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Abstract: This study aims to analyze the spatio-temporal dynamics of land cover for 
estimating the Urban Heat Island (UHI) phenomenon using Google Earth Engine (GEE) 
in Gorontalo City.Multi-temporal Landsat 5/7/8/9 data were processed in GEE to derive 
NDVI, emissivity, and Land Surface Temperature (LST). The UHI index was calculated 
using the statistical threshold formula UHI = Ts − (µ + 0.5α), where values of zero or 
below (≤0) indicate non-UHI areas, while positive values (>0) represent areas affected by 
UHI. A correlation analysis was performed between field temperature, LST, and NDVI. 
Temporally, Gorontalo City exhibits the expansion and intensification of UHI over the 
30-year period. The most evident changes are the increased area of the 0–1 and 1–2 classes 
enveloping the urban area, while the 2–3 class emerges as localized hotspots 
corresponding to areas of highest density. LST increased from 21–56 °C (1995) to 26–58 
°C (2025), while NDVI declined in the city center but remained high in the southern–
western zones and near water bodies. The surface temperature exhibits a strong 
correlation with vegetation conditions and field temperature. The main drivers of these 
dynamics were the increase in impervious surface fractions (asphalt/concrete) and the 
reduction of vegetative cover, which decreased latent heat (evapotranspiration) and 
increased sensible heat. 
 
Keywords: Google Earth Engine; Normalized Difference Vegetation Index; Emissivity; 
Land Surface Temperature; Land Cover; Urban Heat Island 

 
 
Introduction  

 
The Urban Heat Island (UHI) phenomenon refers to 

the condition in which urban areas experience 
significantly higher temperatures compared to their 
surrounding rural environments. This effect arises from 
the accumulation of heat generated by human activities 
and urban development processes, such as 
infrastructure expansion, dense building construction, 
and the conversion of natural land cover into built-up 
areas. Numerous studies (Estoque et al., 2017; Kandel et 
al., 2016; Yang et al., 2016) have identified UHI as a major 
concern in urban climatology due to its direct impact on 
environmental quality, thermal comfort, and urban 
ecosystem sustainability. Furthermore, UHI contributes 
to public health challenges, including heat stress, 
respiratory issues, and increased energy consumption 

caused by the extensive use of air conditioning 
(Bornstein & Lin, 2000; He et al., 2007; Sekertekin et al., 
2016; Tan et al., 2010). 

From a physical standpoint, UHI results from 
modifications in the Earth's surface characteristics 
within urban environments, where natural elements 
such as vegetation and open soil are replaced by low-
albedo materials like asphalt and concrete (Ming et al., 
2024; Scafetta & Ouyang, 2019; Sultana & Satyanarayana, 
2018). These materials have high heat absorption and 
retention capacities, causing surface temperatures to rise 
and persist, particularly at night. Large cities with high 
urban density tend to exhibit more intense UHI effects, 
as increasing building volumes and anthropogenic 
activities amplify localized heat accumulation (Bala et 
al., 2021; Liu et al., 2023; Y. Zhou et al., 2017). 

This condition is also evident in Gorontalo City, 
which has undergone rapid urban growth over the past 
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two decades, driven by continuous infrastructure 
expansion and population increase (BAPPEDA 
Gorontalo City, 2010). The transformation of agricultural 
lands and green open spaces into residential and 
infrastructural zones has significantly altered local land 
cover patterns (BPS Gorontalo City, 2021), leading to 
noticeable fluctuations in local surface temperature 
(Adiningsih et al., 2001; Duka et al., 2020; Sugini, 2014). 
Uncontrolled urban sprawl has further intensified the 
UHI phenomenon (Mirzaei, 2015; Mirzaei et al., 2012), 
suggesting that even if global climate conditions remain 
stable, urban areas will continue to experience rising 
local temperatures (Hassan et al., 2021). 

