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Introduction

Abstract: This study aims to enhance the spatial resolution of land surface temperature
(LST) mapping in Malang City, Indonesia, and to analyze spatiotemporal urban thermal
dynamics associated with rapid urbanization. Landsat 8 OLI/TIRS thermal data were
integrated with Sentinel-2 multispectral imagery using a Random Forest (RF)-based
downscaling approach to refine LST resolution from 30 m to 10 m. Spectral indices,
including NDVI, NDBI, NDWI, and NDMI, were employed as predictor variables, and
model performance was evaluated using R?> and RMSE metrics, supported by in-situ
temperature measurements for validation. The results demonstrate strong downscaling
performance, with R? values of 0.8374 (2019), 0.8468 (2022), and 0.7675 (2024), while field
validation yielded a correlation coefficient of 0.722 and an RMSE of 4.63°C. Spatial and
temporal analyses reveal a significant increase in mean LST from 24.67°C in 2019 to
27.21°C in 2024, indicating accelerated urban warming, particularly during 2022-2024.
This warming is closely associated with land-use transformation, increased impervious
surfaces, and regional climatic influences. In conclusion, the RF-based downscaling
approach effectively captures fine-scale urban thermal heterogeneity and provides
reliable high-resolution LST information, supporting urban heat mitigation planning and
climate adaptation strategies in rapidly growing tropical cities.
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increasing thermal energy accumulation in built-up
zones (Voogt & Oke, 2003).

Malang City, located in East Java, Indonesia, is one
of the region's rapidly urbanizing centres, experiencing
substantial land-use and land-cover (LULC)
transformations over the past two decades (Hasyim et
al., 2025). The city's transition from a mid-sized highland
settlement to a major urban centre has been
accompanied by extensive conversion of agricultural
lands and vegetated areas into residential, commercial,
and transportation infrastructure (Hasyim et al., 2025).
These landscape modifications have fundamentally
altered the city's natural thermal characteristics by
reducing vegetation-mediated cooling capacity and
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Rapid urbanization in Malang City has been driven
by population growth, with the city recording 889.359
inhabitants in 2024 and an annual population growth
rate of 0.5% (Isdianto et al., 2025). This demographic
pressure intensifies LULC conversion processes, leading
to the proliferation of impervious materials such as
asphalt and concrete that absorb and re-emit substantial
quantities of solar radiation (Santamouris, 2020). These
materials exhibit lower surface reflectivity (albedo) than
natural land covers, thereby enhancing thermal energy
retention and contributing to the pronounced Urban
Heat Island (UHI) effect (Santamouris, 2020). The UHI
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phenomenon presents a significant environmental
challenge, particularly in tropical urban environments,
as it elevates local surface and air temperatures, disrupts
microclimatic equilibrium, and compromises urban
livability and public health (Irfeey et al., 2023).

Alterations in land surface characteristics directly
influence the dynamics of the energy balance among
radiation, convection, and evaporation, which
determine LST (Li et al., 2024). LST serves as a critical
biophysical indicator for assessing surface thermal
properties and understanding the spatial distribution of
urban thermal anomalies (Voogt & Oke, 2003). Elevated
LST values in urban areas are consistently associated
with reduced vegetation coverage, increased building
density, and extensive impervious surface distribution,
which extend thermal retention periods relative to
natural land covers (Isdianto et al., 2025).

Continuous monitoring of LST variations is
essential for quantifying urban thermal stress and
developing evidence-based adaptive planning strategies
to mitigate climate-related risks and enhance urban
resilience. However, the spatial resolution limitations of
operational thermal satellite data impose significant
constraints on the accuracy of temperature mapping in
heterogeneous urban environments. Landsat 8 thermal
infrared observations, for example, provide LST data at
100 m resolution (commonly resampled to 30 m), which
proves inadequate for detailed urban-scale thermal
analysis (Onacillova et al., 2022). While this resolution
may be appropriate for regional-scale assessments, it
fails to capture microscale thermal variations such as
temperature gradients between individual roads,
building complexes, and small urban vegetation
patches.

