

The Impact of the REACT Learning Model on Students Activity and Academic Performance

Suci Hapizah^{1*}, Ernawati¹, Dedi Hermon¹

¹ Master of geography education, Faculty of Social Science, Universitas Negeri Padang, Padang, Indonesia

Received: October 9, 2025

Revised: December 6, 2025

Accepted: December 25, 2025

Published: December 31, 2025

Corresponding Author:

Suci Hapizah

sucihapizah@gmail.com

DOI: [10.29303/jppipa.v11i12.13401](https://doi.org/10.29303/jppipa.v11i12.13401)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Student participation and achievement in geography learning are often low due to limited use of contextual learning approaches. This study aimed to improve students learning activity and academic performance in Geography among tenth-grade students at Senior High School 1 Kampar through the REACT (Relating, Experiencing, Applying, Cooperating, Transferring) learning model. The study employed a classroom action research design conducted in three cycles, each consisting of planning, implementation, observation, and reflection. The participants were 38 students in the 2024/2025 academic year. Data were collected through observation sheets and achievement tests and analyzed descriptively with a paired sample t-test. The findings showed that student activity scores increased from 64.2 in Cycle I to 88.4 in Cycle III, and learning outcomes improved from 67.5 to 89.6, with significant differences across cycles ($p < 0.05$). These results demonstrate that the REACT model effectively enhances students' engagement and academic performance. The implication of this study is that the REACT model can serve as an effective pedagogical strategy to promote active, contextual, and meaningful learning in geography education and other related disciplines.

Keywords: Geography Learning; Learning Activities; Learning Outcomes; REACT Model

Introduction

Geography education plays a crucial role in shaping students spatial reasoning, environmental awareness, and analytical ability to understand interactions between physical and human systems on Earth (Loder, 2025; Noura et al., 2025). Beyond knowledge acquisition, geography aims to develop critical thinking, problem solving, and social responsibility through contextual understanding of real-world phenomena (Indika et al., 2023; Prasetyo et al., 2025; Wu, Chen, & Chen, 2025). However, traditional classroom practices in many Indonesian high schools, including Senior High School 1 Kampar, remain dominated by teacher centered instruction. Students tend to be passive, dependent on explanations from the teacher, and have difficulty linking theoretical concepts to local environmental issues (Awuah et al., 2024; Padli et al., 2024; Prasetyo et al., 2024). This learning condition results in low participation and achievement levels that fail to meet the Minimum Mastery Criteria (KKM),

highlighting a pedagogical gap between expected learning outcomes and actual classroom performance.

Recent developments in educational research emphasize the importance of contextual and student centered learning models to improve engagement and learning outcomes (Tasmant et al., 2025). Constructivist based approaches such as Project Based Learning (Kamil et al., 2023), Cooperative Learning (M Anwar et al., 2024; Muhammad Anwar & Sabrina, 2020), and Inquiry Based Learning (Mendoza et al., 2025) have been widely applied to foster active participation and deeper understanding. While these methods show promising results, their implementation often lacks integrative stages that connect students' experiences with new knowledge and facilitate the transfer of learning to different contexts (Hidayat et al., 2025; Jasmanedi et al., 2025; Nyoman et al., 2024; Prasetyo et al., 2024). As a result, many students struggle to apply classroom concepts to real life situations, especially in geography, where contextual interpretation is essential.

The REACT learning model, developed by the Center for Occupational Research and Development

How to Cite:

Hapizah, S., Ernawati, E., & Hermon, D. (2025). The Impact of the REACT Learning Model on Students Activity and Academic Performance. *Jurnal Penelitian Pendidikan IPA*, 11(12), 570-578. <https://doi.org/10.29303/jppipa.v11i12.13401>

(CORD), presents a comprehensive framework that addresses this challenge through five interconnected components: Relating, Experiencing, Applying, Cooperating, and Transferring. This model emphasizes experiential and reflective learning, allowing students to construct knowledge meaningfully through collaboration and contextual application (Tasmant et al., 2025). Previous studies have confirmed its effectiveness in various subjects. For example, Kamil et al (2023) found that the REACT model increased student participation in social studies by 24%, while Salvifah (2021) reported improvements in students' critical thinking and conceptual understanding in science learning. Furthermore, Izzah & Arifin (2024) demonstrated that a REACT based contextual approach enhanced spatial understanding in geography. Despite these positive outcomes, empirical research examining the application of the REACT model in geography learning at the high school level particularly in Indonesia remains limited.

