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Abstract: This study aims to enhance the spatial resolution of land surface temperature 
(LST) mapping in Malang City, Indonesia, and to analyze spatiotemporal urban thermal 
dynamics associated with rapid urbanization. Landsat 8 OLI/TIRS thermal data were 
integrated with Sentinel-2 multispectral imagery using a Random Forest (RF)–based 
downscaling approach to refine LST resolution from 30 m to 10 m. Spectral indices, 
including NDVI, NDBI, NDWI, and NDMI, were employed as predictor variables, and 
model performance was evaluated using R² and RMSE metrics, supported by in-situ 
temperature measurements for validation. The results demonstrate strong downscaling 
performance, with R² values of 0.8374 (2019), 0.8468 (2022), and 0.7675 (2024), while field 
validation yielded a correlation coefficient of 0.722 and an RMSE of 4.63°C. Spatial and 
temporal analyses reveal a significant increase in mean LST from 24.67°C in 2019 to 
27.21°C in 2024, indicating accelerated urban warming, particularly during 2022–2024. 
This warming is closely associated with land-use transformation, increased impervious 
surfaces, and regional climatic influences. In conclusion, the RF-based downscaling 
approach effectively captures fine-scale urban thermal heterogeneity and provides 
reliable high-resolution LST information, supporting urban heat mitigation planning and 
climate adaptation strategies in rapidly growing tropical cities. 
 
Keywords: Downscaling; Land surface temperature; Landsat-8; Random forest; Remote 
sensing; Sentinel-2 

  

Introduction  
 
Malang City, located in East Java, Indonesia, is one 

of the region's rapidly urbanizing centres, experiencing 
substantial land-use and land-cover (LULC) 
transformations over the past two decades (Hasyim et 
al., 2025). The city's transition from a mid-sized highland 
settlement to a major urban centre has been 
accompanied by extensive conversion of agricultural 
lands and vegetated areas into residential, commercial, 
and transportation infrastructure (Hasyim et al., 2025). 
These landscape modifications have fundamentally 
altered the city's natural thermal characteristics by 
reducing vegetation-mediated cooling capacity and 

increasing thermal energy accumulation in built-up 
zones (Voogt & Oke, 2003). 

Rapid urbanization in Malang City has been driven 
by population growth, with the city recording 889.359 
inhabitants in 2024 and an annual population growth 
rate of 0.5% (Isdianto et al., 2025). This demographic 
pressure intensifies LULC conversion processes, leading 
to the proliferation of impervious materials such as 
asphalt and concrete that absorb and re-emit substantial 
quantities of solar radiation (Santamouris, 2020). These 
materials exhibit lower surface reflectivity (albedo) than 
natural land covers, thereby enhancing thermal energy 
retention and contributing to the pronounced Urban 
Heat Island (UHI) effect (Santamouris, 2020). The UHI 
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phenomenon presents a significant environmental 
challenge, particularly in tropical urban environments, 
as it elevates local surface and air temperatures, disrupts 
microclimatic equilibrium, and compromises urban 
livability and public health (Irfeey et al., 2023). 

Alterations in land surface characteristics directly 
influence the dynamics of the energy balance among 
radiation, convection, and evaporation, which 
determine LST (Li et al., 2024). LST serves as a critical 
biophysical indicator for assessing surface thermal 
properties and understanding the spatial distribution of 
urban thermal anomalies (Voogt & Oke, 2003). Elevated 
LST values in urban areas are consistently associated 
with reduced vegetation coverage, increased building 
density, and extensive impervious surface distribution, 
which extend thermal retention periods relative to 
natural land covers (Isdianto et al., 2025). 

Continuous monitoring of LST variations is 
essential for quantifying urban thermal stress and 
developing evidence-based adaptive planning strategies 
to mitigate climate-related risks and enhance urban 
resilience. However, the spatial resolution limitations of 
operational thermal satellite data impose significant 
constraints on the accuracy of temperature mapping in 
heterogeneous urban environments. Landsat 8 thermal 
infrared observations, for example, provide LST data at 
100 m resolution (commonly resampled to 30 m), which 
proves inadequate for detailed urban-scale thermal 
analysis (Onačillová et al., 2022). While this resolution 
may be appropriate for regional-scale assessments, it 
fails to capture microscale thermal variations such as 
temperature gradients between individual roads, 
building complexes, and small urban vegetation 
patches. 