Sentinel-2, operated by the European Space Agency
(ESA), delivers multispectral imagery at 10-20 m spatial
resolution but lacks thermal infrared observations.
Nevertheless, Sentinel-2's high-resolution spectral
information, particularly in visible and shortwave
infrared bands, provides valuable ancillary data for

deriving spectral indices, including Normalized
Difference Vegetation Index (NDVI), Normalized
Difference  Built-up Index (NDBI), Normalized

Difference Water Index (NDWI), and Normalized
Difference Moisture Index (NDMI), which exhibit strong
correlations with surface temperature. The integration
of Sentinel-2 spectral data with Landsat thermal data
offers a viable approach to overcoming spatial
resolution constraints through statistical or algorithmic
downscaling.

Downscaling  encompasses  statistical and
computational techniques that enhance the spatial
resolution of coarse datasets by integrating them with
higher-resolution auxiliary information. In the context of
LST estimation, downscaling facilitates the derivation of
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fine-resolution temperature maps by establishing
correlations between coarse-resolution thermal data and
fine-scale spectral indices (Peng et al, 2021).
Increasingly, machine learning algorithms have been
deployed for LST downscaling because they can
characterize  nonlinear  relationships  between
multidimensional ~ land-surface  variables  and
temperature observations.

The Random Forest algorithm demonstrates
superior performance in LST prediction through its
ensemble-based  architecture, which  minimizes
overfitting while effectively handling multiple predictor
variables (Bahi et al., 2025). RF integrates multiple
decision trees via bootstrap aggregation to enhance
predictive accuracy, rendering it well-suited for
heterogeneous urban landscapes. Contemporary
research has demonstrated that fusion of Landsat and
Sentinel multispectral data utilizing RF algorithms
substantially improves thermal mapping accuracy at
local scales (Onacillova et al., 2022; Peng et al., 2021).
Recent studies specifically employing RF-based
downscaling approaches for LST refinement have
validated the algorithm's effectiveness in urban thermal
environment characterization (Bahi et al., 2025).

In tropical cities like Malang, where surface
temperature gradients are influenced by elevation,
vegetation cover, and land-use patterns, a high-
resolution LST dataset is essential for understanding
spatial heterogeneity. The ability to map temperature
variations at 10 m resolution allows urban planners to
identify critical heat-prone zones, assess the cooling
function of green spaces, and evaluate the impact of
urban expansion on local microclimates (Uhrin &
Onacillova, 2025). Such information is vital for
implementing climate adaptation strategies and
promoting sustainable land management practices.
Vegetation in tropical cities plays a fundamental role in
mitigating urban heat through shading and
evapotranspiration processes. High-resolution imagery
has proven essential for assessing the spatial
heterogeneity of urban vegetation, as diverse spectral
signatures and three-dimensional structures have been
observed in tropical settings (Martinuzzi et al., 2018).
Recent work employing advanced remote sensing
techniques at sub-meter resolutions supports the claim
that urban green spaces not only reduce the urban heat
island (UHI) intensity but also serve as indicators of
socioeconomic  variation  across neighborhoods
(Martinuzzi et al., 2018; Chen et al., 2022). Very high-
resolution platforms facilitate the assessment of the
cooling effects of green cover even when micro-scale
spatial heterogeneity is significant, enabling a more
robust integration of ecological and urban climatology
models (Asmaryan et al., 2023).
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Beyond documenting urban warming trends, high-
resolution characterization of land surface temperature
is fundamentally important for understanding the
physical mechanisms governing urban climate
dynamics. According to surface energy balance theory,
LST is controlled by the partitioning of net radiation into
sensible heat, latent heat, and ground heat flux, all of
which are strongly modified by land-cover composition,
surface moisture, and urban morphology (Voogt & Oke,
2003; Santamouris, 2020). Coarse-resolution thermal
data obscure these interactions by spatially averaging
heterogeneous surfaces, leading to underestimation of
localized heat hotspots and limiting their applicability
for urban-scale mitigation planning. Machine learning-
based downscaling approaches, particularly Random
Forest, provide a robust theoretical and practical
framework for capturing nonlinear relationships
between multispectral surface properties and thermal
behavior, enabling the reconstruction of fine-scale LST
patterns that align more closely with urban physical
processes (Hengl et al, 2018; Peng et al, 2021).
Conducting this research is therefore essential to bridge
the gap between satellite-derived thermal observations
and the spatial detail required for effective urban climate
adaptation, especially in rapidly growing tropical cities
like Malang, where complex interactions between urban
expansion, vegetation loss, topography, and regional
climate variability demand high-resolution thermal
information for evidence-based planning and policy
formulation.

