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Abstract: This study evaluates the Automated Flowchart Assessment Tool (AFAT) to 
overcome limitations in semantic sensitivity and layout robustness prevalent in existing 
tools. Through a quantitative analysis of 312 student submissions, AFAT demonstrated 
superior diagnostic performance with a Micro-F1 score of 0.92 and substantial inter-rater 
agreement (Fleiss' Kappa = 0.88), supporting the hypothesis of expert-level accuracy. Key 
findings reveal that AFAT significantly enhances operational efficiency, reducing 
evaluation time by 61.2% (averaging 1.87 minutes per flowchart) while decreasing inter-
rater variability by 28%. Generalized Linear Model (GLM) analysis confirmed significant 
time savings, particularly in high-complexity sessions (Wald χ² = 87.44, p < 0.001). 
Beyond technical efficiency, this research contributes to applied science education by 
providing a scalable framework for computational science literacy, enabling the rigorous 
assessment of algorithmic thinking within integrated STEM curricula. These results 
substantiate AFAT’s potential for large-scale deployment as a robust tool for automated 
scoring in formal educational settings. 
 
Keywords: Diagnostic Accuracy; Evaluation Efficiency; Scoring Reliability; Flowchart 
Assessment; Semantic Robustness 

  

Introduction  
 

The rapid global integration of programming into 
K-12 curricula has triggered a scalability crisis in 
formative assessment, where instructors struggle to 
provide timely, individualized, and semantically 
accurate feedback as student numbers rise (Florou et al., 
2024). This delay in evaluating visual artifacts like 
flowcharts significantly hinders students' reflective 
learning and algorithmic thinking (Sakulin et al., 2025). 
Unlike syntax-heavy source code that facilitates 
automated output-based testing, flowchart assessment 
demands a complex interpretation of semantic, spatial, 
and topological structures (Calderon et al., 2023). 
Consequently, conventional rule-based systems often 
fail to recognize functionally equivalent logic presented 
in diverse visual layouts, while current NLP and 
heuristic approaches remain limited by low semantic 
accuracy and excessive reliance on manual transcription 
(Messer et al., 2024). 

In East Java’s vocational higher education contexts, 
assessment of flowchart exercises in introductory 
programming courses is carried out manual by a group 
of four instructors who manage seven parallel classes of 
30 students each. During a 16-week semester, each 
teaching session begins with the construction of 
flowcharts, which serves as a precursor to coding. Data 
gathered from 18 instructors show an average correction 
workload of 5.8 hours a week, inter-rater inconsistency 
of 26%, and variability of evaluative interpretation to the 
degree of significance(Tong et al., 2023; Weegar & 
Idestam-almquist, 2023). Although these findings are 
context-specific, the assessments burdens placed on 
instructors on CS education manual assessments suggest 
pressing need for scalability.   

Globally, flowchart-based instruction is the taught 
foundational programming structure and remains the 
curricula for K-12 and vocational education(Lee et al., 
2023)(Ye et al., 2023). The assessment of flowcharts 
stands as a bottleneck in the challenges posed by the 
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educational system and the logic of visual 
programming(C. Huang et al., 2025). However, for 
research relevance, flowchart grading will need to be 
enrolled as prerequisite course to the scalable 
assessment of advanced visual programming elements 
such as UML, State machines and algorithmic maps 
(Zimmerman et al., 2023). 

In order to mitigate the problems discussed above, 
this research constructs an automated flowchart 
evaluation system based on a teacher-model 
comparison. While many constructed flowchart systems 
utilize Control Flow Graphs (CFGs) and Program 
Dependency Graphs (PDGs) which are designed with a 
compiler's perspective, this research takes a pedagogical 
perspective(Xu et al., 2025).  By contrast, Directed 
Graphs (DG) permit a flexible structure for 
conceptualizing student logic without block-level 
semantics, thus allowing layout-tolerant comparisons. 
In this system, the proposed new topological distance 
metric is introduced and the formal definition is within 
the methodology.  This new metric is designed to 
quantify the degree of semantic path equivalence of 
student and teacher graphs(Chen et al., 2019). Graph 
Edit Distance (GED) and Maximum Common Subgraph 
(MCS) are traditional metrics, yet they are not practical 
because of the exponential cost associated with cyclic 
structures(Dikici & Bilgin, 2025). Unlike those metrics, 
this one abstract control flow structures of loops, 
branches, and sequences into a weighted, pedagogically 
relevant path. The rest of the feature engineering follows 
the classical constructs of Computer Science education, 
namely, AST-based abstraction combined with control 
flow pattern extraction (Geetika et al., 2025).  