Sentinel-2, operated by the European Space Agency 
(ESA), delivers multispectral imagery at 10–20 m spatial 
resolution but lacks thermal infrared observations. 
Nevertheless, Sentinel-2's high-resolution spectral 
information, particularly in visible and shortwave 
infrared bands, provides valuable ancillary data for 
deriving spectral indices, including Normalized 
Difference Vegetation Index (NDVI), Normalized 
Difference Built-up Index (NDBI), Normalized 
Difference Water Index (NDWI), and Normalized 
Difference Moisture Index (NDMI), which exhibit strong 
correlations with surface temperature.  The integration 
of Sentinel-2 spectral data with Landsat thermal data 
offers a viable approach to overcoming spatial 
resolution constraints through statistical or algorithmic 
downscaling. 

Downscaling encompasses statistical and 
computational techniques that enhance the spatial 
resolution of coarse datasets by integrating them with 
higher-resolution auxiliary information. In the context of 
LST estimation, downscaling facilitates the derivation of 

fine-resolution temperature maps by establishing 
correlations between coarse-resolution thermal data and 
fine-scale spectral indices (Peng et al., 2021). 
Increasingly, machine learning algorithms have been 
deployed for LST downscaling because they can 
characterize nonlinear relationships between 
multidimensional land-surface variables and 
temperature observations. 

The Random Forest algorithm demonstrates 
superior performance in LST prediction through its 
ensemble-based architecture, which minimizes 
overfitting while effectively handling multiple predictor 
variables (Bahi et al., 2025). RF integrates multiple 
decision trees via bootstrap aggregation to enhance 
predictive accuracy, rendering it well-suited for 
heterogeneous urban landscapes. Contemporary 
research has demonstrated that fusion of Landsat and 
Sentinel multispectral data utilizing RF algorithms 
substantially improves thermal mapping accuracy at 
local scales (Onačillová et al., 2022; Peng et al., 2021). 
Recent studies specifically employing RF-based 
downscaling approaches for LST refinement have 
validated the algorithm's effectiveness in urban thermal 
environment characterization (Bahi et al., 2025). 

In tropical cities like Malang, where surface 
temperature gradients are influenced by elevation, 
vegetation cover, and land-use patterns, a high-
resolution LST dataset is essential for understanding 
spatial heterogeneity. The ability to map temperature 
variations at 10 m resolution allows urban planners to 
identify critical heat-prone zones, assess the cooling 
function of green spaces, and evaluate the impact of 
urban expansion on local microclimates (Uhrin & 
Onačillová, 2025). Such information is vital for 
implementing climate adaptation strategies and 
promoting sustainable land management practices. 
Vegetation in tropical cities plays a fundamental role in 
mitigating urban heat through shading and 
evapotranspiration processes. High-resolution imagery 
has proven essential for assessing the spatial 
heterogeneity of urban vegetation, as diverse spectral 
signatures and three-dimensional structures have been 
observed in tropical settings (Martinuzzi et al., 2018). 
Recent work employing advanced remote sensing 
techniques at sub-meter resolutions supports the claim 
that urban green spaces not only reduce the urban heat 
island (UHI) intensity but also serve as indicators of 
socioeconomic variation across neighborhoods 
(Martinuzzi et al., 2018; Chen et al., 2022). Very high-
resolution platforms facilitate the assessment of the 
cooling effects of green cover even when micro-scale 
spatial heterogeneity is significant, enabling a more 
robust integration of ecological and urban climatology 
models (Asmaryan et al., 2023). 
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Beyond documenting urban warming trends, high-
resolution characterization of land surface temperature 
is fundamentally important for understanding the 
physical mechanisms governing urban climate 
dynamics. According to surface energy balance theory, 
LST is controlled by the partitioning of net radiation into 
sensible heat, latent heat, and ground heat flux, all of 
which are strongly modified by land-cover composition, 
surface moisture, and urban morphology (Voogt & Oke, 
2003; Santamouris, 2020). Coarse-resolution thermal 
data obscure these interactions by spatially averaging 
heterogeneous surfaces, leading to underestimation of 
localized heat hotspots and limiting their applicability 
for urban-scale mitigation planning. Machine learning-
based downscaling approaches, particularly Random 
Forest, provide a robust theoretical and practical 
framework for capturing nonlinear relationships 
between multispectral surface properties and thermal 
behavior, enabling the reconstruction of fine-scale LST 
patterns that align more closely with urban physical 
processes (Hengl et al., 2018; Peng et al., 2021). 
Conducting this research is therefore essential to bridge 
the gap between satellite-derived thermal observations 
and the spatial detail required for effective urban climate 
adaptation, especially in rapidly growing tropical cities 
like Malang, where complex interactions between urban 
expansion, vegetation loss, topography, and regional 
climate variability demand high-resolution thermal 
information for evidence-based planning and policy 
formulation. 

