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Introduction

The Urban Heat Island (UHI) phenomenon refers to
in which urban areas experience

the condition

Abstract: This study aims to analyze the spatio-temporal dynamics of land cover for
estimating the Urban Heat Island (UHI) phenomenon using Google Earth Engine (GEE)
in Gorontalo City.Multi-temporal Landsat 5/7/8/9 data were processed in GEE to derive
NDVI, emissivity, and Land Surface Temperature (LST). The UHI index was calculated
using the statistical threshold formula UHI = Ts — (p + 0.5a), where values of zero or
below (<0) indicate non-UHI areas, while positive values (>0) represent areas affected by
UHI. A correlation analysis was performed between field temperature, LST, and NDVL
Temporally, Gorontalo City exhibits the expansion and intensification of UHI over the
30-year period. The most evident changes are the increased area of the 0-1 and 1-2 classes
enveloping the urban area, while the 2-3 class emerges as localized hotspots
corresponding to areas of highest density. LST increased from 21-56 °C (1995) to 26-58
°C (2025), while NDVI declined in the city center but remained high in the southern-
western zones and near water bodies. The surface temperature exhibits a strong
correlation with vegetation conditions and field temperature. The main drivers of these
dynamics were the increase in impervious surface fractions (asphalt/concrete) and the
reduction of vegetative cover, which decreased latent heat (evapotranspiration) and
increased sensible heat.

Keywords: Google Earth Engine; Normalized Difference Vegetation Index; Emissivity;
Land Surface Temperature; Land Cover; Urban Heat Island

caused by the extensive use of air conditioning
(Bornstein & Lin, 2000; He et al., 2007; Sekertekin et al.,
2016; Tan et al., 2010).

From a physical standpoint, UHI results from
modifications in the Earth's surface characteristics

significantly higher temperatures compared to their
surrounding rural environments. This effect arises from
the accumulation of heat generated by human activities
and urban development processes, such as
infrastructure expansion, dense building construction,
and the conversion of natural land cover into built-up
areas. Numerous studies (Estoque et al., 2017; Kandel et
al., 2016; Yang et al., 2016) have identified UHI as a major
concern in urban climatology due to its direct impact on
environmental quality, thermal comfort, and urban
ecosystem sustainability. Furthermore, UHI contributes
to public health challenges, including heat stress,
respiratory issues, and increased energy consumption

How to Cite:

within urban environments, where natural elements
such as vegetation and open soil are replaced by low-
albedo materials like asphalt and concrete (Ming et al.,
2024; Scafetta & Ouyang, 2019; Sultana & Satyanarayana,
2018). These materials have high heat absorption and
retention capacities, causing surface temperatures to rise
and persist, particularly at night. Large cities with high
urban density tend to exhibit more intense UHI effects,
as increasing building volumes and anthropogenic
activities amplify localized heat accumulation (Bala et
al., 2021; Liu et al., 2023; Y. Zhou et al., 2017).

This condition is also evident in Gorontalo City,
which has undergone rapid urban growth over the past
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two decades, driven by continuous infrastructure
expansion and population increase (BAPPEDA
Gorontalo City, 2010). The transformation of agricultural
lands and green open spaces into residential and
infrastructural zones has significantly altered local land
cover patterns (BPS Gorontalo City, 2021), leading to
noticeable fluctuations in local surface temperature
(Adiningsih et al., 2001; Duka et al., 2020; Sugini, 2014).
Uncontrolled urban sprawl has further intensified the
UHI phenomenon (Mirzaei, 2015; Mirzaei et al., 2012),
suggesting that even if global climate conditions remain
stable, urban areas will continue to experience rising
local temperatures (Hassan et al., 2021).