For empirical rigor, this system uses the automated 
grading tool GRAD-AI, which is an advanced system for 
grading visual logic and code artifacts (Gambo et al., 
2024). This automated system, coupled with expert 
grading, provides a reproducible benchmark for 
assessing the system's classification accuracy. The 
efficacy of the system is analyzed through the following 
two technical hypotheses.  

The AFAT system is designed to achieve a logical 
classification accuracy 90% (H1) and a 60% reduction in 
evaluation time (H2), ensuring high inter-rater reliability 
through separate calibration and validation phases. To 
enhance generalizability, the framework incorporates 
UML and state machine extensions, utilizing advanced 
topological metrics to interpret hierarchical and 
concurrent transitions (Cui et al., 2024). This research 
addresses a significant gap in existing literature: the 
absence of scalable, semantically accurate tools for 
evaluating visual logic in interdisciplinary contexts. The 
novelty of AFAT lies in its integration of graph theory 
and control flow analysis with educational assessment 
to foster computational science literacy. By delivering 

high-fidelity automated feedback, the system directly 
enriches science education, empowering students to 
model complex phenomena while systematically 
sharpening their algorithmic thinking skills.  
 

Method  
 
Context and Participants 

This study took place in one of the vocational 
higher education institutions in East Java, Indonesia, 
during the introductory fundamental programming 
course. This course is offered in the first semester and 
lasts for 16 weeks, comprising 48 contact hours. The 
course syllabus covers elementary content areas such as 
algorithmic thinking, control structures, and flowchart 
construction, and is geared toward beginner learners in 
accordance with the ACM/IEEE Computing 
Curricula(A. Huang et al., 2025). Instructors around the 
world and in Indonesia emphasize the use of 
flowcharting as an algorithmic scaffolding technique 
prior to coding for the weekly instructional 
assignments(Ulfa et al., 2025). This specific course was 
offered by an instructional team of 4 lecturers, who form 
the complete distribution of active teaching staff for the 
course(Prasetya et al., 2025). Based on the validity of 
their expertise, the selection of the course instructors was 
restricted to those who fulfilled the following 2 
conditions: (i) 5+ years of teaching experience in 
programming or software engineering, and (ii) a PhD in 
the appropriate discipline or 2+ peer-reviewed articles 
in the educational field of computing. These instructors 
also served as expert raters for inter-rater reliability 
(IRR) analysis at the evaluation stage. 

The study involved 210 students in seven parallel 
classes. To avoid confounding variables, background 
information was collected, including demographic data, 
prior exposure to programming, entry-level scores, and 
baseline scores for logic-based tasks. Analysis showed 
that more than 85% of participants had no prior formal 
experience with programming, confirming their status 
as novice learners(Kinnear et al., 2025). The complexity 
of the flowchart tasks was objectively adjusted using 
McCabe’s Cyclomatic Complexity metrics. For the entire 
dataset, the average complexity score was 4.2 (SD = 1.6). 
The set of flowcharts had an equitable distribution of the 
various nodes (input, process, decision, terminator), as 
well as structural elements with branching and loops. 
This provided sufficient variety in the task to assess the 
AFAT’s ability to process cyclic logic and structural 
variation(Chowdhury et al., 2024). 

The curriculum development team, consisting of 
experts in the subject field, from the Department of 
Information Technology at Politeknik Negeri Malang, 
pre-validated all weekly assignments. The validation 
methods included a two-round Delphi process 
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combined with the calculation of the Content Validity 
Index (CVI), resulting in an average item-level CVI of 
0.89. This high CVI demonstrates strong consensus 
among the experts regarding the relevance of the 
assignments and the alignment of instruction. To check 
inter-rater reliability among the expert evaluators, a set 
of 60 flowchart submissions, or roughly 28% of all 
submissions, were assigned and graded independently 
by all four raters as a case study. The resulting coefficient 
of 0.76 derived from Fleiss' Kappa analysis indicates 
substantial agreement, and subsequent use of this 
particular metric is justified due to the nature of 
categorical rating in multi-rater contexts(Weingarden & 
Heyd-Metzuyanim, 2023). 
 
