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Introduction

Abstract: Satellite-based rainfall products such as CHIRPS are essential in
data-scarce tropical regions, but they require bias correction to improve
reliability. This study compares five correction techniques—Linear
Regression, Linear Scaling, a static Correction Factor, a Genetic Algorithm
(GA)-optimized Correction Factor, and a Python-based Temporal Analysis—
against gauge observations in the Petung Watershed, East Java, Indonesia. The
GA method optimized nonlinear correction coefficient by minimizing RMSE
through iterative selection and mutation processes. The Temporal Analysis
applied monthly dynamic scaling using Python scripts to account for seasonal
rainfall variability. Model performance was assessed using the Nash-Sutcliffe
Efficiency (NSE), Pearson correlation (R), and the RMSE-Standard Deviation
Ratio (RSR). Linear Scaling achieved the best results (R = 0.857, NSE = 0.724,
RSR = 0.547), followed by Linear Regression. The GA-based approach showed
marginal improvement over the static factor (NSE = 0.658 versus 0.639).
Temporal Analysis improved correlation (R = 0.813) but showed poor
performance overall (RSR = 1.425), indicating residual errors exceeding
natural data variability. While statistical methods performed best in this case,
the poor results of the complex methods reflect implementation limitations —
rather than inherent inferiority. This study also highlights the importance of
including RSR alongside conventional metrics to expose residual structures
often masked by high correlation.

Keywords: Bias correction; Calibration; CHIRPS; Hydrological model;

Satellite rainfall; Statistical validation

al., 2018). A specific challenge arises in correcting
CHIRPS data for bias, particularly in tropical watersheds

Satellite-based precipitation products such as
CHIRPS (Climate Hazards Group InfraRed Precipitation
with Station Data) have emerged as critical tools in
hydrology and climate research, particularly in regions
with limited in situ rainfall monitoring infrastructure. By
combining infrared satellite imagery with ground
station data, CHIRPS offers global rainfall estimates at a
high spatial and temporal resolution (Funk, Peterson, et
al., 2015). Nevertheless, research into CHIRPS remains
challenging due to persistent biases in satellite-derived
estimates caused by factors such as cloud interference,
topographical complexity, and gauge sparsity (Dinku et

How to Cite:

like Petung, where high variability in rainfall further
complicates the calibration process. These biases, if not
properly addressed, can lead to significant errors in
hydrological modeling and water resource planning.
This research is novel in combining a comparative
analysis of both standard and algorithmic bias correction
methods in a tropical watershed, while also integrating
the underutilized RSR metric to capture error dispersion
more comprehensively.

Although CHIRPS is widely used, it consistently
underestimates extreme rainfall and overestimates light
precipitation, leading to inaccuracies in rainfall
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distribution, especially during seasonal transitions
(Supari et al., 2016; Bhattacharyya & Sreekesh, 2021).
Correction methods such as linear regression, linear
scaling, and optimization-based models (Genetic
Algorithms) have been proposed to adjust these
discrepancies. Despite the availability of satellite-based
rainfall products such as TRMM and GSMaP,
comparative assessments with CHIRPS remain limited
in tropical catchments like the Petung Watershed,
especially in Indonesia. These products sometimes
outperform CHIRPS under extreme rainfall conditions
due to different retrieval algorithms and calibration
strategies (Luo et al., 2019), yet a systematic local-scale
evaluation  and  calibration  study  remains
underexplored. This study is important because accurate
satellite rainfall estimation is essential for flood
forecasting, drought monitoring, and sustainable water
resource planning in tropical regions with limited
observation networks like Indonesia. Another
underexplored parameter is the Root Mean Square Error
Standard Deviation Ratio (RSR), which offers valuable
insight into model residual errors but remains
overlooked in many validation studies (Zeng et al., 2023;
Bayissa et al., 2017). This study attempts to close these
gaps by offering a comparative evaluation of five
correction methods and incorporating key but
underutilized validation metrics.

The central problem of this study is the insufficient
accuracy of raw CHIRPS rainfall estimates for reliable
hydrological analysis in tropical regions. This leads to
the formulation of the following hypothesis: different
correction methods will yield significantly different
performance levels in reducing CHIRPS bias in rainfall
estimation. To address this, five correction approaches
are employed —Linear Regression, Linear Scaling,
Correction Factor, Correction Factor with Genetic
Algorithm, and Temporal Analysis using Python. The
Temporal Analysis method utilizes monthly dynamic
scaling to adjust for seasonal variability, implemented
through Python scripting to iteratively calibrate time-
series rainfall data. This research contributes to the
literature by providing a systematic performance
comparison using statistical indicators such as NSE, R,
and RSR, while highlighting the calibration challenges
and trade-offs associated with each method.