Land cover transformation plays a crucial role in
the formation of UHI, as urbanization typically reduces
vegetative cover, leading to increased surface heat
(Prayogi et al., 2024; Voogt & Oke, 2003; Weng et al.,
2004). The loss of vegetation diminishes
evapotranspiration, a natural cooling process that helps
regulate temperature (Igun, 2017; Kotharkar & Bagade,
2018; Mora et al, 2017). In the central region of
Gorontalo City, surface temperatures have been
recorded at approximately 31-32°C, largely due to the
scarcity of vegetation, heavy vehicle emissions, and the
reflection of heat from asphalt and concrete surfaces
(Koto, 2015)

In recent years, the use of web-based remote
sensing technology, particularly through GEE, has
become increasingly important for studying
environmental changes. GEE’s access to extensive
datasets and its ability to process data quickly and
efficiently have made it an essential tool in
environmental research (Amani et al., 2020; Bokaie et al.,
2016; Gorelick et al., 2017; Kikon et al., 2016; Tamiminia
et al., 2020). It has been widely applied in studies
analyzing environmental phenomena, including the
Urban Heat Island (UHI) effect (Insan & Rahmi, 2024).
Temporal thermal data available on the GEE platform
allow for effective analysis of Land Surface Temperature
(LST) trends related to UHI (Ravanelli et al., 2018).

The spatial distribution of LST can be correlated
with other physical parameters, such as building
density, vegetation cover, and land use patterns
(Arnfield, 2003; Bornstein & Lin, 2000; Estoque et al.,
2017; Liu et al.,, 2023; Ming et al., 2024; Y. Zhou et al,,
2017). However, many previous studies using GEE have
focused primarily on spatial analysis, often overlooking
temporal variations that provide insights into the
evolution of UHI over time.

Nonetheless, a common constraint in applying
Google Earth Engine (GEE) to Urban Heat Island (UHI)
studies is its predominant focus on mapping surface
temperature distributions, often overlooking temporal
variations. To address this limitation, the present study
examines temperature changes spanning a 30-year
urban development phase in Gorontalo City. Its
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objective is to conduct a spatio-temporal analysis of land
cover to estimate UHI effects within this region using
GEE.

Method

Research Location

The research was conducted in Gorontalo City,
which is geographically located between 00° 28" 17” - 00°
35" 56” North Latitude and 122°59" 44" - 123° 05’ 59” East
Longitude, with a total area of 64.79 km? The city is
bordered by Bone Bolango Regency to the north and
east, Tomini Bay to the south, and Gorontalo Regency to
the west. The elevation ranges from 0 to 500 meters
above sea level. The lowland areas account for
approximately 60-70% of the total area (around 38.87-
45.35 km?), while the hilly areas cover about 30-40%
(around 19.44-25.92 km?). Gorontalo City has a tropical
climate with an average temperature ranging from 23°C
to 32°C and an average annual rainfall between 1,500
mm and 2,500 mm.

Tools and Materials

The tools and materials used in this research
include a computer, ArcGIS software, access to GEE,
GPS device, smartphone, ATM, and Landsat satellite
imagery. The satellite data consist of Landsat 5 TM (May
5), Landsat 7 ETM+ (February 17), Landsat 8 OLI/TRS
(October 19), and Landsat 9 (May 31), with temporal
coverage for the years 1995, 2005, 2015, and 2025.

Data Acquisition Technique

Land cover identification was carried out using
Landsat satellite imagery through the supervised
classification method. The classification was divided
into four categories: built-up land, vegetation, bare land,
and water bodies. The Normalized Difference
Vegetation Index (NDVI) and Land Surface
Temperature (LST) data were extracted computationally
from Landsat imagery using the Google Earth Engine
(GEE) platform. Furthermore, field observations were
conducted at several sample points to verify the
accuracy of the land cover classification results.

Field Data Collection Technique

The first stage involved direct observation of the
physical characteristics of Gorontalo City, including
urban areas and the distribution of green open spaces. In
the second stage, all observations were documented
geospatially using the Global Positioning System (GPS)
to record coordinates. The collected field data served as
ground truth to validate the satellite image classification
results. Validation was performed by comparing and
matching selected sample points on the imagery with
actual field conditions.
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Data Analysis Technique
a) NDVI Analysis

The vegetation density map was generated using
the Normalized Difference Vegetation Index (NDVI),
which is calculated based on the near-infrared (NIR) and
red (RED) spectral bands. NDVI values range from -1 to
+1. A value close to —1 indicates bare soil or areas with
sparse vegetation, while a value close to +1 represents
dense vegetation. The NDVI calculation follows
Equation (1) as described (Ermida et al., 2020) (Equation
1).