Land cover transformation plays a crucial role in 
the formation of UHI, as urbanization typically reduces 
vegetative cover, leading to increased surface heat 
(Prayogi et al., 2024; Voogt & Oke, 2003; Weng et al., 
2004). The loss of vegetation diminishes 
evapotranspiration, a natural cooling process that helps 
regulate temperature (Igun, 2017; Kotharkar & Bagade, 
2018; Mora et al., 2017). In the central region of 
Gorontalo City, surface temperatures have been 
recorded at approximately 31–32°C, largely due to the 
scarcity of vegetation, heavy vehicle emissions, and the 
reflection of heat from asphalt and concrete surfaces 
(Koto, 2015) 

In recent years, the use of web-based remote 
sensing technology, particularly through GEE, has 
become increasingly important for studying 
environmental changes. GEE’s access to extensive 
datasets and its ability to process data quickly and 
efficiently have made it an essential tool in 
environmental research (Amani et al., 2020; Bokaie et al., 
2016; Gorelick et al., 2017; Kikon et al., 2016; Tamiminia 
et al., 2020). It has been widely applied in studies 
analyzing environmental phenomena, including the 
Urban Heat Island (UHI) effect (Insan & Rahmi, 2024). 
Temporal thermal data available on the GEE platform 
allow for effective analysis of Land Surface Temperature 
(LST) trends related to UHI (Ravanelli et al., 2018). 

The spatial distribution of LST can be correlated 
with other physical parameters, such as building 
density, vegetation cover, and land use patterns 
(Arnfield, 2003; Bornstein & Lin, 2000; Estoque et al., 
2017; Liu et al., 2023; Ming et al., 2024; Y. Zhou et al., 
2017). However, many previous studies using GEE have 
focused primarily on spatial analysis, often overlooking 
temporal variations that provide insights into the 
evolution of UHI over time. 

Nonetheless, a common constraint in applying 
Google Earth Engine (GEE) to Urban Heat Island (UHI) 
studies is its predominant focus on mapping surface 
temperature distributions, often overlooking temporal 
variations. To address this limitation, the present study 
examines temperature changes spanning a 30-year 
urban development phase in Gorontalo City. Its 

objective is to conduct a spatio-temporal analysis of land 
cover to estimate UHI effects within this region using 
GEE. 

 
Method  
 
Research Location 

The research was conducted in Gorontalo City, 
which is geographically located between 00º 28’ 17” – 00º 
35’ 56” North Latitude and 122º 59’ 44” – 123º 05’ 59” East 
Longitude, with a total area of 64.79 km². The city is 
bordered by Bone Bolango Regency to the north and 
east, Tomini Bay to the south, and Gorontalo Regency to 
the west. The elevation ranges from 0 to 500 meters 
above sea level. The lowland areas account for 
approximately 60–70% of the total area (around 38.87–
45.35 km²), while the hilly areas cover about 30–40% 
(around 19.44–25.92 km²). Gorontalo City has a tropical 
climate with an average temperature ranging from 23°C 
to 32°C and an average annual rainfall between 1,500 
mm and 2,500 mm. 

 
Tools and Materials 

The tools and materials used in this research 
include a computer, ArcGIS software, access to GEE, 
GPS device, smartphone, ATM, and Landsat satellite 
imagery. The satellite data consist of Landsat 5 TM (May 
5), Landsat 7 ETM+ (February 17), Landsat 8 OLI/TRS 
(October 19), and Landsat 9 (May 31), with temporal 
coverage for the years 1995, 2005, 2015, and 2025. 

 
Data Acquisition Technique 

Land cover identification was carried out using 
Landsat satellite imagery through the supervised 
classification method. The classification was divided 
into four categories: built-up land, vegetation, bare land, 
and water bodies. The Normalized Difference 
Vegetation Index (NDVI) and Land Surface 
Temperature (LST) data were extracted computationally 
from Landsat imagery using the Google Earth Engine 
(GEE) platform. Furthermore, field observations were 
conducted at several sample points to verify the 
accuracy of the land cover classification results. 

