 
time-step-based corrections to address seasonal and 
temporal rainfall variability, with Python’s 
programming flexibility enabling iterative calibration 
and time-series analysis (Habib et al., 2014). By 
aggregating data at daily to seasonal scales, this method 
targets both short-term fluctuations and long-term 
rainfall trends (Hordofa et al., 2021). Visualization of 
corrected time series in Python, combined with 
statistical evaluation using NSE, R, and RSR, supports 
assessment of calibration improvements (Muthoni et al., 
2019). This approach enhances model adaptability to 
rainfall variability, making it valuable for hydrological 
forecasting and water resource management (Usman et 
al., 2018). 

 
Statistical Indicators 
Nash-Sutcliffe Efficiency (NSE) 

The Nash-Sutcliffe Efficiency (NSE) test is used to 
evaluate the accuracy of the relationship between 
observed and modeled data. The NSE can be calculated 
using the following formula. 
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Formula: 

 

𝑁𝑆𝐸 = 1 −
Ʃ𝑖=1

𝑁 (𝑃𝑖−𝑄𝑖)2

Ʃ𝑖=1
𝑁 (𝑃𝑖−𝑃𝑙)2                                                                (1) 

 
Description: 
Pi = observed data 
Qi = estimated (modeled) data 
Pl = mean of observed data 
N = number of data points 

 
Table 1. Nash-Sutchliffe Efficiency (NSE) Values 
(Moriasi et al., 2007) 

 
Correlation Coefficient (R) 

The correlation coefficient (R) test determines the 
strength of the linear relationship between two 
variables. The value of the correlation coefficient ranges 
from -1 to 1 (Soewarno, 1995). The correlation coefficient 
can be calculated using the following equation: 

 

𝑅 =  
𝑁 ∑ 𝑃𝑖𝑄𝑖−𝑁

𝑖=1 ∑ 𝑃𝑖𝑥 ∑ 𝑄𝑖
𝑁
𝑖=1

𝑁

𝑖=1

√𝑁 ∑ 𝑃𝑖
2−(∑ 𝑃𝑖)2𝑁

𝑖=1

𝑁

𝑖=1
√𝑁 ∑ 𝑄𝑖

2−(∑ 𝑄𝑖)2𝑁

𝑖=1

𝑁

𝑖=1

                              (2) 

 
Description: 
Pi = observed data 
Qi = estimated data 
N = number of data points 
 

Table 2. Correlation Coefficient Values (Sugiyono, 2021) 
Coefficient Interval Interpretation 

0.00 – 0.199 Very Low 

0.20 – 0.399 Low 
0.40 – 0.599 Moderate 

0.60 – 0.799 Strong 

0.80 – 1.000 Very Strong 

 

Root Mean Square Error Standard Deviation Ratio (RSR) 
The Root Mean Square Error Standard Deviation 

Ratio (RSR) is a widely used statistical indicator for 
evaluating the performance of hydrological models and 
satellite data corrections. RSR integrates the Root Mean 
Square Error (RMSE) and the standard deviation of 
observed data, thereby standardizing the RMSE relative 
to the variability of the observed dataset. The formula 
for RSR is expressed as: 

 

𝑅𝑆𝑅 =  
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
                                                          (3) 

where RMSE is the root mean square error between 
predicted and observed values, and STDEV_obs is the 
standard deviation of observed data. The RSR value 
ranges from 0 (perfect model performance) upward, 
with lower values indicating better model accuracy and 
predictive capability. In general, RSR ≤ 0.5 reflects very 
good performance, while RSR > 0.7 indicates 
unsatisfactory model performance (Moriasi et al., 2007). 

 

Results and Discussion 
 
Rainfall Data Quality Assessment 

The rainfall data used in this study were first 
subjected to data quality analysis, including consistency 
tests (RAPS method and double mass curve), 
stationarity tests (F-test and T-test), and persistence 
tests. These tests are necessary to assess the suitability of 
the data for analysis. Based on the results of these 
analyses, the data were found to be consistent and 
originating from the same population (homogeneous). 
Similar rainfall variability patterns in Indonesian 
tropical basins have also been reported in previous 
studies, reinforcing the importance of robust data 
quality evaluation before calibration (Zaini et al., 2023). 
A bibliometric review of STEM‑related environmental 
data processing indicates an increasing emphasis on 
dynamic temporal modelling in tropical regions (Laksita 
et al., 2024). 