The primary objective of this study is to compare
the performance of five bias correction techniques for
CHIRPS satellite rainfall data against ground-based
observations in the Petung Watershed, Pasuruan
Regency. The methodology includes bias correction
using both statistical and optimization techniques,
temporal analysis for dynamic variability, and
performance validation using key statistical metrics
(NSE, R, RSR). By addressing both the lack of local
CHIRPS calibration studies and the limited use of RSR
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in validation, this study fills a unique research gap that
links spatial bias correction with improved error
structure evaluation. Visual interpretations through
scatter plots are also included to highlight data
dispersion and correction accuracy. Ultimately, this
study seeks to recommend the most effective and
practical correction method for improving CHIRPS
rainfall estimates in hydrologically complex and data-
scarce environments.

Method

This study was conducted in the Petung Watershed
(DAS Petung), located in Pasuruan Regency, East Java
Province, Indonesia. The Petung Watershed covers an
area of 141.729 km? and is equipped with one water level
monitoring station, namely the Automatic Water Level
Recorder (AWLR) Sekar Putih, as well as three rainfall
observation stations: Oro-Oro Pule, Puspo, and Tutur.
The observed rainfall data from these stations serve as
reference data for calibrating CHIRPS satellite rainfall
estimates, allowing for an evaluation of the feasibility
and accuracy of using CHIRPS satellite rainfall data in
the Petung Watershed.
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Figure 1. Petung Watershed

Data

The data required for this study consist of rainfall
data from ground observation stations, obtained from
relevant agencies, and CHIRPS satellite rainfall data,
which were acquired from the Google Earth Engine
platform. The three rainfall observation stations: Oro-
Oro Pule (elevation: 770 m), Puspo (elevation: 960 m),
and Tutur (elevation: 1125 m) are present at varying
elevations that may influence rainfall intensity.
Observational data were available from 2004 to 2023,
although some minor data gaps (<3%) were identified
and handled through linear interpolation.
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Models
This study employed five methods in the correction
analysis of CHIRPS satellite rainfall data, namely:
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Figure 2. Flowchart of the CHIRPS rainfall data evaluation
methodology in the Petung Watershed

Linear Regression

Linear Regression Analysis is a fundamental
method for calibrating CHIRPS satellite rainfall data
using ground-based observations, especially in areas
with sparse measurements like the Petung Watershed.
By applying the least squares method, a regression
equation is developed to adjust satellite estimates and
reduce systematic biases (Funk, Verdin, et al., 2015; Guo
et al.,, 2017). The calibration effectiveness is evaluated
through Nash-Sutcliffe Efficiency (NSE), correlation
coefficient (R), and Root Mean Square Error Standard
Deviation Ratio (RSR), where higher NSE and R,
coupled with lower RSR, indicate successful error
reduction (Hordofa et al, 2021). This method’s
simplicity, combined with its ability to capture local
climatic relationships, supports its reliability for
improving satellite rainfall estimates in hydrological
studies.

Linear Scaling

Linear Scaling Analysis is a bias correction
technique that adjusts CHIRPS satellite rainfall estimates
based on the ratio between observed and satellite mean
rainfall, addressing systematic biases while preserving
temporal variability (Dlamini et al., 2024). This method
proportionally corrects satellite rainfall data without
altering the natural sequence of rainfall events. Its
effectiveness is validated using NSE, R, and RSR, with
results showing improved correlation and predictive
accuracy while maintaining rainfall pattern consistency
(M. W. Kimani et al., 2018). Linear Scaling is thus
recognized as a practical and efficient approach for
large-scale bias correction of satellite rainfall datasets.
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Correction Factor

Correction Factor Analysis uses a single static
coefficient, calculated from the ratio of total observed to
CHIRPS rainfall, to uniformly adjust satellite estimates
across the study period (Ningrum et al., 2025). While this
method effectively corrects systematic biases in total
rainfall, its inability to account for temporal variability
limits its accuracy in areas with seasonal rainfall
fluctuations (Dinku et al.,, 2018). Although validation
through NSE and R indicates performance
improvements, static correction often fails during wet or
dry seasons, suggesting that dynamic or region-specific
methods may be required for more precise calibration
(Gumindoga et al., 2019).