This limitation indicates a need for further exploration of how the REACT model can be effectively implemented in geography classrooms to promote both behavioral engagement and academic achievement. Prior studies have mostly focused on cognitive improvement, overlooking the simultaneous development of student activity and participation. In addition, few studies have used an action research framework to iteratively evaluate the impact of REACT implementation in authentic classroom settings (Abedi et al., 2025; Achmad & Sandy, 2024; Alatawi, 2025; Fokides & Antonopoulos, 2024). Thus, there is a research gap concerning how contextual and collaborative learning principles in the REACT model influence learning outcomes in geography.

To fill this gap, the present study aims to examine the impact of the REACT learning model on students' learning activity and academic performance in geography at Senior High School 1 Kampar. The novelty of this research lies in applying the REACT model within the Classroom Action Research (CAR) framework, allowing continuous reflection and improvement across multiple learning cycles. This approach provides empirical evidence of the model's effectiveness while offering practical insights for educators to design active, meaningful, and context-based geography learning. The scope of this research focuses on tenth-grade students during the 2024/2025 academic year, addressing both cognitive and behavioral dimensions of learning to advance innovative practices in geography education.

Method

Research Design

This study employed a Classroom Action Research (CAR) design, which emphasizes iterative reflection and

improvement in teaching practices to enhance learning outcomes (Perdana et al., 2025). The CAR framework consists of four cyclical stages: planning, acting, observing, and reflecting, implemented across three cycles. This design allows researchers to continuously identify learning problems, test interventions, and evaluate their impact in authentic classroom settings. The use of CAR is particularly relevant in education research as it bridges the gap between theory and practice while engaging teachers as active collaborators in the research process (Selviani, Prasetyo, et al., 2024). The REACT learning model comprising Relating, Experiencing, Applying, Cooperating, and Transferring was integrated into each cycle to promote contextual, experiential, and student-centered learning (Kabir et al., 2025)

Research Subjects

The participants consisted of 38 tenth-grade students (20 males and 18 females) from Class X Phase E1 at Senior High School 1 Kampar, located in Kampar Regency, Riau Province, Indonesia. The participants were selected using a purposive sampling approach, as they were part of a class identified by the geography teacher as having low engagement and suboptimal learning outcomes in previous assessments. The study was conducted during the second semester of the 2024/2025 academic year. All participants were involved in every stage of the intervention, including planning, implementation, and reflection activities. Ethical considerations were maintained throughout the research, ensuring that participation was voluntary and that data confidentiality was preserved according to educational research standards (Ilham et al., 2024; Price, et al., 2025)

Materials and Instruments

The study utilized two primary instruments to collect data: an Observation Sheet of Student Learning Activity and a Learning Achievement Test.

1. Observation Sheet: Adapted from indicators of classroom engagement proposed by (Dzakiyyah et al., 2025; Sari et al., 2023; Selviani et al., 2023), the observation sheet assessed five domains: participation in group discussions, initiative in asking or answering questions, cooperation during group work, task completion accuracy, and contribution to concluding activities. Each item was rated using a five-point Likert scale ranging from "very low" to "very high."
2. Achievement Test: A 25-item multiple-choice test was developed based on the Geography core competencies and learning indicators established by the Indonesian Ministry of Education. The test items were designed to assess students' conceptual understanding and application of geographic

principles. Content validity was ensured through expert review by two university lecturers and one senior geography teacher, following procedures recommended (Dzakiyyah et al., 2025; Sari et al., 2023; Selviani et al., 2024)

Sample Preparation

Prior to data collection, both research instruments were piloted and validated. The observation sheet was pre-tested during a preliminary session to ensure clarity and inter-rater reliability. Two independent raters were trained to assess student activity consistently, and reliability coefficients exceeding 0.80 were considered acceptable (Sari et al., 2023). Similarly, the achievement test was analyzed for difficulty index and discrimination power using item analysis procedures, and only items meeting the acceptable range (0.3–0.8) were retained. Learning materials such as lesson plans, student worksheets, and teaching media were prepared following the REACT learning stages. These materials emphasized the linkage between geographic concepts and real-world contexts to facilitate contextual understanding (Julian et al., 2025; Padavala et al., 2025)

Experimental Setup

The intervention was implemented over three learning cycles, each comprising five phases as shown in Figure 1:

1. Identify initial problems
2. Planning: The teacher and researcher collaboratively developed lesson plans incorporating REACT components, prepared instructional media, and scheduled observation and assessment procedures.
3. Acting: The REACT model was applied in the classroom. The teacher introduced geographic concepts through real-life examples (Relating), guided hands-on exploration (Experiencing), facilitated practical problem-solving (Applying), promoted group collaboration (Cooperating), and encouraged knowledge transfer to new contexts (Transferring).
4. Observing: The researchers systematically recorded students' learning behaviors using observation sheets and collected feedback from classroom discussions.
5. Reflecting: The team evaluated the results of each cycle, identifying challenges and refining the instructional design for subsequent cycles.