 
Field Data Collection Technique 

The first stage involved direct observation of the 
physical characteristics of Gorontalo City, including 
urban areas and the distribution of green open spaces. In 
the second stage, all observations were documented 
geospatially using the Global Positioning System (GPS) 
to record coordinates. The collected field data served as 
ground truth to validate the satellite image classification 
results. Validation was performed by comparing and 
matching selected sample points on the imagery with 
actual field conditions. 
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Data Analysis Technique 
a) NDVI Analysis 

The vegetation density map was generated using 
the Normalized Difference Vegetation Index (NDVI), 
which is calculated based on the near-infrared (NIR) and 
red (RED) spectral bands. NDVI values range from −1 to 
+1. A value close to −1 indicates bare soil or areas with 
sparse vegetation, while a value close to +1 represents 
dense vegetation. The NDVI calculation follows 
Equation (1) as described (Ermida et al., 2020) (Equation 
1). 
 
𝑁𝐷𝑉𝐼 = 	!"#$#%&

!"#'#%&
           (1) 

 
Based on the values determined in Equation (2), the 

Proportion of Vegetation (PV) can be calculated, as 
described (Yu et al., 2014). This index is used to illustrate 
the extent to which a specific area is covered by 
vegetation compared to other surface elements, such as 
bare soil, water bodies, or built-up areas. 
 
𝑃𝑉 = ( !&("$!&(")*+

!&("),-$!&(")*+
)
.
        (2) 

 
b) Land Surface Temperature (LST) Analysis 

The process of calculating Land Surface 
Temperature (LST) was conducted using Equations (3) 
and (4). 
1) Spectral Radiance (Lλ) 

Spectral radiance can be obtained from the digital 
number (DN) values of the TIRS band using the 
following equation, as described (Kafer et al., 2019). 
 
Lλ	=	ML	x	Qcal	+	A	 	 	 	 			(3)	
 
Where: Lλ represents the spectral radiance at the top of 
the atmosphere (TOA), expressed in units of 
W/(m²•sr•µm). ML is the multiplicative rescaling factor 
specific to each band, which can be found in the Landsat 
image metadata file. For the TIRS band, this factor has a 
value of 3.342 × 10⁻⁴ W/(m²•sr•µm). QCal denotes the 
digital number (DN) of the band, which ranges from 0 to 
255. AL is the additive rescaling factor, also specific to 
the TIRS band, and is included in the image metadata 
file. 
 
2) Brightness Temperature 

The top-of-atmosphere (TOA) spectral radiance is 
converted into Brightness Temperature (T), expressed in 
degrees Celsius (°C), using Equation (4). The thermal 
conversion constants K1 and K2 for the TIRS band are 
provided in the metadata file accompanying the 
imagery. The formula used for this conversion is 
presented below, as described (Kafer et al., 2019; Weng 
et al., 2004). 
 

𝑇 = /₂

1234!₁#$'56
− 273.15          (4) 

 
Lλ is the spectral radiance derived from Equation (3). K1 
and K2 are the thermal conversion constants for the TIRS 
band, which are listed in the image metadata file 
(Landsat 5: K1 = 607.76 and K2 = 1260.56; Landsat 7: K1 
= 666.09 and K2 = 1282.71; Landsat 8: K1 = 774.8853 and 
K2 = 1321.0789). 
 
3) Land Surface Emissivity (ε) 

The Earth's surface and its various components 
exhibit differences in emissivity. This factor is 
determined using an NDVI-based equation, as described 
in Equation (5) (Sharma et al., 2021). 
 
ε	=	0.004	×	Pv	+	0.986		 	 	 	 			(5)	
 
4) Land Surface Temperature (LST) 

By taking into account the value of Land Surface 
Emissivity (LSE), the Land Surface Temperature (LST) 
can be calculated using Equation (6), as described (Weng 
et al., 2004). 