Correction Factor with Genetic Algorithm

Correction Factor with Genetic Algorithm Analysis
integrates Genetic Algorithm (GA) optimization to
determine the most effective correction factor by
iteratively exploring possible solutions using selection,
crossover, and mutation processes (Kouchi et al., 2017).
This approach addresses nonlinear relationships often
missed by static methods. Performance evaluation using
NSE, R, and RSR confirms that GA optimization
improves calibration accuracy and reduces error
compared to traditional correction factors, although it
requires higher computational resources (Gyawali et al.,
2022). This method offers a robust alternative for
correcting satellite rainfall data in hydrologically
complex regions (Rajkovic et al., 2017).

Temporal Analysis

Temporal Analysis with Python applies dynamic,
time-step-based corrections to address seasonal and
temporal  rainfall  variability, =~ with  Python’s
programming flexibility enabling iterative calibration
and time-series analysis (Habib et al, 2014). By
aggregating data at daily to seasonal scales, this method
targets both short-term fluctuations and long-term
rainfall trends (Hordofa et al., 2021). Visualization of
corrected time series in Python, combined with
statistical evaluation using NSE, R, and RSR, supports
assessment of calibration improvements (Muthoni et al.,
2019). This approach enhances model adaptability to
rainfall variability, making it valuable for hydrological
forecasting and water resource management (Usman et
al., 2018).

Statistical Indicators
Nash-Sutcliffe Efficiency (NSE)

The Nash-Sutcliffe Efficiency (INSE) test is used to
evaluate the accuracy of the relationship between
observed and modeled data. The NSE can be calculated
using the following formula.
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Formula:
1 _ Eﬁvzl(Pi—Qi)z
NSE =1 -3 200 (1)
Description:
Pi = observed data
Qi = estimated (modeled) data
P1 = mean of observed data
N = number of data points

Table 1. Nash-Sutchliffe Efficiency (NSE) Values

(Moriasi et al., 2007)

NSE Properties Value
0.75 <NSE <1.00 Very Good
0.65 <NSE<0.75 Good
0.50 < NSE < 0.65 Satisfactory
NSE < 0.50 Unsatisfactory

Correlation Coefficient (R)

The correlation coefficient (R) test determines the
strength of the linear relationship between two
variables. The value of the correlation coefficient ranges
from -1 to 1 (Soewarno, 1995). The correlation coefficient
can be calculated using the following equation:

N
NI PO )PS0
=

R= )
N 2_(yN N 2_yN o
JNzizlpl (Zi=1pl)2\/Nzi:1Ql (Zi=1Q1)2
Description:
P = observed data
Qi = estimated data
N = number of data points

Table 2. Correlation Coefficient Values (Sugiyono, 2021)

Coefficient Interval Interpretation
0.00 - 0.199 Very Low
0.20 - 0.399 Low
0.40 - 0.599 Moderate
0.60 - 0.799 Strong
0.80 - 1.000 Very Strong

Root Mean Square Error Standard Deviation Ratio (RSR)

The Root Mean Square Error Standard Deviation
Ratio (RSR) is a widely used statistical indicator for
evaluating the performance of hydrological models and
satellite data corrections. RSR integrates the Root Mean
Square Error (RMSE) and the standard deviation of
observed data, thereby standardizing the RMSE relative
to the variability of the observed dataset. The formula
for RSR is expressed as:

RSR = 2% 3)
STDEV gps
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where RMSE is the root mean square error between
predicted and observed values, and STDEV_obs is the
standard deviation of observed data. The RSR value
ranges from 0 (perfect model performance) upward,
with lower values indicating better model accuracy and
predictive capability. In general, RSR < 0.5 reflects very
good performance, while RSR > 0.7 indicates
unsatisfactory model performance (Moriasi et al., 2007).

Results and Discussion

Rainfall Data Quality Assessment

The rainfall data used in this study were first
subjected to data quality analysis, including consistency
tests (RAPS method and double mass curve),
stationarity tests (F-test and T-test), and persistence
tests. These tests are necessary to assess the suitability of
the data for analysis. Based on the results of these
analyses, the data were found to be consistent and
originating from the same population (homogeneous).
Similar rainfall variability patterns in Indonesian
tropical basins have also been reported in previous
studies, reinforcing the importance of robust data
quality evaluation before calibration (Zaini et al., 2023).
A bibliometric review of STEM-related environmental
data processing indicates an increasing emphasis on
dynamic temporal modelling in tropical regions (Laksita
etal., 2024).