NIR—-RED

NDVI = @)
NIR+RED

Based on the values determined in Equation (2), the
Proportion of Vegetation (PV) can be calculated, as
described (Yu et al., 2014). This index is used to illustrate
the extent to which a specific area is covered by
vegetation compared to other surface elements, such as
bare soil, water bodies, or built-up areas.

NDVI-NDVImin ]2
NDVImax—NDVImin.

Py =| @
b) Land Surface Temperature (LST) Analysis

The process of calculating Land Surface
Temperature (LST) was conducted using Equations (3)
and (4).
1) Spectral Radiance (L\)

Spectral radiance can be obtained from the digital
number (DN) values of the TIRS band using the
following equation, as described (Kafer et al., 2019).

La= Mrx Qcal +A (3)

Where: LA represents the spectral radiance at the top of
the atmosphere (TOA), expressed in units of
W/ (m?esrepm). ML is the multiplicative rescaling factor
specific to each band, which can be found in the Landsat
image metadata file. For the TIRS band, this factor has a
value of 3.342 x 10™* W/ (m2esr*pm). QCal denotes the
digital number (DN) of the band, which ranges from 0 to
255. AL is the additive rescaling factor, also specific to
the TIRS band, and is included in the image metadata
file.

2) Brightness Temperature

The top-of-atmosphere (TOA) spectral radiance is
converted into Brightness Temperature (T), expressed in
degrees Celsius (°C), using Equation (4). The thermal
conversion constants K1 and K2 for the TIRS band are
provided in the metadata file accompanying the
imagery. The formula used for this conversion is
presented below, as described (Kafer et al., 2019; Weng
et al., 2004).
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K>

T= —273.15 (4)

* log(lr)

LA is the spectral radiance derived from Equation (3). K1
and K2 are the thermal conversion constants for the TIRS
band, which are listed in the image metadata file
(Landsat 5: K1 = 607.76 and K2 = 1260.56; Landsat 7: K1
= 666.09 and K2 =1282.71; Landsat 8: K1 = 774.8853 and
K2 =1321.0789).

3) Land Surface Emissivity (g)

The Earth's surface and its various components
exhibit differences in emissivity. This factor is
determined using an NDVI-based equation, as described
in Equation (5) (Sharma et al., 2021).

£ =0.004 x Pv + 0.986 5)

4) Land Surface Temperature (LST)

By taking into account the value of Land Surface
Emissivity (LSE), the Land Surface Temperature (LST)
can be calculated using Equation (6), as described (Weng
et al., 2004).

LsT=——o1 (6)

(1+(lclz)xlog ®)

c? =" @)
Where: A is the wavelength of the emitted radiation (for
Landsat 5 and 7: A = 11.457 pm, and for Landsat 8: A =
10.8 pm). T is the brightness temperature derived from
the Landsat data. & represents the land surface
emissivity. C, is the second Planck constant, with a value
of 1.4388 x 102 me*K. h is Planck’s constant, valued at
6.626 x 1073* Jes. k is the Boltzmann constant, with a
value of 1.38 x 107 J/K. c is the speed of light in a
vacuum, with a value of 2.998 x 10 m/s.

c) Urban Heat Island (UHI)

The Urban Heat Island (UHI) value is obtained
using the following equation, which is calculated based
on a threshold approach. A positive value indicates the
presence of a UHI effect, while a negative value (below
zero) indicates its absence (Rizki et al., 2024).

UHI =Ts — (p+0,5a) ®)
Where: UHI: Urban Heat Island intensity (°C), Ts:
Surface temperature (°C), p: Mean land surface

temperature (LST) of the study area (°C), a: Standard
deviation of the LST values within the study area (°C).
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Landsat Datasets
(TM, ETM+, OLITIRS, L9)

Landsat5,7,8and 9

Optical Band Thermanl Band

quantitative and visual reference to measure the extent,
rate, and spatial direction of land cover transformations
in later years (2005, 2015, and 2025). By establishing this
early reference point, subsequent analyses can more
accurately interpret the dynamics of urbanization,
vegetation loss, and land degradation, as well as
evaluate how human activity has reshaped Gorontalo
City’s environmental and thermal landscape over time.
The 2005 map (L7 ETM+) represents a critical transition
phase, capturing the expansion of built-up areas along
transportation corridors and settlements, as well as the
reduction of vegetation in developing zones. Due to the
SLC-off issue affecting Landsat 7 imagery, gap-filling or
multi-date composite processing is recommended to
minimize striping bias and ensure accurate thematic
mapping. After applying gap-filling corrections, NDVI
values can be calculated consistently, allowing a reliable
comparison of land cover changes between 1995 and
2005. The 2015 map (L8 OLI/TIRS) demonstrates
significant improvements in radiometric and geometric