The need for high-resolution LST datasets in 
tropical cities is underscored by the complex interplay of 
elevation, vegetation cover, and land-use patterns. 
Mapping surface temperature variations at a spatial 
resolution as fine as 10 m is critical for identifying 
localized heat-prone zones and tailoring climate 
adaptation strategies (Dimitrov et al., 2024). Studies 
have demonstrated that the integration of unmanned 
aerial systems (UAS) with remote sensing and 
geographic information systems (GIS) can produce the 
detailed thermal maps required to support urban 
planning decisions in data-scarce environments 
(Dimitrov et al., 2024). Similarly, advances in machine 
learning have led to process-informed neural 
architectures that predict urban surface temperatures 
with high accuracy, thereby enhancing both the 
precision and applicability of these datasets (Zang et al., 
2023). 

The objectives of this research are: (1) to integrate 
Landsat 8 and Sentinel-2 for enhancing the spatial 
resolution of LST in Malang City, (2) to assess the 
accuracy of the Random Forest downscaling approach, 
and (3) to analyze spatial and temporal variations of LST 
during 2019, 2022, and 2024. The outcomes are expected 
to provide a more robust understanding of urban 

thermal patterns, offering a scientific foundation for 
local climate adaptation strategies. 

 

Method  
 
Research Area 

The research was conducted in Malang City, 
located at 112°06’–112°07’ E and 7°06’–8°02’ S. Malang is 
a city flanked by a mountain complex at 504.5 ± 48.3 masl 
with varied topography but slightly wavy relief. The 
research area is illustrated in Figure 1. 

 

 
Figure 1. Research area 

 

Materials 
The following materials were used in this research: 

(a) Landsat 8 OLI/TIRS satellite imagery, path/row 
118/066, freely downloaded from the USGS platform. 
(b) Sentinel-2 MSI satellite images, path 49MFM, freely 
downloaded from the Copernicus browser. These were 
chosen to have closely spaced acquisition dates to 
minimize the influence of emissivity changes on surface 
temperature calculations. (c) Satellite imagery was 
selected with a cloud cover range of less than 20%. The 
acquisition time details are shown in Table 1. (d) 
Infrared Thermometer Benetech GM900 for measuring 
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(e) Surface temperature. Land Cover for validation 
purposes. 

 
Table 1. Selected Data Imagery Used in This Research 
Satellite Imagery Date Acquisition Cloud Cover (%) 

Landsat-8 
OLI/TIRS 

11 June 2019 6.98 
5 July 2022 13.82 

26 July 2024 6.98 

Sentinel 2 MSI 
10 June 2019 6.09 

9 July 2022 3.69 
23 July 2024 11.91 

 
The research procedures are shown in Figure 2. 
 

 
Figure 2. Research flow chart 

 
Landsat 8 imagery, which includes 10 thermal 

infrared (TIRS) bands at 30 m spatial resolution, was 
used to derive LST using the mono-window and single-
channel algorithms of Jiménez‐Muñoz et al. (2003). The 
LST estimation followed the emissivity-based algorithm 
introduced by Artis et al. (1982), comprising the 
following steps: radiometric correction, brightness 
temperature conversion, NDVI calculation, vegetation 
proportion estimation, emissivity determination, and 

final LST computation. The Artis & Carnahan 
methodology has provided a foundational approach to 
LST estimation, numerous subsequent studies have 
addressed its inherent challenges. Emissivity retrieval 
methods exploiting VNIR and TIR data (Sobrino et al., 
2008), refinements through NDVI and vegetation 
fraction modeling (Merlin et al., 2010), and advanced 
temperature/emissivity separation techniques (Liu et 
al., 2022; Cheng et al., 2008) have all enriched the field. 
Moreover, high-resolution studies (Yang et al., 2014; 
Song et al., 2015) emphasize the need for adapting the 
original framework to diverse and rapidly changing 
land surfaces. Such advancements not only improve the 
precision of LST estimates but also promote better-
informed applications in environmental monitoring, 
resource management, and climate studies. The 
calculation method procedures are summarized below: 
1. Radiometric correction is applied using the following 

equation: 
 