 
𝐿𝑆𝑇 = 7

45'48 %&₂69:;<	(?)6
       (6) 

 
𝐶. = A	-	B

C
          (7) 

 
Where: λ is the wavelength of the emitted radiation (for 
Landsat 5 and 7: λ = 11.457 µm, and for Landsat 8: λ = 
10.8 µm). T is the brightness temperature derived from 
the Landsat data. ε represents the land surface 
emissivity. C₂ is the second Planck constant, with a value 
of 1.4388 × 10⁻² m•K. h is Planck’s constant, valued at 
6.626 × 10⁻³⁴ J•s. k is the Boltzmann constant, with a 
value of 1.38 × 10⁻²³ J/K. c is the speed of light in a 
vacuum, with a value of 2.998 × 10⁸ m/s. 
 
c) Urban Heat Island (UHI) 

The Urban Heat Island (UHI) value is obtained 
using the following equation, which is calculated based 
on a threshold approach. A positive value indicates the 
presence of a UHI effect, while a negative value (below 
zero) indicates its absence (Rizki et al., 2024). 

 
UHI = Ts − (µ+0,5α)        (8) 
 
Where: UHI: Urban Heat Island intensity (°C), Ts: 
Surface temperature (°C), µ: Mean land surface 
temperature (LST) of the study area (°C), α: Standard 
deviation of the LST values within the study area (°C). 
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Figure 1. Research Flowchart 

 
Result and Discussion 

 
Overall, the 1995 baseline map provides a critical 

benchmark for temporal comparison, serving as a 

quantitative and visual reference to measure the extent, 
rate, and spatial direction of land cover transformations 
in later years (2005, 2015, and 2025). By establishing this 
early reference point, subsequent analyses can more 
accurately interpret the dynamics of urbanization, 
vegetation loss, and land degradation, as well as 
evaluate how human activity has reshaped Gorontalo 
City’s environmental and thermal landscape over time. 
The 2005 map (L7 ETM+) represents a critical transition 
phase, capturing the expansion of built-up areas along 
transportation corridors and settlements, as well as the 
reduction of vegetation in developing zones. Due to the 
SLC-off issue affecting Landsat 7 imagery, gap-filling or 
multi-date composite processing is recommended to 
minimize striping bias and ensure accurate thematic 
mapping. After applying gap-filling corrections, NDVI 
values can be calculated consistently, allowing a reliable  
comparison of land cover changes between 1995 and 
2005. The 2015 map (L8 OLI/TIRS) demonstrates 
significant improvements in radiometric and geometric 
quality, enhancing the distinction between vegetated 
and built-up areas. The OLI sensor provides more stable 
and low-noise imagery compared to previous periods, 
enabling more precise identification of urbanization 
patterns, vegetation degradation, and overall land cover 
dynamics. 

 

 
Figure 2. Landsat image of Gorontal City in 1995-2025. Landsat 5 TM May 5 (a), Landsat 7 ETM+ Feb 17 (b), Landsat 8 OLI/TRS 

Oct 19 (c), and Landsat 9 Mar 28 (d)

(a) (b) 

(c) (d) 
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OLI-based studies in urban areas across Indonesia 
have shown that NDVI is an effective tool for mapping 
vegetation degradation associated with urban 
densification. It helps to clearly identify built-up 
expansion and changes along riverbanks and coastal 
zones. Cloud and shadow masking (QA/Fmask) has 
become a standard preprocessing step prior to 
classification. The 2025 map (L9 OLI-2/TIRS-2) provides 
spectral continuity with OLI (2015) while offering 
improved calibration stability (according to L9 
calibration notices). Since compatibility between 
Landsat 8 and 9 is maintained, direct comparison of 
2015–2025 land-use change trends (e.g., increasing NDBI 
and decreasing NDVI) can be conducted using the same 
preprocessing protocol. 