AFAT System Architecture 

Automated Flowchart Assessment Tool (AFAT) 
evaluates student-generated flowchart artifacts in a 
scalable, real-time approach. It employs a directed 
graph-based semantic comparison framework. The 
system consists of six integrated components, as shown 
in Figure 1.   

 

Start End

Json Conversion

Diagnostic Engine

Reference 

Directed Graph 

(DG)

Getting Support

Graph 

Comparison Using 

Modified Graph 

Edit Distance

Score

 
Figure 1. AFAT System Architecture 

 
1) Flowchart Ingestion and DG Extraction 

The evaluation process starts with the ingestion of 
self-scanned flowchart images. The computer vision 
module first converts the images into a digital format. 
Flowchart components are automatically and robustly 
extracted, including process blocks, decision nodes, and 
I/O symbols, without respect to the irregularities of 
flowchart layout. The components are formatted into a 
structured format of visual elements. Thereafter, the 
visual elements are substituted for the nodes of a 
directed graph (DG) which represents the flowchart in a 
DG format. Each DG captures the topological execution 
logic of the flowchart with labeled nodes and directed 
edges (Prasetya et al., 2022).   

 
2) Reference Model Repository   

AFAT stores Reference Directed Graphs (DGs) that 
captures flowcharts with functionally equivalent 
solutions to a given task. These reference models are 
validated by expert instructors and canonized removing 
layout-specific variations. Control structure signatures 
and bounded-depth loop unrolling (d = 3) ensures 
functional equivalence, allowing the system to tolerate 
visual diversity while maintaining semantic fidelity. 
 
3) Graph Comparison Engine 

The core comparison mechanism employed by the 
Automated Flowchart Assessment Tool (AFAT) is the 
Weighted Topological Similarity Score, which quantifies 
semantic equivalence between a student-generated 
Directed Graph (DG), denoted as 𝑮𝒔, and an instructor-
defined reference DG, denoted as 𝑮𝒕. The score is 
formally defined as: 

 

𝑆(𝐺𝑠 , 𝐺𝑡) =
∑𝑝∈𝑃𝑡 𝑤(𝑝)⋅𝛿(𝑝∈𝑃𝑠)

∑𝑝∈𝑃𝑡 𝑤(𝑝)
       (1) 

 
where 𝑷𝒕represents the set of normalized execution 
paths in the reference graph, 𝒘(𝒑)denotes the functional 
weight assigned to each path based on pedagogical 
significance, and 𝜹(⋅)is an indicator function that 
evaluates path equivalence within the student graph 𝑮𝒔. 
Unlike conventional approaches that rely on Graph Edit 
Distance (GED), which is computationally expensive 
and structure-centric, AFAT adopts a similarity-based 
metric that prioritizes instructional relevance. To 
maintain tractability in the presence of cyclic constructs, 
the system applies bounded-depth loop unrolling and 
canonicalization techniques, enabling robust 
comparison across diverse flowchart layouts. 
 

JSON Conversion Directed Graph

Reference 

Directed Graph 
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Diagnostic Engine

Graph Comparison 
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Distance

Scoring and 

Feedback Output

Student 

Flowchart

Teacher Model

 
Figure 2. Shows the Semantic Evaluation Pipeline from 

Flowchart Input to Feedback and Scoring 

 
4) Real-Time Optimization Module 

To facilitate real-time formative feedback, the 
AFAT system incorporates a modified Weisfeiler-
Lehman (WL) graph kernel tailored for pedagogical 
evaluation. Unlike conventional implementations that 
operate over entire graph structures, the proposed 
kernel functions on normalized execution path sets 𝑷, 
enabling fine-grained semantic comparison at the path 
level. During the label refinement process, pedagogical 
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weights 𝒘(𝒑)are embedded to ensure that structural 
similarity reflects instructional significance. This 
alignment enhances the kernel’s sensitivity to 
educational relevance, allowing it to prioritize 
cognitively meaningful control structures. The 
refinement procedure is formally defined in Algorithm 
2. To ensure computational efficiency, the module 
utilizes sparse matrix representations and parallelized 
kernel computations. This design achieves sub-second 
latency, enabling responsive feedback during 
instructional sessions. The optimization module directly 
supports the similarity scoring engine by accelerating 
graph traversal and label propagation, while preserving 
semantic granularity and pedagogical 
fidelity(Pedagogy, n.d.). 
 