Each cycle consisted of two class meetings (2×45 minutes per session), resulting in six meetings over the semester. The iterative design enabled continuous refinement of teaching strategies to improve both student activity and achievement (Qi et al., 2025)

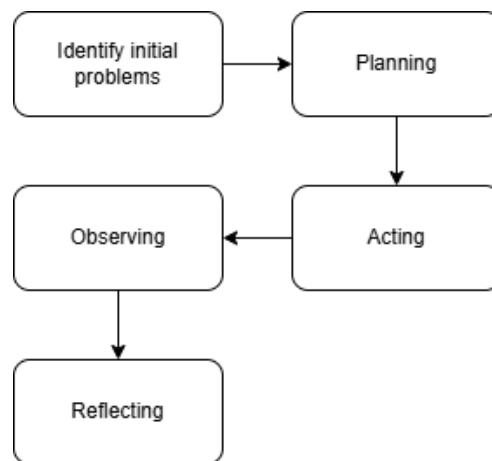


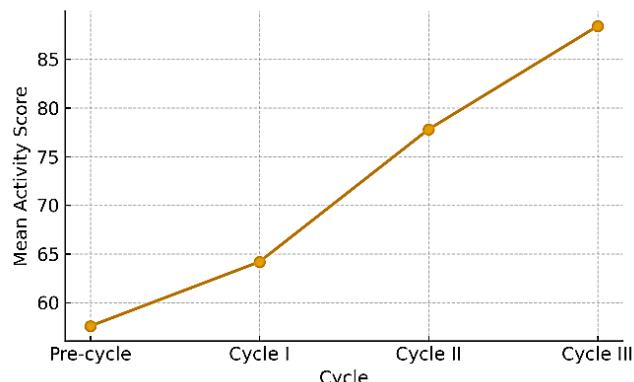
Figure 1. phase flow

Data Analysis Methods

Data were analyzed using both descriptive and inferential statistical techniques. Quantitative data on learning activity were summarized using mean scores and categorized into five levels (very low, low, moderate, high, and very high) following the classification by (Leite et al., 2025). Learning achievement data were analyzed by calculating average test scores and the percentage of students achieving the Minimum Mastery Criteria (≥ 75). To determine the significance of improvement across cycles, a paired sample t-test was performed using SPSS version 25, with a significance level of $p < 0.05$. Qualitative observations from reflection notes and classroom interactions were also analyzed to contextualize the quantitative findings, ensuring triangulation of data sources. This mixed analytical approach provides both statistical rigor and interpretative depth, consistent with best practices in educational action research (Khais et al., 2025)

Result and Discussion

The classroom action research was implemented in three consecutive cycles, each consisting of planning, implementation, observation, and reflection phases. The intervention aimed to improve students' learning activity and academic performance in geography through the REACT learning model. Data were obtained from observation sheets assessing student participation and from achievement tests administered at the end of each cycle.


Improvement in Students' Learning Activity

Students' learning activity was measured using five indicators: (1) participation in group discussions, (2) initiative in asking and answering questions, (3) collaboration during group work, (4) task completion accuracy, and (5) involvement in concluding activities. The mean activity scores for each cycle are presented below.

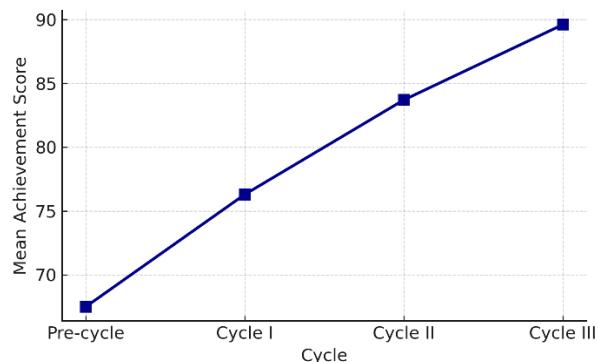
Table 1. Mean Scores of Student Learning Activity per Cycle

Cycle	Number of Students	Mean Score	Category
Pre-cycle	38	57.6	Moderate
Cycle I	38	64.2	Fairly High
Cycle II	38	77.8	High
Cycle III	38	88.4	Very High

As shown in Table 1, students learning activity consistently improved throughout the intervention. The mean score increased from 57.6 (Moderate) during the pre-cycle to 88.4 (Very High) in Cycle III, representing an improvement of 30.8 points or approximately 53.5%.

Figure 2. Trend of Student Learning Activity Across Cycles

The figure 2 shows a steady upward trend in learning activity. Students became increasingly active, collaborative, and able to relate geographic concepts to real-world contexts across the cycles.


Improvement in Students' Learning Achievement

Students academic performance was evaluated using multiple-choice tests administered after each cycle. The results are summarized below.