Bias Correction of CHIRPS Satellite Rainfall Data
Linear Regression Analysis

The evaluation of CHIRPS satellite rainfall using
the Linear Regression Method shows a strong
correlation with ground observations (R = 0.841) and
good predictive accuracy (NSE = 0.702), supported by an
acceptable error level (RSR = 0.608). These results
confirm CHIRPS's potential for representing rainfall in
the Petung Watershed. However, the scatter plot
indicates that CHIRPS tends to overestimate during high
rainfall events, revealing limitations of the linear
regression approach in capturing extreme variability.
While more advanced correction techniques could
improve accuracy, this method offers a practical and
reliable baseline for CHIRPS calibration in data-scarce
regions (Kimani et al, 2017; Belay et al,, 2019). The
consistency of the regression line and the clustering of
points along it demonstrate the robustness of the linear
model in general rainfall conditions. Yet, discrepancies
at the upper tail suggest the model’s inadequacy in
handling peak rainfall outliers, which may lead to
hydrological misinterpretation. Nevertheless,
combining this method with temporal or non-linear
corrections could enhance performance under dynamic
climate variability.
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Linear Regression Method
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Figure 3. Calibration of CHIRPS satellite rainfall data with
linear regression in 20 years (2004-2023)

Linear Scaling Analysis

The application of the Linear Scaling Method
significantly improved the calibration of CHIRPS
satellite rainfall data, as evidenced by the higher Nash-
Sutcliffe Efficiency (NSE = 0.724), strong correlation
coefficient (R = 0.857), and reduced residual errors (RSR
= 0.547). The scatter plot illustrates a consistent
alignment of CHIRPS estimates with ground
observations, confirming the method’s effectiveness in
correcting mean bias while preserving rainfall
variability. This performance surpasses typical
outcomes from alternative techniques such as quantile
mapping, as reported in previous studies (Gumindoga
et al., 2019; Goshime et al., 2019). Although some
dispersion remains at higher rainfall levels, indicating
residual error during extreme events, Linear Scaling
maintains a balance between computational simplicity
and calibration accuracy, making it a practical solution
for semi-tropical regions with limited ground
observations (Aadhar et al., 2017). Simpler statistical
frameworks have been shown to enhance analytical
clarity in applied environmental modelling (Arisa et al.,
2021).

Lincar Scaling Method
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Figure 4. Calibration of CHIRPS satellite rainfall data with
linear scaling in 20 years (2004-2023)

Correction Factor Analysis
The scatter plot of the Correction Factor Method
shows a strong correlation (R = 0.838) between CHIRPS
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satellite rainfall and ground observations, yet the
moderate NSE (0.639) and relatively high RSR (0.680)
indicate that significant residual errors persist,
especially at higher rainfall levels. This method’s
uniform adjustment approach fails to address temporal
variability and extremes, as reflected in the increasing
data scatter seen in the graph. Although
computationally simple and widely used, the Correction
Factor Method proves less effective in refining CHIRPS
data compared to more adaptive correction techniques,
highlighting the need for dynamic or hybrid methods to
improve calibration accuracy in regions with complex
rainfall patterns.

Correction Factor Method
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Figure 5. Calibration of CHIRPS satellite rainfall data with
correction factor in 20 years (2004-2023)

Correction Factor with Genetic Algorithm Analysis

Corvrection Factor with
Genetic Algorithm Method
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Figure 6. Calibration of CHIRPS satellite rainfall data with
correction factor and genetic algorithm in 20 years (2004~
2023)

The Correction Factor with Genetic Algorithm (GA)
method achieved a modest calibration improvement,
with NSE increasing to 0.658 and correlation coefficient
(R) reaching 0.848, indicating a strong yet only slightly
enhanced relationship compared to the basic correction
factor approach. The scatter plot illustrates persistent
data dispersion, particularly at mid-to-high rainfall
levels, reflected in the relatively high residual error (RSR
= 0.690). These results suggest that while GA
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optimization  slightly —improves calibration, its
standalone effectiveness remains limited, consistent
with prior findings that optimization techniques yield
incremental gains when not integrated with hybrid
approaches (Gu et al., 2024; Talari et al., 2015). Thus,
although GA-based optimization contributes to error
reduction, its utility in satellite rainfall calibration
appears constrained in complex hydrological conditions
without additional bias correction or machine learning
integration.