5) Diagnostic Engine 

The Diagnostic Engine analyzes the computed 
similarity score 𝑆(𝐺𝑠, 𝐺𝑡)to identify and classify logical 
discrepancies between the student-generated Directed 
Graph (DG) 𝐺𝑠and the instructor-defined reference DG 
𝐺𝑡. Subgraph-level features are extracted to localize 
deviations in control flow and semantic structure. To 
facilitate automated classification, the following 
threshold-based rules are applied: 
a) 𝑆 < 0.70: indicates a likely structural mismatch, such 

as missing branches or disconnected components. 
b) 0.70 ≤ 𝑆 < 0.85: suggests a semantic deviation, 

typically involving incorrect or undefined loop 
constructs. 

c) 𝑆 ≥ 0.85: denotes functional equivalence with only 
minor layout variations. 

Subgraph traversal algorithms are employed to 
detect invalid process sequences, unreachable nodes, 
and decision-making gaps. These anomalies are mapped 
to predefined pedagogical error categories using a rule-
based framework, enabling the system to generate 
targeted diagnostic feedback without manual 
intervention. 
 
6) Evaluation Output 

The AFAT system produces a structured evaluation 
output comprising three key components: 
a) A logic equivalence score 𝑺(𝑮𝒔, 𝑮𝒕), which quantifies 

the semantic alignment between student and 
reference Directed Graphs. 

b) Diagnostic commentary that captures both semantic 
deviations and structural inconsistencies, enabling 
targeted instructional feedback. 

c) Assessment latency metrics used to profile system 
performance and ensure responsiveness during 
instructional deployment. 

Figure 3 presents the AFAT evaluation dashboard 
applied to the Real Test Dataset. The dashboard 
visualizes performance indicators, diagnostic 

confidence levels, and logic path comparisons. By 
embedding automated scoring, ambiguity detection, 
and real-time feedback mechanisms, the dashboard 
supports scalable and pedagogically informed 
assessment workflows with minimal latency. 
 

 
Figure 3. AFAT Evaluation Dashboard Applied to Real Test 

Dataset 

 
Experimental Design 

Figure 2 illustrates the experimental configuration 
employed to evaluate the AFAT system’s effectiveness 
in assessing student-generated flowcharts within an 
introductory programming context. The design 
delineates the allocation of instructional sessions, 
assessment tools, evaluator groups, and temporal 
sequencing of evaluation cycles. A controlled crossover 
design was implemented to mitigate order effects and 
contamination bias. Four instructors (N = 4) were 
divided into two groups: 
a) Group A: Performed manual evaluations in Cycle 1, 

followed by AFAT-assisted evaluations in Cycle 2. 
b) Group B: Applied AFAT in Cycle 1, then transitioned 

to manual evaluation in Cycle 2. 
Despite the limited evaluator sample size, the 

crossover structure ensured within-subject control, as 
each instructor engaged with both assessment 
modalities. To address statistical power concerns, a 
repeated-measures design was adopted using 210 
student submissions. This yielded 420 evaluation 
instances (manual and AFAT), enabling inferential 
analysis of scoring behavior. Instructors were treated as 
a fixed-effects panel. Three dependent variables (DVs) 
were operationalized to assess AFAT’s impact: 
a) DV1: Assessment Time; Measured in seconds per 

submission to evaluate efficiency gains (cf. H2). 
b) DV2: Scoring Accuracy; Defined as the absolute 

deviation between AFAT scores and expert panel 
scores. 

c) DV3: Pedagogical Contribution; Assessed via rubric-
based feedback and subsequent student performance 
improvements. 
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Figure 4. Experimental Design 

 
To prevent contamination in Cycle 1, evaluators 

were blinded to AFAT outputs. In Cycle 2, Group B 
instructors were similarly restricted from accessing 
AFAT-generated feedback during manual scoring. Task 
sets were anonymized and counterbalanced to reduce 
recall bias. Task complexity was standardized using 
three structural metrics: total node count, branching 
depth, and minimum execution path count. McCabe 
Cyclomatic Complexity (range: 3–6) served as the 
primary control metric to ensure cognitive load 
equivalence across cycles. Student submissions (N = 210) 
were evenly distributed across both cycles. Each 
instructor evaluated 105 stratified submissions per cycle. 
Identical student artifacts were used across both 
conditions to enable direct comparison of scoring 
behavior. 