Table 2. Mean Scores of Student Learning Achievement per Cycle

Cycle	Mean Score	Mastery Percentage (≥ 75)	Category
Pre-cycle	67.5	36.8%	Not Yet Achieved
Cycle I	76.3	68.4%	Beginning to Achieve
Cycle II	83.7	84.2%	Achieved
Cycle III	89.6	94.7%	Fully Achieved

Base on Table 2 The data reveal a continuous improvement in students' test performance. The mean score increased from 67.5 in the pre-cycle to 89.6 in Cycle III, representing a 22.1-point increase (32.7%).

Figure 3. Progression of Students' Learning Achievement Across Cycles

From figure 3 The steady improvement in learning outcomes suggests that the REACT learning model effectively facilitated conceptual understanding and application of geographic concepts.

Table 3. Summary of Key Results

Indicator	Pre-cycle	Cycle I	Cycle II	Cycle III	% Increase
Mean Activity Score	57.6	64.2	77.8	88.4	+53.5%
Mean Achievement Score	67.5	76.3	83.7	89.6	+32.7%
Mastery (%)	36.8	68.4	84.2	94.7	+57.9%

As shown in Table 3, the findings demonstrate a strong correlation between the application of the REACT model and the improvement of student learning behavior and academic achievement. The increase in both behavioral and cognitive indicators provides empirical support for the effectiveness of contextual, student centered learning approaches in geography education.

The findings of this study provide clear evidence that the implementation of the REACT learning model effectively improves both students' learning activity and academic performance in geography. These results directly answer the research question, demonstrating that contextual, experiential, and collaborative learning strategies embedded in the REACT model lead to measurable improvements in student engagement and achievement. The study contributes new insights into how iterative application of the REACT model within a classroom action research framework can enhance conceptual understanding and active participation simultaneously an area that has received limited attention in previous geography education research (Elendu et al., 2025; Selviani et al., 2024).

The improvement in learning activity across the three cycles indicates that students became more engaged, confident, and collaborative as they progressed through the REACT learning stages. This pattern aligns with findings from (Hashemian &

Derakhshanfar, 2025; Kim et al., 2025), who reported increased participation in social studies classes following the use of REACT. However, the present study extends their conclusions by showing a more substantial and consistent increase in learning activity, rising from moderate to very high levels by Cycle III. This suggests that the integration of REACT within an iterative action research design may offer greater adaptability and responsiveness to student needs compared to single-implementation studies.

Similarly, the significant increase in students' academic performance supports the effectiveness of contextual and experiential learning approaches in facilitating conceptual understanding. The rise in mean test scores and mastery levels is consistent with the work of (Yorke et al., 2025), who found that REACT enhanced critical thinking and conceptual mastery in science learning. Nonetheless, the achievement gains observed in this study were more pronounced, particularly by the final cycle, indicating that geography due to its inherently contextual and spatial nature may benefit even more from REACT-based instruction. This strengthens the argument that the REACT model is highly suitable for subjects requiring the integration of real world phenomena and abstract concepts (Aufenanger et al., 2025; Ravindiran et al., 2025).

Compared with previous research, the present study offers several advantages (Alqahtani et al., 2025; Chang et al., 2025; Wang et al., 2025). First, it examines both behavioral (learning activity) and cognitive (academic performance) outcomes simultaneously, whereas many earlier studies have focused on one dimension only. Second, the study employs repeated cycles of implementation and reflection, allowing refinement of instructional strategies and providing more robust evidence of the model's effectiveness. Third, the integration of local environmental issues such as land use change and seasonal flooding into the Relating and Applying stages contributed to deeper student engagement and conceptual understanding, representing an innovative contextual adaptation of REACT in geography (Mirindi et al., 2025; Shao et al., 2025).

The significance of these findings lies in their practical implications for geography education. By demonstrating that students learn more effectively when they relate material to their lived experiences, collaborate with peers, and apply concepts to real-world contexts, this study reinforces the importance of student-centered and contextual pedagogical approaches in secondary education (Partini, 2023; Sari et al., 2025). The results suggest that the REACT model can be adopted as a viable strategy for improving learning outcomes in other concept-heavy or context-dependent subjects.

The research objectives were successfully achieved, as both learning activity and academic performance

improved significantly across cycles. No major contradictory or unexplained results were observed; however, some variations in individual student participation were noted, particularly during early cycles, which may reflect differences in learning readiness or confidence levels. These variations diminished over time, suggesting that continued exposure to REACT may help stabilize participation across diverse learners.

Overall, the study provides coherent evidence that applying the REACT learning model through a structured action research framework leads to substantial improvements in geography learning. It advances current knowledge by demonstrating how contextual, experiential, and collaborative learning interact to support both engagement and achievement. The implications extend beyond geography, offering a model for enhancing active learning and conceptual mastery in various educational settings.