The need for high-resolution LST datasets in
tropical cities is underscored by the complex interplay of
elevation, vegetation cover, and land-use patterns.
Mapping surface temperature variations at a spatial
resolution as fine as 10 m is critical for identifying
localized heat-prone zones and tailoring climate
adaptation strategies (Dimitrov et al., 2024). Studies
have demonstrated that the integration of unmanned
aerial systems (UAS) with remote sensing and
geographic information systems (GIS) can produce the
detailed thermal maps required to support urban
planning decisions in data-scarce environments
(Dimitrov et al., 2024). Similarly, advances in machine
learning have led to process-informed neural
architectures that predict urban surface temperatures
with high accuracy, thereby enhancing both the
precision and applicability of these datasets (Zang et al.,
2023).

The objectives of this research are: (1) to integrate
Landsat 8 and Sentinel-2 for enhancing the spatial
resolution of LST in Malang City, (2) to assess the
accuracy of the Random Forest downscaling approach,
and (3) to analyze spatial and temporal variations of LST
during 2019, 2022, and 2024. The outcomes are expected
to provide a more robust understanding of urban
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thermal patterns, offering a scientific foundation for
local climate adaptation strategies.

Method

Research Area

The research was conducted in Malang City,
located at 112°06"-112°07" E and 7°06"-8°02" S. Malang is
a city flanked by a mountain complex at 504.5 + 48.3 masl
with varied topography but slightly wavy relief. The
research area is illustrated in Figure 1.

Figure 1. Research area

Materials

The following materials were used in this research:
(a) Landsat 8 OLI/TIRS satellite imagery, path/row
118/066, freely downloaded from the USGS platform.
(b) Sentinel-2 MSI satellite images, path 49MFM, freely
downloaded from the Copernicus browser. These were
chosen to have closely spaced acquisition dates to
minimize the influence of emissivity changes on surface
temperature calculations. (c) Satellite imagery was
selected with a cloud cover range of less than 20%. The
acquisition time details are shown in Table 1. (d)
Infrared Thermometer Benetech GM900 for measuring
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(e) Surface temperature. Land Cover for validation
purposes.

Table 1. Selected Data Imagery Used in This Research

Satellite Imagery Date Acquisition Cloud Cover (%)

11 June 2019 6.98
(L;‘Lr}‘/lsﬁié 5 July 2022 13.82
26 July 2024 6.98
10 June 2019 6.09
Sentinel 2 MSI 9 July 2022 3.69
23 July 2024 11.91

The research procedures are shown in Figure 2.

Faeld
v Mermremers

Figure 2. Research flow chart

Landsat 8 imagery, which includes 10 thermal
infrared (TIRS) bands at 30 m spatial resolution, was
used to derive LST using the mono-window and single-
channel algorithms of Jiménez-Mufioz et al. (2003). The
LST estimation followed the emissivity-based algorithm
introduced by Artis et al. (1982), comprising the
following steps: radiometric correction, brightness
temperature conversion, NDVI calculation, vegetation
proportion estimation, emissivity determination, and
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final LST computation. The Artis & Carnahan
methodology has provided a foundational approach to
LST estimation, numerous subsequent studies have
addressed its inherent challenges. Emissivity retrieval
methods exploiting VNIR and TIR data (Sobrino et al.,
2008), refinements through NDVI and vegetation
fraction modeling (Merlin et al., 2010), and advanced
temperature/emissivity separation techniques (Liu et
al.,, 2022; Cheng et al., 2008) have all enriched the field.
Moreover, high-resolution studies (Yang et al.,, 2014;
Song et al., 2015) emphasize the need for adapting the
original framework to diverse and rapidly changing
land surfaces. Such advancements not only improve the
precision of LST estimates but also promote better-
informed applications in environmental monitoring,
resource management, and climate studies. The
calculation method procedures are summarized below:
1. Radiometric correction is applied using the following
equation:

LA = MLx Qg + AL (1)

Where LA is TOA spectral radiance (Watts/m?2
*srad*um), ML is Radiance multiplicative band
metadata, Qcal is Digital Number band 10, AL is
band-specific additive rescaling factor from the
metadata.

2. Brightness temperature is then formulated as
follows:

K2

e “

LA

BT =

Where BT is the brightness temperature (in Kelvin),
LA is the TOA spectral radiance (the corrected
spectral radiance value), and K1 and K2 are
calibration constants obtained from the metadata file.
The values for K1 and K2 are 774.8853 and 1321.0789,
respectively.