Task equivalence was validated through a two-
round Delphi protocol involving subject matter experts. 
Validation metrics included: 
a) Content Validity Index (CVI): Mean item-level CVI = 

0.91 
b) Difficulty Agreement (Kappa): Inter-rater agreement 

κ = 0.78 
c) Baseline Performance Consistency: No significant 

differences in pre-experiment scores across task sets 
(p > 0.05) 

These results confirm the equivalence and 
methodological soundness of the experimental tasks. 
 
Instruments and Procedures 

The Automated Flowchart Assessment Tool 
(AFAT) interprets student-generated flowcharts as 
Directed Graphs (DGs), embedding them within cyclic 
constructs such as loops and conditional branches. It 
computes a Weighted Topological Similarity Score 
𝑺(𝑮𝒔, 𝑮𝒕), which quantifies the semantic alignment 
between a student DG 𝑮𝒔and a reference instructor DG 
𝑮𝒕. This score leverages value-based distance metrics to 
preserve pedagogical relevance, with comparisons 
performed across multiple execution path stages. 
 
1) Functional Weighting and Heuristic Calibration 

Each execution path 𝒑is assigned a functional 
weight 𝒘(𝒑)via a heuristic function: 

𝒘(𝒑) = ∑𝜶 ⋅ role_weight(𝒏) + 𝜷 ⋅ depth(𝒏) + 𝜸 ⋅

bloom_level(𝒏)          (2) 
 
The parameters 𝛼, 𝛽, 𝛾were optimized using 

Bayesian calibration with a Gaussian Process surrogate 
model and Expected Improvement acquisition strategy. 
The objective function targeted scoring accuracy, 
specifically: 

 
maximize F-score(AFAT_score, Expert_Consensus)   (3) 
 

This aligns with Hypothesis H1 (F-score ≥ 0.90). 
Fleiss’ Kappa was employed solely for reliability 
benchmarking, not calibration. The search space was 
bounded as: 
0.0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1.0  

Final calibrated weights were: 𝛼 = 0.5, 𝛽 = 0.3, 𝛾 =
0.2, reflecting expert prioritization—control structures 
(e.g., loop initiators) received the highest weight, 
followed by structural depth and cognitive complexity. 
Bloom’s taxonomy levels (1–6) were linearly mapped in 
accordance with CS education literature (Sahu et al., 
2024; Zheng et al., 2023). Sensitivity analysis confirmed 
that non-linear mappings did not improve F-score, 
supporting the linear model’s interpretability and rubric 
alignment. 
 
2) Modified WL Kernel and Canonicalization 

To enable real-time scoring, AFAT integrates 
𝑤(𝑝)into a Modified Weisfeiler-Lehman (WL) Kernel. 
The kernel operates on discretized path-level labels 
rather than raw node weights. Each path is transformed 
into a Control Structure Signature (CSS): 
𝐶𝑆𝑆(𝑝) = [𝑟1, 𝑟2, . . . , 𝑟𝑘], 𝑟𝑖 ∈
{Start, Process, Decision, Loop, End}   

CSS sequences are normalized to abstract away 
layout variations while preserving semantic order. For 
example, [Decision → Process] is valid, whereas [Process 
→ Decision] may indicate logical inconsistency. 

Each CSS is hashed to produce a unique identifier 
ℎ(𝑝), and similarity is computed as: 
 
For each path p in P: 
    label ← hash(CSS(p)) 
    similarity ← similarity + w(p) * kernel(label, 
reference_label) 

 
This preserves pedagogical weighting post-

hashing while maintaining WL’s structural fidelity. 
 
3) Manual Rubric and Expert Consensus 

Manual evaluations were conducted using a 
structured logic rubric by four expert instructors (≥5 
years experience, PhD, or ≥2 publications). Consensus 
scores were derived via median aggregation. If score 
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divergence exceeded 0.2 points, reconciliation was 
performed through structured discussion and 
anonymous voting. The reconciled score replaced the 

median and served as the Gold Standard. For instance, 
in cases of correct variable usage but misplaced loop 
initialization, experts rejected binary scoring (0.0) and 
acknowledged AFAT’s partial score as more 
pedagogically representative. This underscores AFAT’s 
superior granularity in capturing partial correctness. 
 