Conclusion

This study concludes that the implementation of the REACT learning model significantly improves student learning activity and academic performance in high school geography, as demonstrated through consistent increases in engagement, collaboration, and conceptual understanding across three classroom action research cycles, confirming that contextual, experiential, and cooperative learning strategies effectively address passive participation and low achievement commonly associated with traditional instruction; moreover, by providing empirical evidence of REACT's effectiveness within a classroom action research framework, this study contributes to the literature and highlights the model's potential for broader application in disciplines requiring contextual understanding and active learner involvement, while also suggesting directions for future research, including its integration into digital or hybrid learning environments, examination of long-term learning retention, and analysis of its impact on higher-order thinking skills, thereby offering a practical and evidence-based approach for enhancing geography education and related fields.

Acknowledgments

The authors gratefully acknowledge the support of SMA Negeri 1 Kampar and the participating students and teachers, whose cooperation made this research possible.

Author Contributions

Conceptualization, S.H.; methodology, S.H. and E.; formal analysis, S.H.; investigation, S.H. and D.H.; resources, E.; data curation, S.H.; writing original draft preparation, S.H.; writing review and editing, E. and D.H.; supervision, D.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

Abedi, M., Waris, M. B., Al-Alawi, M., & Al-Jabri, K. (2025). Next-generation net-zero composite for underwater 3D printing construction: Hybrid machine learning optimized LC3 with recycled rubber. *Journal of Materials Research and Technology*, 39, 5508–5533. <https://doi.org/https://doi.org/10.1016/j.jmrt.2025.10.084>

Achmad, V. M., & Sandy, A. T. (2024). Analisis Gaya, Motivasi Dan Respon Siswa Dalam Pembelajaran Geografi di MA Darul Ihsan Samarinda. *Student Scientific Creativity Journal*, 2(5), 216–226.

Alatawi, M. N. (2025). Detection of fraud in IoT based credit card collected dataset using machine learning. *Machine Learning with Applications*, 19, 100603. <https://doi.org/https://doi.org/10.1016/j.mlwa.2024.100603>

Alqahtani, N. K., Alnemr, T. M., Ismail, R., & Habib, H. M. (2025). Machine learning prediction of 18 date palm polyphenol protection against biomolecular damage. *Journal of Agriculture and Food Research*, 22, 102019. <https://doi.org/https://doi.org/10.1016/j.jafr.2025.102019>

Anwar, M., Rahmawati, Y., Yuniarti, N., Hidayat, H., & Sabrina, E. (2024). Leveraging augmented reality to cultivate higher-order thinking skills and enhance students' academic performance. *International Journal of Information and Education Technology*, 14(10), 1405–1413.

Anwar, Muhammad, & Sabrina, E. (2020). Design of decision support system in determining the single student tuition fee in higher education. *COUNSE-EDU: The International Journal of Counseling and Education*, 5(4), 185–195.

Aufenanger, S., Bastian, J., Bastos, G., Castelhano, M., Dias-Ferreira, C., Fokides, E., ... Szpond, J. (2025). Immersive virtual reality learning environments for higher education: A student acceptance study. *Computers & Education: X Reality*, 7, 100105. <https://doi.org/https://doi.org/10.1016/j.cexr.2025.100105>

Awuah, W. A., Adebusoye, F. T., Wellington, J., David, L., Salam, A., Weng Yee, A. L., ... Mykolaivna, N. I. (2024). Recent Outcomes and Challenges of Artificial Intelligence, Machine Learning, and Deep Learning in Neurosurgery. *World Neurosurgery*, X, 23, 100301. <https://doi.org/https://doi.org/10.1016/j.fochx.2024.100301>

Chang, H., Gu, C., Zhang, Q., Zhang, W., Ma, L., Liu, F., & Feng, Z. (2025). Investigation of aromatic compounds and olfactory profiles in cocoa pulp fermentation using yeast-based starters: A Volatilomics and machine learning approach. *Food Chemistry*, X, 26, 102315. <https://doi.org/https://doi.org/10.1016/j.fochx.2025.102315>

Dzakiyyah, D. M. N., Widiyanto, W., Sutapa, P., Susanto, N., Sipayung, A. yesaya, Kurnaz, M., ... Kurniawan, R. (2025). TRX vs body weight training. Impact on arm muscle endurance of pencak silat athletes. *Fizjoterapia Polska*, 25(3), 125–131. <https://doi.org/doi.org/10.56984/8ZG7D19BUBS>