Based on the NDVI map analysis for 1995, 2005, 
2015, and 2025 in Gorontalo City, the maps represent the 
spatial distribution of vegetation density, classified into 
five value ranges. NDVI values range from –1 to +1, 
where the lowest class (–1 to –0.03) indicates non-
vegetated surfaces such as water bodies and built-up 
areas. The next class (–0.03 to 0.15) represents open or 
barren land with minimal vegetation cover, while the 
intermediate classes (0.15–0.25 and 0.26–0.35) 
correspond to sparse to moderate vegetation, such as 
shrubs and grasslands. The highest class (0.36–1) 
signifies dense and healthy vegetation, typically found 
in forests and fertile plantations. 

 

 
Figure 3. NDVI Classification of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d) 

 
From an ecological perspective, the NDVI class 

distribution provides a baseline depiction of Gorontalo 
City’s environmental condition during each period. 
Areas with high NDVI values play a vital role in 
ecosystem services, including hydrological regulation 
and carbon sequestration, whereas regions with low 

NDVI values tend to be more vulnerable to land 
degradation. The 1995 NDVI map, for example, shows 
relatively dense vegetation in the western-southern and 
parts of the eastern sectors (0.36–1 and 0.26–0.35 classes), 
indicating dense canopies and favorable moisture 
conditions. Conversely, low NDVI areas (–0.03–0.15) are 

(a) (b) 

(c) (d) 
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concentrated in the city center and development 
corridors, reflecting impervious surfaces, open land, or 
sparse vegetation. NDVI in 2005 shows that medium-to-
high vegetation (≥0.26) remained dominant in the 
southern and western parts of Gorontalo City. 

However, low  DVI patches expanded noticeably in 
the city center and along major access corridors. 
Although the map contains the typical SLC-off striping 
artifact of Landsat 7, the spatial trends remain clearly 
interpretable. By 2015, NDVI values in the central area 
decreased further, with the –0.03–0.15 and 0.15–0.25 
classes expanding, while areas with high vegetation 
cover became more limited. This pattern aligns with the 
densification of residential settlements and the 
conversion of green spaces, which reduced canopy 
coverage and evapotranspiration, thereby weakening 
the vegetation index (Zha et al., 2003). 

By 2025, areas with high vegetation (NDVI 0.36–1) 
appear prominently again in the southern, western, and 
eastern regions, while low NDVI values continue to 
dominate the central and northern parts of the city. This 
pattern reflects the contrast between urban and non-
urban landscapes, where natural and agricultural areas 
maintain high NDVI values, while built-up and bare 

lands remain within the lower NDVI range (Pettorelli et 
al., 2011; Huete et al., 2002). The relationship between 
NDVI and land surface temperature (LST) is inversely 
proportional, where dense vegetation acts as a natural 
cooling agent through the process of evapotranspiration 
that absorbs heat energy, while open or built-up areas 
tend to reflect more radiation as heat, thereby 
intensifying the urban heat island effect. 

Based on Figure 4, the histogram of NDVI value 
distribution clearly illustrates the interannual dynamics 
of vegetation. In 1995, the histogram exhibits a bimodal 
pattern with peaks around 0.12–0.15 (representing 
sparse vegetation or transitional areas) and 0.32–0.36 
(indicating moderately dense vegetation). This pattern 
reflects a mixed landscape composition between built-
up zones and green areas, highlighting an early stage of 
urban expansion within Gorontalo City, indicating that 
the landscape was still a mixture of built-up areas and 
green zones. In 2005, the peak shifted toward a medium–
high NDVI range (0.34–0.38), thus indicating that 
vegetation was still relatively dominant, although the 
tail toward lower NDVI values (water, bare soil, or built-
up areas) remained present.

 

 
Figure 4. Histogram NDVI of Gorontalo City in 1995, 2005, 2015 and 2025

In 2015, the main mode dropped to 0.15–0.20, 
signifying a reduction in canopy density and an increase 
in non-vegetated surfaces due to intensified urban 
densification. By 2025, the histogram became bimodal 
again and more polarized, with one peak at low–

medium NDVI values (0.12–0.18) representing urban 
cores and transitional zones, and another peak at high 
NDVI values (0.43–0.50) reflecting forested or densely 
vegetated plantation areas. 