Spectral
Radiance

[w

Brighten
Temperature

UHI
[Non-UHI (<0), UHI (>0)]
UHI Map of Gorontalo City

Figure 1. Research Flowchart quality, enhancing the distinction between vegetated
and built-up areas. The OLI sensor provides more stable
Result and Discussion and low-noise imagery compared to previous periods,

enabling more precise identification of urbanization
patterns, vegetation degradation, and overall land cover

Overall, the 1995 baseline map provides a critical :
dynamics.

benchmark for temporal comparison, serving as a
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Figure 2. Landsat image of Gorontal City in 1995-2025. Landsat 5 TM May 5 (a), Landsat 7 ETM+ Feb 17 (b), Landsat 8 OLI/TRS
Oct 19 (c), and Landsat 9 Mar 28 (d)
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OLlI-based studies in urban areas across Indonesia
have shown that NDVI is an effective tool for mapping
vegetation degradation associated with urban
densification. It helps to clearly identify built-up
expansion and changes along riverbanks and coastal
zones. Cloud and shadow masking (QA/Fmask) has
become a standard preprocessing step prior to
classification. The 2025 map (L9 OLI-2/TIRS-2) provides
spectral continuity with OLI (2015) while offering
improved calibration stability (according to L9
calibration notices). Since compatibility between
Landsat 8 and 9 is maintained, direct comparison of
2015-2025 land-use change trends (e.g., increasing NDBI
and decreasing NDVI) can be conducted using the same
preprocessing protocol.

501000 508000
T
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Based on the NDVI map analysis for 1995, 2005,
2015, and 2025 in Gorontalo City, the maps represent the
spatial distribution of vegetation density, classified into
five value ranges. NDVI values range from -1 to +1,
where the lowest class (-1 to -0.03) indicates non-
vegetated surfaces such as water bodies and built-up
areas. The next class (-0.03 to 0.15) represents open or
barren land with minimal vegetation cover, while the
intermediate classes (0.15-0.25 and 0.26-0.35)
correspond to sparse to moderate vegetation, such as
shrubs and grasslands. The highest class (0.36-1)
signifies dense and healthy vegetation, typically found
in forests and fertile plantations.
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Figure 3. NDVI Classification of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d)

From an ecological perspective, the NDVI class
distribution provides a baseline depiction of Gorontalo
City’s environmental condition during each period.
Areas with high NDVI values play a vital role in
ecosystem services, including hydrological regulation
and carbon sequestration, whereas regions with low

NDVI values tend to be more vulnerable to land
degradation. The 1995 NDVI map, for example, shows
relatively dense vegetation in the western-southern and
parts of the eastern sectors (0.36-1 and 0.26-0.35 classes),
indicating dense canopies and favorable moisture
conditions. Conversely, low NDVI areas (-0.03-0.15) are
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concentrated in the city center and development
corridors, reflecting impervious surfaces, open land, or
sparse vegetation. NDVI in 2005 shows that medium-to-
high vegetation (20.26) remained dominant in the
southern and western parts of Gorontalo City.

However, low DVI patches expanded noticeably in
the city center and along major access corridors.
Although the map contains the typical SLC-off striping
artifact of Landsat 7, the spatial trends remain clearly
interpretable. By 2015, NDVI values in the central area
decreased further, with the -0.03-0.15 and 0.15-0.25
classes expanding, while areas with high vegetation
cover became more limited. This pattern aligns with the
densification of residential settlements and the
conversion of green spaces, which reduced canopy
coverage and evapotranspiration, thereby weakening
the vegetation index (Zha et al., 2003).