3. The brightness temperature values were converted
from Kelvin to Celsius:

BTercius = BT — 273,15 €))

4. The NDVI value was calculated (Rousse et al., 1973).

NIR—RED

NDVI = 4)
NIR+RED

5. Which was subsequently used to calculate the
proportion of vegetation (PB,) using equation (5).

p =( NDVI— NDVIpin )2
v NDVImax— NDVigin

®)
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6. Emissivity (¢) was calculated using equation (6).
£=0.0004 Pv + 0.986 (6)

7. The resulting Emissivity is then entered into equation
(7) to find LST.

Br

LST = 1+(}\ BTT) Ine (7)
Where p = (h.c)/o. The formulation contains several
parameters, which means the wavelength of the
emitted radiance, = 1,438 x 10-2 mK, for h = Planck’s
constant (6,626 x 10-34 Js), C represents the speed of
light (2,998 x 108 m/s), and o refers to Boltzmann's
Constant (14388).

Common indices used to enhance LST resolution
include NDVI, built-up areas (NDBI), water bodies
(NDWI), and surface moisture (NDMI), all processed in
QGIS. The Red, Green, Near-Infrared (NIR), and
Shortwave Infrared (SWIR) bands from Landsat 8 and

Low-resolution parameters

December 2025, Volume 11, Issue 12, 1390-1401

Sentinel-2 were used to calculate related spectral indices
(Gao, 1996; Rousse et al., 1973; Zha et al., 2003). The
equations for each index are presented in Table 2.

Table 2. Equation Spectral Indices

Equation Reference

NDBI = SRR ®) (Zha et al., 2003)
SWIR+NIR

NDWI = MR () (Gao, 1996)
Green+NIR

NDMI = S2SVR () (Gao, 1996)
NIR+SWIR

All common indices, DEM, and low-resolution LST
were utilized as inputs for the downscaling process. The
LST downscaling was performed using the QGIS plugin
named ‘Downscale Anything with Random Forest/,
which employs the Random Forest algorithm integrated
with Google Earth Engine (GEE). The downscaling
procedure of LST using the Random Forest approach is
illustrated in Figure 3.

High-resolution parameters

i Random Forest Construction

Sentinel-2

Sample set 1|—»|Decision tree 1| |

Vegetation Index/NDVI ] ol
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Water IndexNDWI | |
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l
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| Landsat8 | T Hon
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L, RO : 2
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&H [ Vegetation Index/NDVI

: Sample setn »|Decision tree n

]
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|
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' [ Water Index/NDWI it S e s
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i1 to10m ST | T
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Figure 3. Flow chart of downscaling LST based on random forest

The RF model was constructed using multiple
decision trees trained on 80% of the data and validated
on 20% to reduce overfitting (Hengl et al., 2018; Kuhn &
Johnson, 2019). Predictor variables with 10 m spatial
resolution were used to estimate high-resolution LST,
capturing microscale variations in surface temperature.
Model performance, evaluated using R? and RMSE
(Peng et al., 2021; Roy et al., 2025). A lower RMSE
indicates higher agreement between observed and
predicted LST. Since the RF model does not fully
represent the complete LST distribution, a residual
correction was applied.

Validation Data

Field surface temperature measurements for LST
downscaling validation were conducted using a
Thermal Infrared thermometer. The methodology
adopted follows Chiueh et al. (2021), where the
emissivity value for each surface material was applied as
specified in that study. Sampling sites were selected
based on land-use classifications derived from the
Malang City Urban Planning Land Cover Map (1:25,000
scale); details are provided in Table 3, and their spatial
distribution is shown in Figure 4. To ensure temporal
synchronization with satellite data acquisition, aligning
with the Landsat 8 and Sentinel-2 overpass time. This
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standardized protocol is consistent with other LST
validation studies Chiueh et al. (2021).

Table 3. Number of Points of Validation in the Research

Area

Land Use Samples
Water body point 15
Building and road point 28
Upland crop point 18
Green space point 22
Paddy point 28
Bare land point 20
Total 131

Figure 4. Distribution LST observations

A linear regression analysis was applied to assess
the relationship between the processed LST and
observed LST. The regression results were further used
to calculate RMSE, which indicated the level of bias
between the datasets (Galve et al., 2022). The RMSE is
calculated using the following equation:

December 2025, Volume 11, Issue 12, 1390-1401

’1
RMSE = ; ?=1(Pi - 0,:)2

Where P; is for LST Processed and O; is for LST
Observation.