Elendu, C. C., Wang, Z., Duo, J., Cao, C., Pei, L., Yang, F., ... Duan, P. (2025). Multiple machine learning-based transesterification reaction response modeling and performance evaluation: A review. *Energy Nexus*, 19, 100501. <https://doi.org/https://doi.org/10.1016/j.nexus.2025.100501>

Fokides, E., & Antonopoulos, P. (2024). Development and testing of a model for explaining learning and learning-related factors in immersive virtual reality. *Computers & Education: X Reality*, 4, 100048. <https://doi.org/https://doi.org/10.1016/j.cexr.2023.100048>

Hashemian, A., & Derakhshanfar, N. (2025). Target tracking in Internet of Things using reinforcement learning. *Array*, 28, 100551. <https://doi.org/https://doi.org/10.1016/j.array.2025.100551>

Hidayat, R., Bahtra, R., Putra, A. N., & Kurniawan, R. (2025). The Influence of Speed, Flexibility and Agility on the Dribbling Ability of Futsal Players Vamos Academy Padang. *Jurnal Penelitian Pendidikan IPA*, 11(3), 87–93. <https://doi.org/10.29303/jppipa.v11i3.10537>

Ilham, Agus, A., Tomoliyus, T., Sugiyanto, F. X., Tirtawirya, D., Lumintuaro, R., ... Jean-Berchmans, B. (2024). Comparative Analysis of Adaptations Progress in VO2max, Leg Power, and Agility among Male and Female Sports Science Students. *Retos*, 57(SE-Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas), 245–257. <https://doi.org/10.47197/retos.v57.107053>

Indika, P. M., Kurniawan, R., Bahtra, R., & Yuniarti, E. (2023). The Effect of Administration of Honey on Maximal Physical Activity in Malondialdehyd (Mda) Levels of Male Mice (Mus musculus L.). *Proceedings of the 3rd International Conference on*

Biology, Science and Education (IcoBioSE 2021), 171-180. Atlantis Press. https://doi.org/10.2991/978-94-6463-166-1_25

Izzah, L., & Arifin, A. S. (2024). Pengembangan E-Lkpd Berbasis React (Relating, Experiencing, Applying, Cooperating, Transferring) Materi Sistem Pencernaan Untuk Melatih Keterampilan Proses Sains Dan Hasil Belajar Kognitif. *Jurnal Inovasi Kreativitas Pendidikan Dan Pembelajaran*, 1(2), 77-89.

Jasmanedi, R., Barlian, E., & Kurniawan, R. (2025). Analysis of Physical Fitness of Elementary School Learners in the Beachside, Plain, and Mountain Areas of Padang City. *Jurnal Penelitian Pendidikan IPA*, 11(3), 19-25. <https://doi.org/10.29303/jppipa.v11i3.10374>

Julianna Gombos, N., Vlaszov, A., Biró-Szigeti, S., & Molontay, R. (2025). Investigating banks' social media content and consumer reactions with machine learning. *Journal of Open Innovation: Technology, Market, and Complexity*, 11(2), 100512. <https://doi.org/https://doi.org/10.1016/j.joitmc.2025.100512>

Kabir, S., Hannan, N., Shufian, A., & Rahman Zishan, M. S. (2025). Proactive detection of cyber-physical grid attacks: A pre-attack phase identification and analysis using anomaly-based machine learning models. *Array*, 27, 100441. <https://doi.org/https://doi.org/10.1016/j.array.2025.100441>

Kamil, P. A., Minarni, M., Amaluddin, A., & Ridha, S. (2023). Pengembangan Model Pembelajaran Geografi Berbasis Pendekatan Ecopedagogy untuk Membangun Karakter Pro-Lingkungan Pada Siswa SMA Menggunakan Model ADDIE. *Jurnal Georafflesia: Artikel Ilmiah Pendidikan Geografi*, 8(1), 19-29.

Khais Shahid, Z., Saguna, S., Åhlund, C., & Mitra, K. (2025). Anomaly detection using transfer learning for electricity consumption in school buildings: A case of northern Sweden. *Energy and Buildings*, 346, 116129. <https://doi.org/https://doi.org/10.1016/j.enbuild.2025.116129>

Kim, S., Yang, W. F. Z., Jiwani, Z., Hamm, E., & Singh, S. (2025). Linguistic Markers of Pain Communication on X (Formerly Twitter) in US States With High and Low Opioid Mortality: Machine Learning and Semantic Network Analysis. *Journal of Medical Internet Research*, 27. <https://doi.org/https://doi.org/10.2196/67506>

Leite, D., Casalino, G., Kaczmarek-Majer, K., & Castellano, G. (2025). Incremental learning and granular computing from evolving data streams: An application to speech-based bipolar disorder diagnosis. *Fuzzy Sets and Systems*, 500, 109205. <https://doi.org/https://doi.org/10.1016/j.fss.2024.109205>

Loder, A. K. F. (2025). Machine learning for university management: Micro Cluster Learning to predict "active" students. *Studies in Educational Evaluation*, 85, 101463. <https://doi.org/https://doi.org/10.1016/j.stueduc.2025.101463>

Mendoza, M. D., Sabrina, E., Anggraini, M., Syahfitri, J., Adinda, N., Ardinda, O., ... Amal, T. I. (2025). Organisasi Virtual Menuju Revolusi Industri 5.0. *Tangguh Denara Jaya Publisher*.