1995 2005 

2015 2025 
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Figure 5, illustrates a negative correlation between 
NDVI and LST, expressed by the equation LST = 
−15.052•NDVI + 49.358, with R = 0.382 and R² = 0.146. 
This indicates that an increase in NDVI is associated 
with a decrease in surface temperature. Specifically, 
every 0.1-unit increase in NDVI is estimated to reduce 
LST by approximately 1.5 °C. This pattern aligns with 
biophysical theory, which states that vegetation 
canopies enhance evapotranspiration (transferring 
energy into latent heat), provide shading, and generally 
exhibit high emissivity—thereby reducing the amount 
of sensible heat that is emitted back and detected by 
thermal sensors. 

 

 
Figure 5. Correlation Graph between LST and NDVI 
 
Conversely, areas with low NDVI values—typically 

impervious surfaces such as asphalt and concrete—tend 
to have relatively low albedo, limited water retention 
capacity, and restricted ventilation. As a result, these 
areas exhibit higher LST values, contributing to the 
formation of urban heat islands (UHI) (Peng et al., 2012; 
Weng, 2009; D. Zhou et al., 2014). 

Figure 6. The 1995 LST analysis shows that surface 
temperatures ranged between 21–56°C. Lower 
temperatures (21–30°C) were mostly found in forested 
areas and water bodies, particularly in the southern and 
western parts of the city. In contrast, higher 
temperatures (43–56°C) were dominant in the 
downtown area of Gorontalo and its surroundings, 
indicating a concentration of residential settlements and 
extensive impervious surfaces. These findings suggest 
that even in the early stage of urbanization, the UHI 
effect had already begun to emerge in the city center. 
This aligns with the concept of UHI, which states that 
urban centers tend to be warmer due to the dominance 
of impervious surfaces and limited vegetation cover 
(Voogt & Oke, 2003). 

In 2005, the LST distribution ranged from 6–49°C. 
The map indicates an expansion of areas within the 
medium to high-temperature classes (29–34°C and 34–
49°C), extending toward the suburban regions. Lower 
temperatures (6–19°C) were mainly observed in densely 
vegetated areas and water bodies. Although there were 
data stripes caused by the SLC-off issue in Landsat 7, the 
general trend still shows increasing temperatures in 
urban areas (Sobrino et al., 2004). Subsequently, the 2015 
LST results show a temperature range of 29–50°C. High-
temperature zones (42–50°C) became increasingly 
dominant in the northern and central parts of the city, 
especially in densely populated residential areas. 
Meanwhile, low-temperature zones (29–35°C) remained 
only in heavily vegetated regions in the south and along 
river corridors. This indicates a stronger impact of 
urbanization and a significant reduction in vegetation 
cover, which lessens the ability to mitigate temperature 
increases (Weng et al., 2004) 

By 2025, LST values are projected to range between 
26–58°C. High temperatures (49–58°C) are widespread 
across the city center and expanding urban areas, while 
low temperatures (26–35°C) persist mainly in dense 
vegetation zones and water bodies. This confirms the 
intensification of the UHI phenomenon, with a more 
pronounced thermal contrast distinguishing urban from 
non-urban areas (Y. Zhou et al., 2017). 

Changes in LST during the 1995–2005 period 
indicate an increase in surface temperature within urban 
zones, driven by residential expansion, infrastructure 
development, and vegetation loss in the city core. From 
2005 to 2015, high-temperature areas continued to 
expand, particularly in downtown regions, due to 
population growth and the conversion of green spaces 
into built-up areas. These changes are consistent with 
the trend of increasing UHI in developing cities. Then, 
in the period of 2015–2025, the temperature surge was 
more significant, with the maximum value reaching 
58°C. 