(11)

Data Analysis
This study employed integrated spatial,
temporal, statistical, and descriptive analyses to

examine LST dynamics in Malang City. Spatial analysis
quantified and visualized thermal distribution patterns
to identify urban heat anomalies and their impact within
administrative boundaries (Rakuasa et al., 2023), while
temporal analysis assessed the effects of urbanization on
thermal intensity over five years. Statistical and
descriptive methods synthesized multi-source remote
sensing data, using descriptive statistics (mean,
minimum, maximum, and standard deviation).

Result and Discussion

Integration of Landsat 8 and Sentinel-2 for Enhanced LST
Spatial Resolution through Random Forest

The integration of Landsat 8 OLI/TIRS and
Sentinel-2 MSI data effectively enhanced the spatial
resolution of LST from 30 m to 10 m in Malang City. The
Random Forest-based downscaling approach produced
high-detail surface temperature maps capable of
identifying microscale thermal variations within
complex urban environments. Figure 5 illustrates a
comparison for 2019, showing the original 30 m LST (Fig.
5A) and the downscaled 10 m LST, which reveals a
clearly improved (sharpened) thermal pattern (Fig. 5B).

m

Land Surface Tem perature
Vialues in "C
— Hgh R 00

B w0

Acvenintiain e Uves s Deuadass +

A ] o 2
‘:"-..f-‘?' {.0 L
‘_\,'
B S g

R
B o,
QR VGE

A X

Land Surtace Temperature ‘,
Vakies in ‘C
— HON 2930

S w102

———

Figure 5. (A) Coarse LST derived from Landsat-8 in spatial resolution of 30 m, (B) downscaled finer LST in spatial resolution of
10 m, for the study area of the Malang city in 2019
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Model evaluation across the three observation
years showed that 2019 achieved high accuracy (R? =
0.8374, RMSE = 0.6485°C, OOB = 0.8360), while 2022
recorded improved accuracy (R? = 0.8468, RMSE =
0.5903°C, OOB = 0.8441). In 2024, performance slightly
declined but remained strong (R?> = 0.7675, RMSE =
0.7116°C, MAE = 0.5394°C, OOB = 0.7634), reflecting the
growing complexity of urban surface characteristics,
which challenged model generalization (Roy et al., 2025;

December 2025, Volume 11, Issue 12, 1390-1401

Uhrin & Onacillova, 2025). Despite this, the R? value of
0.7675 still indicates strong model reliability, explaining
more than 76% of LST variability.

Residual distribution analysis further confirmed
model validity, with histograms for 2019, 2022, and 2024
showing symmetric, bell-shaped curves centered near
zero, indicating unbiased predictions with minimal net
error across all periods shown in Figure 6.

Residual Distribution Residual Destribution Residual Distribution
- . J - . - +
w0eo
25000 4
7500
20000 4 15000
> Z 12500
3 15000 4 S
g £ 1000
10000 4 7500
%000 4
5000 4
S
0 9
-4 3 0 F a -4 -3 0 2 .
Resctualy Test Aestualy Test
2022 2024

Figure 6. Residual distribution on each period

The scatter plot in Figure 7 further supports this
result. Validation using 131 in-situ measurement points
demonstrates a moderate-to-strong correlation, yielding
a Pearson's correlation coefficient (r) of 0.722 (R? =
0.5214) and an RMSE of 4.63°C. This integration
approach aligns with recent advancements in urban
remote sensing that emphasize the importance of
multisensor data fusion to improve spatial accuracy. The
results also confirm robust model reliability, supported
by normal error distribution and consistent unbiased
residual patterns (Bahi et al., 2025).

Regression Linear LST Predicted vs

LST Observation
U 50
T
g 40 y=1.7531x- 16.106
£ 0 R*=0.5214 '.
= 20
T
£ 10
0
9S00 10.00 20.00 30.00 40.00

LST Observation (°C)

Figure 7. Regression linear LST predicted vs LST observation

Spatial-temporal variations of LST during 2019, 2022, and
2024

Analysis of spatial and temporal LST variations in
Malang City identifies significant warming from 2019 to
2024. Downscaled 10 m LST data revealed detailed
thermal distributions, highlighting substantial spatial
heterogeneity and accelerated temporal changes,
especially during 2022-2024. City-wide statistics are
shown in Table 4, district-level statistics in Table 5, and
the spatial distribution is visually represented in Figure
8.