Temporal Analysis

Temporal Analysis Method with Phyton
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Figure 7. Calibration of CHIRPS satellite rainfall data with
temporal analysis in 20 years (2004-2023)

The Temporal Analysis Method using Python
produced a moderate calibration improvement, as
reflected in an NSE of 0.700 and a correlation coefficient
(R) of 0.813, indicating reasonable but sub-optimal
predictive accuracy when compared to previous studies
such as Zargar et al. (2025) and Khatakho et al. (2024).
The scatter plot reveals a positive relationship between
CHIRPS rainfall estimates and observed rainfall, but
with substantial dispersion at mid-to-high rainfall
intensities. This dispersion contributes to the notably
high RSR value (1.425), highlighting significant residual
errors despite improved correlation. Similar challenges
of error persistence have been noted in earlier temporal
calibration research, particularly during extreme rainfall
events (Bedada, 2025). While Python-based temporal
corrections improve data alignment, the method’s
inability to reduce error variance suggests that
integrating temporal analysis with bias correction or

December 2025, Volume 11, Issue 12, 43-51

machine learning techniques could yield more reliable
calibration outcomes (Sriwongsitanon et al., 2023).

Best Results from CHIRPS Satellite Correction

The comparative evaluation of five correction
methods reveals that the Linear Scaling Method offers
the best calibration performance for CHIRPS satellite
rainfall data, as indicated by the highest correlation (R =
0.857) and the lowest residual error (RSR = 0.547), while
maintaining good predictive accuracy (NSE = 0.724).
Similarly, Linear Regression achieved strong results
with R = 0.841 and NSE = 0.702, confirming its
effectiveness in reducing bias, though slightly less
efficient than Linear Scaling. In contrast, methods such
as the Correction Factor and its optimization using the
Genetic ~ Algorithm  showed only  moderate
improvements, with NSE values of 0.639 and 0.658
respectively, suggesting limited capacity to correct
temporal variability or extreme rainfall. The Temporal
Analysis Method, despite reaching R = 0.813 and NSE =
0.700, exhibited the highest residual error (RSR = 1.425),
indicating significant dispersion and reduced reliability
in minimizing prediction errors. However, the RSR
value of 1.425 exceeds the threshold of 1.0, which,
according to Moriasi et al. (2007), indicates a statistically
unacceptable model. Such a high RSR means the
prediction error (RMSE) surpasses the variability of the
observed data itself —rendering the model less effective
than a baseline mean predictor. This critical outcome
underscores that despite moderate R and NSE values,
the method cannot be considered reliable for practical
calibration without further refinement. These results
demonstrate that simple, statistically based methods like
Linear Scaling and Linear Regression are more practical
and effective for CHIRPS calibration in regions with
limited observational data, outperforming more
complex optimization and temporal correction
techniques. These comparative outcomes are also in line
with recent JPPIPA studies indicating that simple

statistical ~ approaches  frequently = outperform
algorithmic and temporal corrections in tropical
hydrological applications (Virgota et al, 2024).

Comparable studies in Indonesian contexts highlight
that method adaptation is critical in tropical watershed
environments (Istiyati et al., 2023).

Table 3. Summary of CHIRPS Satellite Rainfall Correction Results Using Different Calibration Methods

Method NSE R RSR

Value Interpretation Value Interpretation Value Interpretation
Linear Regression 0.702 Good  0.841 Very Strong  0.608 Acceptable
Linear Scaling 0.724 Good  0.857 Very Strong ~ 0.547 Acceptable
Correction Factor 0.639 Moderate  0.838 Very Strong  0.680 Marginal
Correction Factor with GA 0.658 Good  0.849 Very Strong  0.690 Marginal
Temporal Analysis 0.700 Good  0.813 Very Strong 1425  Unacceptable
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Conclusion

This study compared five correction methods—
Linear Regression, Linear Scaling, a static Correction
Factor, a GA-Optimized Correction Factor, and
Temporal Analysis—for bias correction of CHIRPS
satellite rainfall data in the Petung Watershed. Among
these, Linear Scaling showed the highest overall
performance (R = 0.857, NSE = 0.724, RSR = 0.547), with
the lowest residual error, making it the most accurate
and reliable method in this study. Although Linear
Regression also demonstrated good predictive accuracy
(NSE = 0.702) and strong correlation (R = 0.841), it had a
significantly higher residual error (RSR = 0.608) than
Linear Scaling, indicating less effective error
minimization. The GA-based method provided only
marginal improvements over the static correction factor.
Temporal Analysis achieved decent correlation (R =
0.813) and NSE (0.700) but failed to meet statistical
reliability due to a very poor RSR (1.425), which exceeds
the acceptable threshold (> 1.0), indicating that the
model performs worse than simply using the observed
mean. In summary, simple statistical correction methods
proved more practical and effective than optimization-
based or temporal approaches in this case. These
findings emphasize the importance of considering RSR
alongside traditional metrics for a more holistic
evaluation. Future research should integrate physical
hydrological modeling or machine learning to further
improve rainfall calibration accuracy.
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