By 2025, areas with high vegetation (NDVI 0.36-1)
appear prominently again in the southern, western, and
eastern regions, while low NDVI values continue to
dominate the central and northern parts of the city. This
pattern reflects the contrast between urban and non-
urban landscapes, where natural and agricultural areas
maintain high NDVI values, while built-up and bare
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lands remain within the lower NDVI range (Pettorelli et
al., 2011; Huete et al., 2002). The relationship between
NDVI and land surface temperature (LST) is inversely
proportional, where dense vegetation acts as a natural
cooling agent through the process of evapotranspiration
that absorbs heat energy, while open or built-up areas
tend to reflect more radiation as heat, thereby
intensifying the urban heat island effect.

Based on Figure 4, the histogram of NDVI value
distribution clearly illustrates the interannual dynamics
of vegetation. In 1995, the histogram exhibits a bimodal
pattern with peaks around 0.12-0.15 (representing
sparse vegetation or transitional areas) and 0.32-0.36
(indicating moderately dense vegetation). This pattern
reflects a mixed landscape composition between built-
up zones and green areas, highlighting an early stage of
urban expansion within Gorontalo City, indicating that
the landscape was still a mixture of built-up areas and
green zones. In 2005, the peak shifted toward a medium-
high NDVI range (0.34-0.38), thus indicating that
vegetation was still relatively dominant, although the
tail toward lower NDVI values (water, bare soil, or built-
up areas) remained present.
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Figure 4. Histogram NDVI of Gorontalo City in 1995, 2005, 2015 and 2025

In 2015, the main mode dropped to 0.15-0.20,
signifying a reduction in canopy density and an increase
in non-vegetated surfaces due to intensified urban
densification. By 2025, the histogram became bimodal
again and more polarized, with one peak at low-

medium NDVI values (0.12-0.18) representing urban
cores and transitional zones, and another peak at high
NDVI values (0.43-0.50) reflecting forested or densely
vegetated plantation areas.
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Figure 5, illustrates a negative correlation between
NDVI and LST, expressed by the equation LST =
—15.052¢NDVI + 49.358, with R = 0.382 and R? = 0.146.
This indicates that an increase in NDVI is associated
with a decrease in surface temperature. Specifically,
every 0.1-unit increase in NDVI is estimated to reduce
LST by approximately 1.5 °C. This pattern aligns with
biophysical theory, which states that vegetation
canopies enhance evapotranspiration (transferring
energy into latent heat), provide shading, and generally
exhibit high emissivity —thereby reducing the amount
of sensible heat that is emitted back and detected by
thermal sensors.
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Figure 5. Correlation Graph between LST and NDVI

Conversely, areas with low NDVI values —typically
impervious surfaces such as asphalt and concrete — tend
to have relatively low albedo, limited water retention
capacity, and restricted ventilation. As a result, these
areas exhibit higher LST values, contributing to the
formation of urban heat islands (UHI) (Peng et al., 2012;
Weng, 2009; D. Zhou et al., 2014).

Figure 6. The 1995 LST analysis shows that surface
temperatures ranged between 21-56°C. Lower
temperatures (21-30°C) were mostly found in forested
areas and water bodies, particularly in the southern and
western parts of the city. In contrast, higher
temperatures (43-56°C) were dominant in the
downtown area of Gorontalo and its surroundings,
indicating a concentration of residential settlements and
extensive impervious surfaces. These findings suggest
that even in the early stage of urbanization, the UHI
effect had already begun to emerge in the city center.
This aligns with the concept of UHI, which states that
urban centers tend to be warmer due to the dominance
of impervious surfaces and limited vegetation cover
(Voogt & Oke, 2003).
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In 2005, the LST distribution ranged from 6-49°C.
The map indicates an expansion of areas within the
medium to high-temperature classes (29-34°C and 34-
49°C), extending toward the suburban regions. Lower
temperatures (6-19°C) were mainly observed in densely
vegetated areas and water bodies. Although there were
data stripes caused by the SLC-off issue in Landsat 7, the
general trend still shows increasing temperatures in
urban areas (Sobrino et al., 2004). Subsequently, the 2015
LST results show a temperature range of 29-50°C. High-
temperature zones (42-50°C) became increasingly
dominant in the northern and central parts of the city,
especially in densely populated residential areas.
Meanwhile, low-temperature zones (29-35°C) remained
only in heavily vegetated regions in the south and along
river corridors. This indicates a stronger impact of
urbanization and a significant reduction in vegetation
cover, which lessens the ability to mitigate temperature
increases (Weng et al., 2004)

By 2025, LST values are projected to range between
26-58°C. High temperatures (49-58°C) are widespread
across the city center and expanding urban areas, while
low temperatures (26-35°C) persist mainly in dense
vegetation zones and water bodies. This confirms the
intensification of the UHI phenomenon, with a more
pronounced thermal contrast distinguishing urban from
non-urban areas (Y. Zhou et al., 2017).