 
Bias Correction of CHIRPS Satellite Rainfall Data 
Linear Regression Analysis 

The evaluation of CHIRPS satellite rainfall using 
the Linear Regression Method shows a strong 
correlation with ground observations (R = 0.841) and 
good predictive accuracy (NSE = 0.702), supported by an 
acceptable error level (RSR = 0.608). These results 
confirm CHIRPS’s potential for representing rainfall in 
the Petung Watershed. However, the scatter plot 
indicates that CHIRPS tends to overestimate during high 
rainfall events, revealing limitations of the linear 
regression approach in capturing extreme variability. 
While more advanced correction techniques could 
improve accuracy, this method offers a practical and 
reliable baseline for CHIRPS calibration in data-scarce 
regions (Kimani et al., 2017; Belay et al., 2019). The 
consistency of the regression line and the clustering of 
points along it demonstrate the robustness of the linear 
model in general rainfall conditions. Yet, discrepancies 
at the upper tail suggest the model’s inadequacy in 
handling peak rainfall outliers, which may lead to 
hydrological misinterpretation. Nevertheless, 
combining this method with temporal or non-linear 
corrections could enhance performance under dynamic 
climate variability. 
 

NSE Properties Value 

0.75 < NSE ≤ 1.00 Very Good 

0.65 < NSE ≤ 0.75 Good 
0.50 < NSE ≤ 0.65 Satisfactory 

NSE ≤ 0.50 Unsatisfactory 
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Figure 3. Calibration of CHIRPS satellite rainfall data with 

linear regression in 20 years (2004–2023) 

 
Linear Scaling Analysis 

The application of the Linear Scaling Method 
significantly improved the calibration of CHIRPS 
satellite rainfall data, as evidenced by the higher Nash-
Sutcliffe Efficiency (NSE = 0.724), strong correlation 
coefficient (R = 0.857), and reduced residual errors (RSR 
= 0.547). The scatter plot illustrates a consistent 
alignment of CHIRPS estimates with ground 
observations, confirming the method’s effectiveness in 
correcting mean bias while preserving rainfall 
variability. This performance surpasses typical 
outcomes from alternative techniques such as quantile 
mapping, as reported in previous studies (Gumindoga 
et al., 2019; Goshime et al., 2019). Although some 
dispersion remains at higher rainfall levels, indicating 
residual error during extreme events, Linear Scaling 
maintains a balance between computational simplicity 
and calibration accuracy, making it a practical solution 
for semi-tropical regions with limited ground 
observations (Aadhar et al., 2017). Simpler statistical 
frameworks have been shown to enhance analytical 
clarity in applied environmental modelling (Arisa et al., 
2021). 
 

 
Figure 4. Calibration of CHIRPS satellite rainfall data with 

linear scaling in 20 years (2004–2023) 

 

Correction Factor Analysis 
The scatter plot of the Correction Factor Method 

shows a strong correlation (R = 0.838) between CHIRPS 

satellite rainfall and ground observations, yet the 
moderate NSE (0.639) and relatively high RSR (0.680) 
indicate that significant residual errors persist, 
especially at higher rainfall levels. This method’s 
uniform adjustment approach fails to address temporal 
variability and extremes, as reflected in the increasing 
data scatter seen in the graph. Although 
computationally simple and widely used, the Correction 
Factor Method proves less effective in refining CHIRPS 
data compared to more adaptive correction techniques, 
highlighting the need for dynamic or hybrid methods to 
improve calibration accuracy in regions with complex 
rainfall patterns. 
 

 
Figure 5. Calibration of CHIRPS satellite rainfall data with 

correction factor in 20 years (2004–2023) 
 

Correction Factor with Genetic Algorithm Analysis 
 

 
Figure 6. Calibration of CHIRPS satellite rainfall data with 
correction factor and genetic algorithm in 20 years (2004–

2023) 

 
The Correction Factor with Genetic Algorithm (GA) 

method achieved a modest calibration improvement, 
with NSE increasing to 0.658 and correlation coefficient 
(R) reaching 0.848, indicating a strong yet only slightly 
enhanced relationship compared to the basic correction 
factor approach. The scatter plot illustrates persistent 
data dispersion, particularly at mid-to-high rainfall 
levels, reflected in the relatively high residual error (RSR 
= 0.690). These results suggest that while GA 
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optimization slightly improves calibration, its 
standalone effectiveness remains limited, consistent 
with prior findings that optimization techniques yield 
incremental gains when not integrated with hybrid 
approaches (Gu et al., 2024; Talari et al., 2015). Thus, 
although GA-based optimization contributes to error 
reduction, its utility in satellite rainfall calibration 
appears constrained in complex hydrological conditions 
without additional bias correction or machine learning 
integration. 
 