Table 4. LST Malang City 2019-2024

Year Max (°C) Mean (°C) Min (°C) Std.
11 June 2019 29.30 25.00 19.52 1.12
5 July 2022 28.61 25.28 17.65 1.11
26 July 2024 3212 2747 2246 1.05

In 2019, the city-wide mean LST was 25.00°C, with
a range from 19.52°C to 29.30°C (Std = 1.12°C). As
detailed in Table 5, Klojen District, the commercial core,
was the hottest (mean 25.90°C). It was followed by
Blimbing (25.60°C), Lowokwaru (25.01°C), and Sukun
(24.79°C). Kedungkandang was the coolest district
(23.71°C), reflecting its higher vegetation coverage
(Sejati et al., 2019). Notably, Kedungkandang also had
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the highest Std 1.59°C, indicating significant intra-
district heterogeneity.

By 2022, the city-wide mean LST increased
moderately to 25.28°C (0.28°C higher than 2019). The
spatial ranking remained consistent: Klojen recorded the
highest mean LST (26.24°C), followed by Blimbing
(25.91°C), Sukun (25.22°C), Lowokwaru (24.71°C), and
Kedungkandang (24.30°C). Despite the modest city-

Table 5. LST 2019, 2022, 2024 in Celsius per District

December 2025, Volume 11, Issue 12, 1390-1401

wide mean increase, differential warming existed.
Blimbing (0.31°C rise) and Klojen (0.34°C increase)
warmed = significantly. In contrast, Lowokwaru
experienced slight cooling (a decrease of 0.30°C). This
divergence is linked to heterogeneous land-use
conversion and differential green-space policies
(Hidayati et al., 2019; Tesfamariam et al., 2023).

District 2019 2022 2024
Max Mean Min Std. Max  Mean Min Std. Max Mean  Min Std.
Blimbing 28.40 25.60 21.69 097 2824 2591 1953 096 3063 28.02 2315 1.01
Kedungkandang 29.30 23.71 2034  1.59 28.50 24.30 1918 146 31.77 2658 2246 1.46
Klojen 27.34 25.90 20.70 067 2829 26.24 2256 0.76 30.08 2823 24.68 0.63
Lowokwaru 27.55 25.01 20.97 1.17 27.65 24.71 17.72 131 31.07 2732  23.69 1.05
Sukun 27.96 24.79 1952  1.20 28.73 25.22 2122  1.09 3212 2719 2349 1.12
J =, 2 i = 2022 . 2024
S ‘. */‘ Al ‘—-‘A"‘ v i ;
‘ ey 3 { :
T e it - TR
ST ; ~ “ ey
!‘A:’&: i 2 "‘.N"". T
< ; - S -
1 \.‘j I “\ l‘.l :
 agE =
K:\\._N 2 \4:':7?—‘_“ el
\ [ ', o)
"\\1 - 3 < ibag
g - @ |
'i"‘. i
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-\

Figure 8. LST spatial distribution 2019, 2022, 2024

The 2024 period exhibited dramatic, accelerated
warming. The city-wide mean LST increased sharply to
27.47°C (2.19°C above 2022 and 2.47°C above 2019),
representing a 2019-2024 warming rate of 0.508°C/year.
The maximum LST reached an observational high of
32.12°C. All five districts warmed substantially from
2022 to 2024 (illustrated in Figure 9), led by Lowokwaru
(increase of 2.61°C) and Kedungkandang (increase of
2.28°C). Although Klojen remained the hottest (28.23°C),
the inter-district thermal range narrowed (1.65°C in 2024
versus 219°C in  2019), suggesting thermal
homogenization across the city (Chen et al., 2022; Ding
et al., 2025).

The intra-district temperature range (Maximum-
Minimum) highlights internal thermal heterogeneity.
Kedungkandang consistently displayed the widest
range (8.96°C in 2019; 9.31°C in 2024), indicating the
coexistence of developed and preserved lands.
Conversely, Klojen's range narrowed (6.64°C in 2019 to

5.40°C in 2024), showing thermal homogeneity in the
fully developed urbanized core.