Lλ = ML x Qca + AL                            (1) 

 
Where 𝐿𝜆 is TOA spectral radiance (Watts/m2 
*srad*𝜇𝑚), 𝑀𝐿 is Radiance multiplicative band 
metadata, 𝑄𝑐𝑎𝑙 is Digital Number band 10, 𝐴𝐿 is 
band-specific additive rescaling factor from the 
metadata. 

2. Brightness temperature is then formulated as 
follows: 
 

𝐵𝑇 =  
𝐾2

𝐿𝑛(
𝐾1

Lλ
)+1

                               (2) 

 

Where BT is the brightness temperature (in Kelvin), 

𝐿𝜆 is the TOA spectral radiance (the corrected 

spectral radiance value), and K1 and K2 are 

calibration constants obtained from the metadata file. 

The values for K1 and K2 are 774.8853 and 1321.0789, 

respectively. 

3. The brightness temperature values were converted 
from Kelvin to Celsius: 
 

𝐵𝑇𝑐𝑒𝑙𝑐𝑖𝑢𝑠 = 𝐵𝑇 − 273,15                          (3) 
 

4. The NDVI value was calculated (Rousse et al., 1973). 
 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                  (4) 

 
5. Which was subsequently used to calculate the 

proportion of vegetation (𝑃𝑣) using equation (5). 
 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

                 (5) 
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6. Emissivity (𝜀) was calculated using equation (6). 
 

𝜀 = 0.0004 𝑃𝑣 + 0.986                     (6) 
 

7. The resulting Emissivity is then entered into equation 
(7) to find LST. 
 

𝐿𝑆𝑇 =
𝐵𝑇

1+(λ .
𝐵𝑇
ρ

) ln ε
                        (7) 

 
Where 𝜌 = (h.c)/σ. The formulation contains several 

parameters, which means the wavelength of the 

emitted radiance, = 1,438 x 10-2 mK, for h = Planck’s 

constant (6,626 x 10-34 Js), C represents the speed of 

light (2,998 x 108 m/s), and σ refers to Boltzmann's 

Constant (14388). 

Common indices used to enhance LST resolution 
include NDVI, built-up areas (NDBI), water bodies 
(NDWI), and surface moisture (NDMI), all processed in 
QGIS. The Red, Green, Near-Infrared (NIR), and 
Shortwave Infrared (SWIR) bands from Landsat 8 and 

Sentinel-2 were used to calculate related spectral indices 
(Gao, 1996; Rousse et al., 1973; Zha et al., 2003). The 
equations for each index are presented in Table 2. 

 

Table 2. Equation Spectral Indices 
Equation Reference 

𝑁𝐷𝐵𝐼 =  
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
           (8) 

 

(Zha et al., 2003) 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 −𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
         (9) 

 

(Gao, 1996) 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
        (10) (Gao, 1996) 

 
All common indices, DEM, and low-resolution LST 

were utilized as inputs for the downscaling process. The 
LST downscaling was performed using the QGIS plugin 
named ‘Downscale Anything with Random Forest’, 
which employs the Random Forest algorithm integrated 
with Google Earth Engine (GEE). The downscaling 
procedure of LST using the Random Forest approach is 
illustrated in Figure 3.

 

 
Figure 3. Flow chart of downscaling LST based on random forest 

 

The RF model was constructed using multiple 
decision trees trained on 80% of the data and validated 
on 20% to reduce overfitting (Hengl et al., 2018; Kuhn & 
Johnson, 2019). Predictor variables with 10 m spatial 
resolution were used to estimate high-resolution LST, 
capturing microscale variations in surface temperature. 
Model performance, evaluated using R² and RMSE 
(Peng et al., 2021; Roy et al., 2025). A lower RMSE 
indicates higher agreement between observed and 
predicted LST. Since the RF model does not fully 
represent the complete LST distribution, a residual 
correction was applied. 
 