Temporal Analysis 
 

 
Figure 7. Calibration of CHIRPS satellite rainfall data with 

temporal analysis in 20 years (2004–2023) 

 
The Temporal Analysis Method using Python 

produced a moderate calibration improvement, as 
reflected in an NSE of 0.700 and a correlation coefficient 
(R) of 0.813, indicating reasonable but sub-optimal 
predictive accuracy when compared to previous studies 
such as Zargar et al. (2025) and Khatakho et al. (2024). 
The scatter plot reveals a positive relationship between 
CHIRPS rainfall estimates and observed rainfall, but 
with substantial dispersion at mid-to-high rainfall 
intensities. This dispersion contributes to the notably 
high RSR value (1.425), highlighting significant residual 
errors despite improved correlation. Similar challenges 
of error persistence have been noted in earlier temporal 
calibration research, particularly during extreme rainfall 
events (Bedada, 2025). While Python-based temporal 
corrections improve data alignment, the method’s 
inability to reduce error variance suggests that 
integrating temporal analysis with bias correction or 

machine learning techniques could yield more reliable 
calibration outcomes (Sriwongsitanon et al., 2023). 
 

Best Results from CHIRPS Satellite Correction 
The comparative evaluation of five correction 

methods reveals that the Linear Scaling Method offers 
the best calibration performance for CHIRPS satellite 
rainfall data, as indicated by the highest correlation (R = 
0.857) and the lowest residual error (RSR = 0.547), while 
maintaining good predictive accuracy (NSE = 0.724). 
Similarly, Linear Regression achieved strong results 
with R = 0.841 and NSE = 0.702, confirming its 
effectiveness in reducing bias, though slightly less 
efficient than Linear Scaling. In contrast, methods such 
as the Correction Factor and its optimization using the 
Genetic Algorithm showed only moderate 
improvements, with NSE values of 0.639 and 0.658 
respectively, suggesting limited capacity to correct 
temporal variability or extreme rainfall. The Temporal 
Analysis Method, despite reaching R = 0.813 and NSE = 
0.700, exhibited the highest residual error (RSR = 1.425), 
indicating significant dispersion and reduced reliability 
in minimizing prediction errors. However, the RSR 
value of 1.425 exceeds the threshold of 1.0, which, 
according to Moriasi et al. (2007), indicates a statistically 
unacceptable model. Such a high RSR means the 
prediction error (RMSE) surpasses the variability of the 
observed data itself—rendering the model less effective 
than a baseline mean predictor. This critical outcome 
underscores that despite moderate R and NSE values, 
the method cannot be considered reliable for practical 
calibration without further refinement. These results 
demonstrate that simple, statistically based methods like 
Linear Scaling and Linear Regression are more practical 
and effective for CHIRPS calibration in regions with 
limited observational data, outperforming more 
complex optimization and temporal correction 
techniques. These comparative outcomes are also in line 
with recent JPPIPA studies indicating that simple 
statistical approaches frequently outperform 
algorithmic and temporal corrections in tropical 
hydrological applications (Virgota et al., 2024). 
Comparable studies in Indonesian contexts highlight 
that method adaptation is critical in tropical watershed 
environments (Istiyati et al., 2023).

 
Table 3. Summary of CHIRPS Satellite Rainfall Correction Results Using Different Calibration Methods 

Method 
NSE R RSR 

Value Interpretation Value Interpretation Value Interpretation 

Linear Regression 0.702 Good 0.841 Very Strong 0.608 Acceptable 
Linear Scaling 0.724 Good 0.857 Very Strong 0.547 Acceptable 

Correction Factor 0.639 Moderate 0.838 Very Strong 0.680 Marginal 

Correction Factor with GA 0.658 Good 0.849 Very Strong 0.690 Marginal 
Temporal Analysis 0.700 Good 0.813 Very Strong 1.425 Unacceptable 
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Conclusion  

 
This study compared five correction methods—

Linear Regression, Linear Scaling, a static Correction 
Factor, a GA-Optimized Correction Factor, and 
Temporal Analysis—for bias correction of CHIRPS 
satellite rainfall data in the Petung Watershed. Among 
these, Linear Scaling showed the highest overall 
performance (R = 0.857, NSE = 0.724, RSR = 0.547), with 
the lowest residual error, making it the most accurate 
and reliable method in this study. Although Linear 
Regression also demonstrated good predictive accuracy 
(NSE = 0.702) and strong correlation (R = 0.841), it had a 
significantly higher residual error (RSR = 0.608) than 
Linear Scaling, indicating less effective error 
minimization. The GA-based method provided only 
marginal improvements over the static correction factor. 
Temporal Analysis achieved decent correlation (R = 
0.813) and NSE (0.700) but failed to meet statistical 
reliability due to a very poor RSR (1.425), which exceeds 
the acceptable threshold (> 1.0), indicating that the 
model performs worse than simply using the observed 
mean. In summary, simple statistical correction methods 
proved more practical and effective than optimization-
based or temporal approaches in this case. These 
findings emphasize the importance of considering RSR 
alongside traditional metrics for a more holistic 
evaluation. Future research should integrate physical 
hydrological modeling or machine learning to further 
improve rainfall calibration accuracy. 
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