Changes in LST during the 1995-2005 period
indicate an increase in surface temperature within urban
zones, driven by residential expansion, infrastructure
development, and vegetation loss in the city core. From
2005 to 2015, high-temperature areas continued to
expand, particularly in downtown regions, due to
population growth and the conversion of green spaces
into built-up areas. These changes are consistent with
the trend of increasing UHI in developing cities. Then,
in the period of 2015-2025, the temperature surge was
more significant, with the maximum value reaching
58°C.

The main causes are massive urbanization, dense
building concentration, the reduction of green open
spaces, and the increase in vehicular activity that
contributes to anthropogenic heat emissions. Vegetated
areas and water bodies exhibit lower LST values due to
the cooling effects of evapotranspiration and the high
heat capacity of water, whereas concrete and asphalt
surfaces absorb and retain heat for longer periods,
resulting in higher LST. This phenomenon is consistent
with global findings showing that large cities tend to
experience higher LST compared to their surrounding
areas (Peng et al., 2012).
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Figure 6. LST of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d)

Spatial analysis of LST over the 30-year period
(1995-2025) indicates a significant increase in surface
temperature alongside the growth of Gorontalo City.
The most substantial change occurred during the 2015-
2025 period, highlighting the acceleration of
urbanization and the decline of natural vegetation cover.
This phenomenon supports the theory that the
conversion of vegetated land into built-up areas is the
primary factor driving the increase in LST within urban
environments. The increase in LST in urban areas
highlights the need for spatial planning that emphasizes
a balance between infrastructure development and the
provision of green open spaces (Insan & Rahmi, 2024).

Figure 7, shows a positive correlation between air
temperature measured in the field (x) and LST (y),
represented by the linear model y = 0.4132x + 14.664. The
correlation coefficient (R) of 0.693 indicates a strong
relationship, while the coefficient of determination (R? =

0.480) suggests that approximately 48% of the variation
in LST can be explained by variations in air temperature.
In other words, nearly half of the changes in LST move
in the same direction as changes in observed air
temperature, while the remainder is influenced by other
factors. The regression slope of 0.413 means that for
every 1°C increase in air temperature, the average LST
rises by approximately 0.41°C. A regression slope of <1
is physically reasonable, as LST and air temperature
measured at an altitude of around 1.5-2 meters are not
identical quantities and respond differently to surface
energy balance processes.

It is physically acceptable because LST and air
temperature measured at a height of approximately 1.5-
2 meters are not identical quantities and respond
differently to the surface energy balance. The differences
between them are influenced by several factors:
(1) the difference in observation scale — LST represents
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the average value of a pixel of about 30 meters, while
field temperature is a point-based measurement;
(2) the temporal mismatch between the satellite overpass
time and the field measurement time;
(3) variations in surface emissivity and material types;
and (4) the influence of urban morphology and soil
moisture.
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Figure 7. Correlation Graph Between LST and Field
Temperatur

Figure 8. Based on the analysis results, areas with
zero or negative values (<0) indicate regions unaffected
by the Urban Heat Island (UHI) phenomenon, while
positive values (>0) represent areas experiencing UHI.
The affected regions were further classified according to
the intensity of their UHI values. In 1995, UHI was
concentrated in the central part of Gorontalo City with
moderate to high intensity, while forested and water-
covered areas remained relatively cool. By 2005, UHI
zones expanded along road corridors and newly
developed residential areas. Despite data gaps caused
by SLC-off issues, the core-periphery pattern remained
evident. In 2015, more UHI clusters appeared in densely
built-up zones, whereas vegetated and aquatic areas
maintained cooler conditions. By 2025, UHI intensity
had become significantly stronger in the city center,
while dense vegetation cover and water bodies
functioned as local thermal buffers.