Validation Data 
Field surface temperature measurements for LST 

downscaling validation were conducted using a 
Thermal Infrared thermometer. The methodology 
adopted follows Chiueh et al. (2021), where the 
emissivity value for each surface material was applied as 
specified in that study. Sampling sites were selected 
based on land-use classifications derived from the 
Malang City Urban Planning Land Cover Map (1:25,000 
scale); details are provided in Table 3, and their spatial 
distribution is shown in Figure 4. To ensure temporal 
synchronization with satellite data acquisition, aligning 
with the Landsat 8 and Sentinel-2 overpass time. This 
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standardized protocol is consistent with other LST 
validation studies Chiueh et al. (2021). 

 
Table 3. Number of Points of Validation in the Research 
Area 

Land Use Samples 

Water body point 15 
Building and road point 28 
Upland crop point 18 
Green space point 22 
Paddy point 28 
Bare land point 20 
Total 131 

 

 
Figure 4. Distribution LST observations 

 
A linear regression analysis was applied to assess 

the relationship between the processed LST and 
observed LST. The regression results were further used 
to calculate RMSE, which indicated the level of bias 
between the datasets (Galve et al., 2022). The RMSE is 
calculated using the following equation: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1                       (11) 

 
Where 𝑃𝑖  is for LST Processed and 𝑂𝑖  is for LST 
Observation. 
 
Data Analysis 

 This study employed integrated spatial, 
temporal, statistical, and descriptive analyses to 
examine LST dynamics in Malang City. Spatial analysis 
quantified and visualized thermal distribution patterns 
to identify urban heat anomalies and their impact within 
administrative boundaries (Rakuasa et al., 2023), while 
temporal analysis assessed the effects of urbanization on 
thermal intensity over five years. Statistical and 
descriptive methods synthesized multi-source remote 
sensing data, using descriptive statistics (mean, 
minimum, maximum, and standard deviation). 

 
Result and Discussion 
 
Integration of Landsat 8 and Sentinel-2 for Enhanced LST 
Spatial Resolution through Random Forest 

The integration of Landsat 8 OLI/TIRS and 
Sentinel-2 MSI data effectively enhanced the spatial 
resolution of LST from 30 m to 10 m in Malang City. The 
Random Forest-based downscaling approach produced 
high-detail surface temperature maps capable of 
identifying microscale thermal variations within 
complex urban environments. Figure 5 illustrates a 
comparison for 2019, showing the original 30 m LST (Fig. 
5A) and the downscaled 10 m LST, which reveals a 
clearly improved (sharpened) thermal pattern (Fig. 5B).

 

 
Figure 5. (A) Coarse LST derived from Landsat-8 in spatial resolution of 30 m, (B) downscaled finer LST in spatial resolution of 

10 m, for the study area of the Malang city in 2019
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Model evaluation across the three observation 
years showed that 2019 achieved high accuracy (R² = 
0.8374, RMSE = 0.6485°C, OOB = 0.8360), while 2022 
recorded improved accuracy (R² = 0.8468, RMSE = 
0.5903°C, OOB = 0.8441). In 2024, performance slightly 
declined but remained strong (R² = 0.7675, RMSE = 
0.7116°C, MAE = 0.5394°C, OOB = 0.7634), reflecting the 
growing complexity of urban surface characteristics, 
which challenged model generalization (Roy et al., 2025; 

Uhrin & Onačillová, 2025). Despite this, the R² value of 
0.7675 still indicates strong model reliability, explaining 
more than 76% of LST variability. 

Residual distribution analysis further confirmed 
model validity, with histograms for 2019, 2022, and 2024 
showing symmetric, bell-shaped curves centered near 
zero, indicating unbiased predictions with minimal net 
error across all periods shown in Figure 6. 

 

 
Figure 6. Residual distribution on each period 

 
The scatter plot in Figure 7 further supports this 

result. Validation using 131 in-situ measurement points 
demonstrates a moderate-to-strong correlation, yielding 
a Pearson's correlation coefficient (r) of 0.722 (R² = 
0.5214) and an RMSE of 4.63°C. This integration 
approach aligns with recent advancements in urban 
remote sensing that emphasize the importance of 
multisensor data fusion to improve spatial accuracy. The 
results also confirm robust model reliability, supported 
by normal error distribution and consistent unbiased 
residual patterns (Bahi et al., 2025). 