The main causes are massive urbanization, dense 
building concentration, the reduction of green open 
spaces, and the increase in vehicular activity that 
contributes to anthropogenic heat emissions. Vegetated 
areas and water bodies exhibit lower LST values due to 
the cooling effects of evapotranspiration and the high 
heat capacity of water, whereas concrete and asphalt 
surfaces absorb and retain heat for longer periods, 
resulting in higher LST. This phenomenon is consistent 
with global findings showing that large cities tend to 
experience higher LST compared to their surrounding 
areas (Peng et al., 2012). 
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Figure 6. LST of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d) 
 

Spatial analysis of LST over the 30-year period 
(1995–2025) indicates a significant increase in surface 
temperature alongside the growth of Gorontalo City. 
The most substantial change occurred during the 2015–
2025 period, highlighting the acceleration of 
urbanization and the decline of natural vegetation cover. 
This phenomenon supports the theory that the 
conversion of vegetated land into built-up areas is the 
primary factor driving the increase in LST within urban 
environments. The increase in LST in urban areas 
highlights the need for spatial planning that emphasizes 
a balance between infrastructure development and the 
provision of green open spaces (Insan & Rahmi, 2024). 

Figure 7, shows a positive correlation between air 
temperature measured in the field (x) and LST (y), 
represented by the linear model y = 0.4132x + 14.664. The 
correlation coefficient (R) of 0.693 indicates a strong 
relationship, while the coefficient of determination (R² =  

0.480) suggests that approximately 48% of the variation 
in LST can be explained by variations in air temperature. 
In other words, nearly half of the changes in LST move 
in the same direction as changes in observed air 
temperature, while the remainder is influenced by other 
factors. The regression slope of 0.413 means that for 
every 1°C increase in air temperature, the average LST 
rises by approximately 0.41°C. A regression slope of <1 
is physically reasonable, as LST and air temperature 
measured at an altitude of around 1.5–2 meters are not 
identical quantities and respond differently to surface 
energy balance processes. 

It is physically acceptable because LST and air 
temperature measured at a height of approximately 1.5–
2 meters are not identical quantities and respond 
differently to the surface energy balance. The differences 
between them are influenced by several factors: 
(1) the difference in observation scale — LST represents 

(a) (b) 

(c) (d) 



Jurnal Penelitian Pendidikan IPA (JPPIPA) December 2025, Volume 11 Issue 12, 528-540 
 

536 

the average value of a pixel of about 30 meters, while 
field temperature is a point-based measurement; 
(2) the temporal mismatch between the satellite overpass 
time and the field measurement time; 
(3) variations in surface emissivity and material types; 
and (4) the influence of urban morphology and soil 
moisture. 
 

 
Figure 7. Correlation Graph Between LST and Field 

Temperatur 
 

Figure 8. Based on the analysis results, areas with 
zero or negative values (≤0) indicate regions unaffected 
by the Urban Heat Island (UHI) phenomenon, while 
positive values (>0) represent areas experiencing UHI. 
The affected regions were further classified according to 
the intensity of their UHI values. In 1995, UHI was 
concentrated in the central part of Gorontalo City with 
moderate to high intensity, while forested and water-
covered areas remained relatively cool. By 2005, UHI 
zones expanded along road corridors and newly 
developed residential areas. Despite data gaps caused 
by SLC-off issues, the core–periphery pattern remained 
evident. In 2015, more UHI clusters appeared in densely 
built-up zones, whereas vegetated and aquatic areas 
maintained cooler conditions. By 2025, UHI intensity 
had become significantly stronger in the city center, 
while dense vegetation cover and water bodies 
functioned as local thermal buffers. 

These findings reveal the progressive development 
of UHI in line with the increasing extent and density of 
built-up land (Hassan et al., 2021; Mohajerani et al., 2017; 
Voogt & Oke, 2003; Weng, 2009). The 1995–2005 period 
was characterized by UHI expansion driven by the 
conversion of green land into residential and 
infrastructure areas. The 2005–2015 period 
demonstrated UHI consolidation into distinct heat 
clusters following building densification, reduced 
surface albedo, and limited urban ventilation. Finally, 
the 2015–2025 period experienced UHI intensification, 
triggered by rising anthropogenic heat emissions (from 

vehicles and air conditioning), fragmentation of green 
open spaces, and an increase in impervious surface 
fractions, which reduced evapotranspiration (Imhoff et 
al., 2010; Peng et al., 2012; D. Zhou et al., 2014). 