These findings reveal the progressive development
of UHI in line with the increasing extent and density of
built-up land (Hassan et al., 2021; Mohajerani et al., 2017;
Voogt & Oke, 2003; Weng, 2009). The 1995-2005 period
was characterized by UHI expansion driven by the
conversion of green land into residential and
infrastructure  areas. @ The  2005-2015  period
demonstrated UHI consolidation into distinct heat
clusters following building densification, reduced
surface albedo, and limited urban ventilation. Finally,
the 2015-2025 period experienced UHI intensification,
triggered by rising anthropogenic heat emissions (from
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vehicles and air conditioning), fragmentation of green
open spaces, and an increase in impervious surface
fractions, which reduced evapotranspiration (Imhoff et
al., 2010; Peng et al., 2012; D. Zhou et al., 2014).

Non-UHI areas (<0) were observed in regions with
dense vegetation and water bodies, where
evapotranspiration and the high heat capacity of water
helped lower surface temperatures. Moderate UHI
zones (0-1 to 1-2) were typically found in transitional
areas —moderately dense residential zones and open
lands —where the combination of built materials and
vegetation created a warmer but still balanced surface
energy state. High UHI intensity (2-3) appeared in the
city center and densely populated residential areas,
dominated by asphalt and concrete (low albedo, high
thermal inertia), low surface moisture, and strong
anthropogenic heat. These conditions redirected energy
into sensible heat, resulting in higher and longer-lasting
surface temperatures (Ullah et al., 2023; Voogt & Oke,
2003). Between 1995 and 2005, UHI zones (1-2)
expanded outward from the city core toward suburban
areas, driven by the conversion of vegetated land into
built-up zones and improved road connectivity. From an
energy balance perspective, the growing fraction of
impervious surfaces reduced latent heat (due to less
evapotranspiration) while increasing sensible heat (Oke,
T.R., 1982; Weng, 2009).

During 2005-2015, the UHI pattern transformed
from a single hotspot into multiple clustered heat zones
following urban densification. The influence of urban
morphology and low-albedo materials became more
dominant, while fragmented vegetation was no longer
sufficient to balance daytime peak heat (Voogt & Oke,
2003; D. Zhou et al., 2014). By 2015-2025, the intensity
further increased, with the spatial extent of classes 0-1
and 1-2 expanding, and localized 2-3 hotspots
persisting or emerging. Besides surface properties,
anthropogenic heat from vehicles, small industries, and
air conditioning systems also contributed to excess
energy, particularly during nighttime. Green zones and
water bodies remained effective in mitigating local UHI
effects; however, the fragmentation of green spaces
reduced the overall cooling effect at the city scale
(Hassan et al., 2021; Imhoff et al., 2010; Li et al., 2020).
Temporally, Gorontalo City exhibited both expansion
and intensification of UHI from 1995 to 2025. The most
evident changes included the broadening of classes 0-1
and 1-2, which covered most urban areas, while class 2-
3 hotspots became localized around the highest-density
pockets. This trend aligns with global findings
indicating that the proportion of impervious surfaces
and vegetation cover are the two main controlling
factors, further influenced by urban morphology and
anthropogenic heat generation (Chatterjee & Majumdar,
2022).
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Figure 8. UHI of Goromntalo City in 1995 (a), 2005 (b), 2015 (c) and 2025 (d)

Conclusion

The UHI analysis revealed that pixels with values
<0 represented non-UHI zones, while those >0 indicated
UHlI-affected areas with varying intensity. From 1995 to
2025, Gorontalo City experienced continuous UHI
expansion and intensification — from initial
concentration in the city center (1995), spreading along
transportation corridors and new residential areas
(2005), forming clustered heat zones in dense built-up
areas (2015), to intensification in 2025 with localized
hotspots in the most crowded regions. In contrast,
densely vegetated and aquatic areas consistently acted
as thermal buffers. The main driving forces behind these
dynamics include the increasing proportion of
impervious surfaces (asphalt/concrete) and decreasing
vegetation cover, which collectively reduce latent heat
(evapotranspiration) while increasing sensible heat.
Additional contributing factors include urban
morphology (building density and height ratio that
restrict airflow), low surface albedo, and anthropogenic

heat from transportation, air conditioning, and
commercial activity. These combined factors explain the
dominance of moderate UHI classes (0-1 and 1-2) across
urban areas and the emergence of localized hotspots (2-
3) in the densest sectors of the city.
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