 

 
Figure 7. Regression linear LST predicted vs LST observation 

Spatial-temporal variations of LST during 2019, 2022, and 
2024 

Analysis of spatial and temporal LST variations in 
Malang City identifies significant warming from 2019 to 
2024. Downscaled 10 m LST data revealed detailed 
thermal distributions, highlighting substantial spatial 
heterogeneity and accelerated temporal changes, 
especially during 2022–2024. City-wide statistics are 
shown in Table 4, district-level statistics in Table 5, and 
the spatial distribution is visually represented in Figure 
8. 

 
Table 4. LST Malang City 2019-2024 
Year Max (°C) Mean (°C) Min (°C) Std. 

11 June 2019 29.30 25.00 19.52 1.12 
5 July 2022 28.61 25.28 17.65 1.11 
26 July 2024 32.12 27.47 22.46 1.05 

 
In 2019, the city-wide mean LST was 25.00°C, with 

a range from 19.52°C to 29.30°C (Std = 1.12°C). As 
detailed in Table 5, Klojen District, the commercial core, 
was the hottest (mean 25.90°C). It was followed by 
Blimbing (25.60°C), Lowokwaru (25.01°C), and Sukun 
(24.79°C). Kedungkandang was the coolest district 
(23.71°C), reflecting its higher vegetation coverage 
(Sejati et al., 2019). Notably, Kedungkandang also had 
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the highest Std 1.59°C, indicating significant intra-
district heterogeneity. 

By 2022, the city-wide mean LST increased 
moderately to 25.28°C (0.28°C higher than 2019). The 
spatial ranking remained consistent: Klojen recorded the 
highest mean LST (26.24°C), followed by Blimbing 
(25.91°C), Sukun (25.22°C), Lowokwaru (24.71°C), and 
Kedungkandang (24.30°C). Despite the modest city-

wide mean increase, differential warming existed. 
Blimbing (0.31°C rise) and Klojen (0.34°C increase) 
warmed significantly. In contrast, Lowokwaru 
experienced slight cooling (a decrease of 0.30°C). This 
divergence is linked to heterogeneous land-use 
conversion and differential green-space policies 
(Hidayati et al., 2019; Tesfamariam et al., 2023). 

 

Table 5. LST 2019, 2022, 2024 in Celsius per District 

District 
2019 2022 2024 

Max Mean Min Std. Max Mean Min Std. Max Mean Min Std. 

Blimbing 28.40 25.60 21.69 0.97 28.24 25.91 19.53 0.96 30.63 28.02 23.15 1.01 
Kedungkandang 29.30 23.71 20.34 1.59 28.50 24.30 19.18 1.46 31.77 26.58 22.46 1.46 
Klojen 27.34 25.90 20.70 0.67 28.29 26.24 22.56 0.76 30.08 28.23 24.68 0.63 
Lowokwaru 27.55 25.01 20.97 1.17 27.65 24.71 17.72 1.31 31.07 27.32 23.69 1.05 
Sukun 27.96 24.79 19.52 1.20 28.73 25.22 21.22 1.09 32.12 27.19 23.49 1.12 

 

 
Figure 8. LST spatial distribution 2019, 2022, 2024 

 
The 2024 period exhibited dramatic, accelerated 

warming. The city-wide mean LST increased sharply to 
27.47°C (2.19°C above 2022 and 2.47°C above 2019), 
representing a 2019–2024 warming rate of 0.508°C/year. 
The maximum LST reached an observational high of 
32.12°C. All five districts warmed substantially from 
2022 to 2024 (illustrated in Figure 9), led by Lowokwaru 
(increase of 2.61°C) and Kedungkandang (increase of 
2.28°C). Although Klojen remained the hottest (28.23°C), 
the inter-district thermal range narrowed (1.65°C in 2024 
versus 2.19°C in 2019), suggesting thermal 
homogenization across the city (Chen et al., 2022; Ding 
et al., 2025). 

The intra-district temperature range (Maximum-
Minimum) highlights internal thermal heterogeneity. 
Kedungkandang consistently displayed the widest 
range (8.96°C in 2019; 9.31°C in 2024), indicating the 
coexistence of developed and preserved lands. 
Conversely, Klojen's range narrowed (6.64°C in 2019 to 

5.40°C in 2024), showing thermal homogeneity in the 
fully developed urbanized core. 