Mirindi, D., Hunter, J., Sinkhonde, D., Bezabih, T., & Mirindi, F. (2025). Performance of machine learning algorithms to evaluate the physico-mechanical properties of nanoparticle panels. *Green Technologies and Sustainability*, 3(4), 100235. <https://doi.org/https://doi.org/10.1016/j.grets.2025.100235>

Noura, H. N., Yaacoub, J. P. A., Salman, O., & Chehab, A. (2025). Advanced Machine Learning in Smart Grids: An overview. *Internet of Things and Cyber-Physical Systems*, 5, 95-142. <https://doi.org/https://doi.org/10.1016/j.iotcps.2025.05.002>

Nyoman, A. A., Kurniawan, R., Sari, A. P., & ... (2024). Pengaruh Latihan Renang Terhadap Pengembangan Keterampilan Motorik Anak: Systematic Literature Review. ... *Pendidikan*, 8(2), 114-122. <https://doi.org/https://doi.org/10.17509/jpp.v2i1.24557>

Padavala, S. S. A. B., Avudaiappan, S., & Noolu, V. (2025). Experimental and machine learning based analysis of pervious concrete enhanced with fly ash and silica fume. *Next Materials*, 9, 101018. <https://doi.org/https://doi.org/10.1016/j.nxmat.2025.101018>

Padli, P., Prasetyo, T., Kurniawan, R., Putra, R. A., & Candra, O. (2024). The influence of environment and social interaction on the formation of athlete character: a descriptive study. *Revista Iberoamericana de Psicología Del Ejercicio y El Deporte*, 19(4), 430-434.

Partini, D. (2023). Project Based Learning in Tourism Geography Lectures To Sharpen the Skills of 21st Century Students in the Era of the Independent Learning Curriculum. *Journal of Geography Science and Education*, 5(2), 53-60.

Perdana, G. A., Aulia Kisdi, M. I., Wairooy, I. K., & Makalew, B. A. (2025). Analytical analysis of cryptocurrency regulation and adoption: A machine learning-driven ablation study of the United States, Russia, and Indonesia. *Procedia Computer Science*, 269, 1654-1662. <https://doi.org/https://doi.org/10.1016/j.procs.2025.09.108>

Prasetyo, T., Kurniawan, R., Putra, R. A., & Candra, O. (2024). The Role of Sports in Preventing and Overcoming Problems During the Transition Period Case Study of Adolescents in Indonesia: Descriptive Study. *Social Science and Humanities Journal (SSHJ)*, 8(07), 4477-4489. <https://doi.org/https://doi.org/10.18535/sshj.v8i07.1213>

Prasetyo, T., Kurniawan, R., Putra, R. A., & Sipayung, A. Y. (2024). The Role Of Multimedia In The Process Physical Education Learning: Study Literature. *Journal Sport Science Indonesia*, 3(3), 493-504. <https://doi.org/https://doi.org/10.31258/jassi.3.3.493-504>

Prasetyo, T., Putra, R. A., Kurniawan, R., & Nurdin, R. F. (2025). The Impact of Free Nutritional Meal Program on Students' Physical Fitness and Mental Health: A Descriptive Study. *American Journal of Medical Education*, 1(3), 48-56. <https://doi.org/https://doi.org/10.11648/j.med.edu.20250103.13>

Price, S., Taylor, S., Turnbull, K., & Stafford, M. R. (2025). A regenerative approach to tourism: Learnings from community enterprises. *Journal of Outdoor Recreation and Tourism*, 51, 100900. <https://doi.org/https://doi.org/10.1016/j.jort.2025.100900>

Qi, Y., Huang, Y., Li, H., Jin, Z., Amorati, R., & Shi, L. (2025). Effect of fatty acid composition on rosemary antioxidants in stabilizing woody edible oils: a kinetic and machine learning analysis of volatiles under accelerated oxidation. *Food Chemistry*, 492, 145214. <https://doi.org/https://doi.org/10.1016/j.foodchem.2025.145214>

Ravindiran, G., Karthick, K., Rajamanickam, S., Datta, D., Das, B., Shyamala, G., ... Maria, A. (2025). Ensemble stacking of machine learning models for air quality prediction for Hyderabad city in India. *IScience*, 28(2), 111894. <https://doi.org/https://doi.org/10.1016/j.isci.2025.111894>

Salvifah, M. A. (2021). Pengembangan Bahan Ajar Matematika Berbasis Kearifan Lokal Sumatera Utara Menggunakan Strategi React Pada Siswa SMP. *Jurnal Ilmiah Mahasiswa Pendidikan [JIMEDU]*, 1(4).