Mean LST per District

LST(*C)

219 2022 2004

s Blimbing s K adungkandang = Kigjen Lowokwan) s Sukun

Figure 9. Tren spasiotemporal LST 2019-2024

Temporal analysis reveals a distinct two-phase
warming pattern that fundamentally changed urban
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thermal dynamics over the five-year period. Phase 1
(2019-2022) exhibited a moderate increase of 0.28°C city-
wide, corresponding to a warming rate of 0.14°C per
year. In sharp contrast, Phase 2 (2022-2024)
demonstrated a dramatic acceleration of 2.19°C city-
wide, corresponding to a rate of 1.10°C per year—
approximately seven times faster than Phase 1. This
nonlinear progression represents a critical acceleration
in urban thermal intensification. The accelerated
warming during 2022-2024 is attributed to the combined
effects of rapid land conversion, intensive post-
pandemic economic development (Purwantara &
Ashari, 2025), and amplification by regional climate
oscillations.

The most critical LST increases occurred when
local urban development drivers interacted with
regional climate forcing. This period notably coincided
with the 2023 El Nifio event, one of the strongest on
record, and a concurrent positive Indian Ocean Dipole
(IOD). These phenomena are known to increase land
surface temperatures across Indonesia by reducing
cloud cover and enhancing solar radiation (Berliani et
al., 2025; Eboy & Kemarau, 2023). Urban expansion,
which converts permeable vegetation to impermeable
surfaces, reduces evaporative cooling capacity; this
effect was severely amplified by the reduced
atmospheric moisture associated with the ENSO and
IOD phases. Malang's total 2.54°C warming over five
years, a rate comparable to or greater than other
Indonesian cities (Apriana & Syahrani, 2022), aligns with
findings in Semarang where similar urban expansion
and vegetation decline led to 2-5°C temperature
increases (Sejati et al., 2019).

These findings have substantial implications for
urban planning, confirming that urban form
characteristics like building density are strong drivers of
LST, as seen in Klojen, the warmest and highest-density
district (Ding et al., 2025). The analysis mandates
targeted, spatially-specific interventions: persistent
hotspots (Klojen) require retrofitting with cool roofs or
green walls, while rapidly warming transitional zones
(Kedungkandang, Lowokwaru) require proactive
planning with conservation buffers and mandatory
green space ratios (Chen et al., 2022; Tesfamariam et al.,
2023). Furthermore, the declining city-wide thermal
heterogeneity (Std decreasing from 1.51°C to 1.34°C)
indicates that Urban Heat Island (UHI) effects are
becoming widespread, necessitating immediate, city-
wide mitigation strategies (Hasyim et al., 2025; Sejati et
al., 2019).

Conclusion

This study confirms the effectiveness of the
proposed Random Forest-based downscaling approach

December 2025, Volume 11, Issue 12, 1390-1401

for enhancing LST spatial resolution from 30 m to 10 m
using Landsat 8 and Sentinel-2 data in Malang City. The
model demonstrated strong accuracy and reliability (R?
= 0.7675, RMSE = 0.7116°C) and consistent field
validation (r = 0.722, RMSE = 4.63°C). Residual analysis
indicated unbiased predictions across all observation
periods. The consistently high model performance
across multiple years, with R?> values consistently
exceeding 0.76, confirms the reliability of this
methodology for capturing complex urban thermal
heterogeneity that coarser satellite products fail to
resolve. The systematic validation against ground-
truthed measurements provides empirical confidence in
the downscaled LST estimates, thereby establishing this
framework as a transferable solution applicable to other
tropical urban contexts. Spatio-temporal analysis
revealed a clear warming trend of 0.62°C per year from
2019 to 2024, accelerating to 1.10°C per year between
2022 and 2024. Klojen District remained the primary
urban hotspot, while Kedungkandang experienced the
fastest warming due to rapid suburban expansion. The
decrease in city-wide temperature variability suggests
intensifying urban heat island effects Overall, the
developed method provides accurate, high-resolution
thermal information essential for designing targeted
urban heat mitigation and climate adaptation strategies
in rapidly growing tropical cities. While the model
demonstrated strong performance, its predictive ability
decreased in 2024 due to rapid urban transformation and
limited field validation, underscoring the need to retrain
on multi-temporal data and expand ground
measurement coverage. Future studies should
incorporate broader climatic factors and multi-city
comparisons to strengthen reliability and establish this
method as a practical foundation for urban heat
mitigation and adaptive planning strategies.
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