 

 
Figure 9. Tren spasiotemporal LST 2019-2024 

  
Temporal analysis reveals a distinct two-phase 

warming pattern that fundamentally changed urban 
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thermal dynamics over the five-year period. Phase 1 
(2019–2022) exhibited a moderate increase of 0.28°C city-
wide, corresponding to a warming rate of 0.14°C per 
year. In sharp contrast, Phase 2 (2022–2024) 
demonstrated a dramatic acceleration of 2.19°C city-
wide, corresponding to a rate of 1.10°C per year—
approximately seven times faster than Phase 1. This 
nonlinear progression represents a critical acceleration 
in urban thermal intensification. The accelerated 
warming during 2022–2024 is attributed to the combined 
effects of rapid land conversion, intensive post-
pandemic economic development (Purwantara & 
Ashari, 2025), and amplification by regional climate 
oscillations. 

 The most critical LST increases occurred when 
local urban development drivers interacted with 
regional climate forcing. This period notably coincided 
with the 2023 El Niño event, one of the strongest on 
record, and a concurrent positive Indian Ocean Dipole 
(IOD). These phenomena are known to increase land 
surface temperatures across Indonesia by reducing 
cloud cover and enhancing solar radiation (Berliani et 
al., 2025; Eboy & Kemarau, 2023). Urban expansion, 
which converts permeable vegetation to impermeable 
surfaces, reduces evaporative cooling capacity; this 
effect was severely amplified by the reduced 
atmospheric moisture associated with the ENSO and 
IOD phases. Malang's total 2.54°C warming over five 
years, a rate comparable to or greater than other 
Indonesian cities (Apriana & Syahrani, 2022), aligns with 
findings in Semarang where similar urban expansion 
and vegetation decline led to 2-5°C temperature 
increases (Sejati et al., 2019). 

 These findings have substantial implications for 
urban planning, confirming that urban form 
characteristics like building density are strong drivers of 
LST, as seen in Klojen, the warmest and highest-density 
district (Ding et al., 2025). The analysis mandates 
targeted, spatially-specific interventions: persistent 
hotspots (Klojen) require retrofitting with cool roofs or 
green walls, while rapidly warming transitional zones 
(Kedungkandang, Lowokwaru) require proactive 
planning with conservation buffers and mandatory 
green space ratios (Chen et al., 2022; Tesfamariam et al., 
2023). Furthermore, the declining city-wide thermal 
heterogeneity (Std decreasing from 1.51°C to 1.34°C) 
indicates that Urban Heat Island (UHI) effects are 
becoming widespread, necessitating immediate, city-
wide mitigation strategies (Hasyim et al., 2025; Sejati et 
al., 2019). 
 

Conclusion  

 
This study confirms the effectiveness of the 

proposed Random Forest-based downscaling approach 

for enhancing LST spatial resolution from 30 m to 10 m 
using Landsat 8 and Sentinel-2 data in Malang City. The 
model demonstrated strong accuracy and reliability (R² 
= 0.7675, RMSE = 0.7116°C) and consistent field 
validation (r = 0.722, RMSE = 4.63°C). Residual analysis 
indicated unbiased predictions across all observation 
periods. The consistently high model performance 
across multiple years, with R² values consistently 
exceeding 0.76, confirms the reliability of this 
methodology for capturing complex urban thermal 
heterogeneity that coarser satellite products fail to 
resolve. The systematic validation against ground-
truthed measurements provides empirical confidence in 
the downscaled LST estimates, thereby establishing this 
framework as a transferable solution applicable to other 
tropical urban contexts. Spatio-temporal analysis 
revealed a clear warming trend of 0.62°C per year from 
2019 to 2024, accelerating to 1.10°C per year between 
2022 and 2024. Klojen District remained the primary 
urban hotspot, while Kedungkandang experienced the 
fastest warming due to rapid suburban expansion. The 
decrease in city-wide temperature variability suggests 
intensifying urban heat island effects Overall, the 
developed method provides accurate, high-resolution 
thermal information essential for designing targeted 
urban heat mitigation and climate adaptation strategies 
in rapidly growing tropical cities. While the model 
demonstrated strong performance, its predictive ability 
decreased in 2024 due to rapid urban transformation and 
limited field validation, underscoring the need to retrain 
on multi-temporal data and expand ground 
measurement coverage. Future studies should 
incorporate broader climatic factors and multi-city 
comparisons to strengthen reliability and establish this 
method as a practical foundation for urban heat 
mitigation and adaptive planning strategies. 
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