Sari, A. P., Bafirman, Rifki, M. S., Syafrianto, D., & Kurniawan, R. (2023). The impact of maumere gymnastics on blood pressure reduction in hypertensive patients: A promising non-pharmacological intervention. *Journal Sport Area*, 8(3), 328-339. [https://doi.org/10.25299/sportarea.2023.vol8\(3\).11727](https://doi.org/10.25299/sportarea.2023.vol8(3).11727)

Sari, A. P., Kurniawan, R., Indika, P. M., Wulan, T. S., Syafrianto, D., & Sari, D. N. (2023). Exploring the impact of aerobic gymnastics on reducing blood pressure in hypertensive patients with hypertension medications vs without hypertension medications. *Journal of Physical Education and Sport*, 23(12), 3253-3263. <https://doi.org/10.7752/jpes.2023.12372>

Sari, A. P., Rahmadhanti, R., Car, B., Pavlović, R., Ndayisenga, J., Prasetyo, T., & Kurniawan, R. (2025). Royal Jelly Potentially Reduces Oxidative Stress and Inflammation after Physical Activity: A Systematic Literature Review. *South Eastern European Journal of Public Health*, XXVI, 1939-1954.

Selviani, I., Prasetyo, T., Kurniawan, R., Putra, R. A., Candra, O., & Rizal, Y. (2024). Activities and Involvement in Sports have a Significant Impact on Life: A Descriptive Analysis. *International Journal of Research and Innovation in Social Science*, 8(8), 1926-1934. <https://doi.org/https://doi.org/10.47772/ijriss.2024.8080140>

Selviani, I., Sari, A. P., Okilanda, A., Kurniawan, R., Padang, U. N., & Abdurrah, U. (2023). Pemberian Thumb Exercise Sebagai Upaya De Quervain Syndrome. *Wahana Dedikasi: Jurnal PkM Ilmu Kependidikan*, 6(2).

Selviani, I., Syafrianto, D., Okilanda, A., Sari, A. P., & Kurniawan, R. (2024). Kinesio Taping Efficacy and Demographic Correlates in. *Halaman Olahraga Nusantara: Jurnal Ilmu Keolahragaan*, 7(I), 54-66. <https://doi.org/https://doi.org/10.31851/hon.v1i1.1505>

Selviani, I., Welis, W., Syafrianto, D., Okilanda, A., Sari, A. P., Resmana, R., ... Crisari, S. (2024). Effectiveness of Use of Kinesiotapping in the Condition of Pain Plantar Fasciitis. *Community Practitioner*, 21(2), 170-175. <https://doi.org/10.5281/zenodo.10731288>

Shao, J., Long, Y., Liu, X., Zheng, Y., Song, Y., Wang, J., ... Zhang, F. (2025). Machine learning-based study on factors influencing street vitality in urban fringe commercial districts: a case of Wuhan. *Frontiers of Architectural Research*. <https://doi.org/https://doi.org/10.1016/j.foar.2025.06.010>

Tasman, H., Bossoufi, B., Alaoui, C., & Siano, P. (2025). A review of machine learning and IoT-based energy management systems for AC microgrids. *Computers and Electrical Engineering*, 127, 110563. <https://doi.org/https://doi.org/10.1016/j.compeleceng.2025.110563>

Wang, W., Wang, K., & Du, H. (2025). Design and optimization of human-machine interaction interface for the intelligent Internet of Things based on deep learning and spatial computing. *Egyptian Informatics Journal*, 30, 100685. <https://doi.org/https://doi.org/10.1016/j.eij.2025.100685>

5.100685

Wu, M. Y.-H., Chen, H.-C., & Chen, P. (2025). Social and emotional learning enhancing teacher well-being and professional development in Taiwan: A preliminary study of the BEST ME program. *Social and Emotional Learning: Research, Practice, and Policy*, 5, 100098. <https://doi.org/https://doi.org/10.1016/j.sel.2025.100098>

Yorke, L., Araya, M., Chuta, N., Demisse, A., & Rose, P. (2025). The interaction between learning, mental health and wellbeing during the COVID-19 pandemic: A longitudinal mixed-methods study in Ethiopia. *International Journal of Educational Development*, 117, 103352. <https://doi.org/https://doi.org/10.1016/j.ijedudev.2025.103352>