Non-UHI areas (<0) were observed in regions with 
dense vegetation and water bodies, where 
evapotranspiration and the high heat capacity of water 
helped lower surface temperatures. Moderate UHI 
zones (0–1 to 1–2) were typically found in transitional 
areas—moderately dense residential zones and open 
lands—where the combination of built materials and 
vegetation created a warmer but still balanced surface 
energy state. High UHI intensity (2–3) appeared in the 
city center and densely populated residential areas, 
dominated by asphalt and concrete (low albedo, high 
thermal inertia), low surface moisture, and strong 
anthropogenic heat. These conditions redirected energy 
into sensible heat, resulting in higher and longer-lasting 
surface temperatures (Ullah et al., 2023; Voogt & Oke, 
2003). Between 1995 and 2005, UHI zones (1–2) 
expanded outward from the city core toward suburban 
areas, driven by the conversion of vegetated land into 
built-up zones and improved road connectivity. From an 
energy balance perspective, the growing fraction of 
impervious surfaces reduced latent heat (due to less 
evapotranspiration) while increasing sensible heat (Oke, 
T. R., 1982; Weng, 2009). 

During 2005–2015, the UHI pattern transformed 
from a single hotspot into multiple clustered heat zones 
following urban densification. The influence of urban 
morphology and low-albedo materials became more 
dominant, while fragmented vegetation was no longer 
sufficient to balance daytime peak heat (Voogt & Oke, 
2003; D. Zhou et al., 2014). By 2015–2025, the intensity 
further increased, with the spatial extent of classes 0–1 
and 1–2 expanding, and localized 2–3 hotspots 
persisting or emerging. Besides surface properties, 
anthropogenic heat from vehicles, small industries, and 
air conditioning systems also contributed to excess 
energy, particularly during nighttime. Green zones and 
water bodies remained effective in mitigating local UHI 
effects; however, the fragmentation of green spaces 
reduced the overall cooling effect at the city scale 
(Hassan et al., 2021; Imhoff et al., 2010; Li et al., 2020). 
Temporally, Gorontalo City exhibited both expansion 
and intensification of UHI from 1995 to 2025. The most 
evident changes included the broadening of classes 0–1 
and 1–2, which covered most urban areas, while class 2–
3 hotspots became localized around the highest-density 
pockets. This trend aligns with global findings 
indicating that the proportion of impervious surfaces 
and vegetation cover are the two main controlling 
factors, further influenced by urban morphology and 
anthropogenic heat generation (Chatterjee & Majumdar, 
2022). 
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Figure 8. UHI of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d)

Conclusion 
 

The UHI analysis revealed that pixels with values 
≤0 represented non-UHI zones, while those >0 indicated 
UHI-affected areas with varying intensity. From 1995 to 
2025, Gorontalo City experienced continuous UHI 
expansion and intensification—from initial 
concentration in the city center (1995), spreading along 
transportation corridors and new residential areas 
(2005), forming clustered heat zones in dense built-up 
areas (2015), to intensification in 2025 with localized 
hotspots in the most crowded regions. In contrast, 
densely vegetated and aquatic areas consistently acted 
as thermal buffers. The main driving forces behind these 
dynamics include the increasing proportion of 
impervious surfaces (asphalt/concrete) and decreasing 
vegetation cover, which collectively reduce latent heat 
(evapotranspiration) while increasing sensible heat. 
Additional contributing factors include urban 
morphology (building density and height ratio that 
restrict airflow), low surface albedo, and anthropogenic 

heat from transportation, air conditioning, and 
commercial activity. These combined factors explain the 
dominance of moderate UHI classes (0–1 and 1–2) across 
urban areas and the emergence of localized hotspots (2–
3) in the densest sectors of the city. 
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