4) Reliability and Discretization 

AFAT’s reliability was assessed using Fleiss’ Kappa 
(N = 4). Since 𝒘(𝒑)is continuous, scores were discretized 
into ordinal bins: 

 
Tabel 1. Classification of AFAT Reliability Levels Based 
on Fleiss' Kappa Score Ranges 
e Category 

0.00–0.49 Low 
0.50–0.74 Medium 
0.75–1.00 High 

 
5) Benchmarking Against SOTA Systems 

AFAT was benchmarked against GRAD-AI (rule-
based) and FlowGNN (graph neural network-based). 
AFAT outperformed GRAD-AI in both F-score and 
diagnostic precision, and matched FlowGNN in scoring 
accuracy, while achieving 3× faster evaluation latency. 
These results affirm AFAT’s suitability for scalable, real-
time educational deployment. 
 
Data Analysis 

AFAT’s performance was analyzed across three 
core dimensions: 
1) Assessment Efficiency: Measured as the mean 

evaluation time per flowchart submission, 
comparing manual and automated modalities. 

2) Diagnostic Accuracy: Quantified via structural 
alignment metrics—Precision, Recall, and F1-Score—
between student-directed graphs (DGs) and 
instructor reference models. 

3) Inter-Rater Agreement: Assessed using Fleiss’ Kappa 
(N = 4), suitable for multi-rater categorical 
evaluations. 

4) Benchmarking Diagnostic Accuracy (Hypothesis H1) 
: Hypothesis H1 targeted an F1-Score exceeding 90%, 
based on contextual benchmarks from prior 
automated diagram assessment systems (e.g., 
FlowGNN, GRAD-AI), which reported F1-Scores in 
the 85–92% range. This threshold was deemed both 
pedagogically valid and competitively robust. 
Structural alignment posed definitional challenges 
for true/false positives. A true positive was defined 
as a student execution path that matched both the 
control structure and semantic role of the reference. 

Conversely, structurally valid but semantically 
misaligned paths (e.g., correct loop variables in 
incorrect positions) were treated as false positives. 

To evaluate the reliability and performance of 
AFAT, this study employed Fleiss’ Kappa to measure 
agreement among four raters, utilizing a benchmark of ≥ 
0.75 to signify substantial consensus in alignment with 
educational technology standards. Regarding 
Hypothesis H2, which anticipates a ≥ 60 % reduction in 
evaluation time, the methodology involves comparing 
mean durations through paired t-tests or Wilcoxon 
signed-rank tests depending on parametric assumption 
verification. Furthermore, interaction effects between 
evaluator groups and cycles are examined via Repeated 
Measures ANOVA, with significance quantified 
through partial eta-squared and Cohen’s d. This 
targeted 60% efficiency gain is corroborated by historical 
benchmarks in automated programming assessment 
systems, which typically report time reductions between 
50% and 70%. 
 
Instructor Perception Survey 

In addition to quantitative performance indicators, 
instructor perceptions were systematically assessed 
through a structured survey instrument employing a 5-
point Likert scale. The evaluation encompassed six core 
dimensions: system usability, feedback clarity, 
pedagogical alignment, confidence in automated 
scoring, intention to adopt, and perceived fairness and 
transparency. These dimensions were adapted from the 
Technology Acceptance Model for AI Grading (TAM-
AIG), a refined extension of the original TAM 
framework that incorporates algorithmic decision-
making constructs. The instrument design supports 
construct validity and reflects current research trends in 
AI-driven educational assessment. 
 

Result and Discussion 
 
Evaluation Time Efficiency Analysis (Testing H₂) 
1) Design Methodology and Limitations 

The present study used a within-subject, two-cycle 
design, where instructors assessed the same student 
flowcharts under two modalities:   
Cycle 1: manual scoring with a rubric   
Cycle 2: scoring via AFAT (automated flowchart 
assessment tool)   

Although this design accounts for inter-rater 
differences, it poses a non-randomized sequential design 
and hence possible order effects. Instructors might have 
become accustomed to the flowchart patterns and logic 
of the students, possibly speeding their assessment in 
Cycle 2 irrespective of AFAT. In addition, complexity 
drift of the tasks between cycles, if not explicitly 
controlled for, may explain some of the efficiency gains.  
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In order to alleviate the threats to internal validity, task 
complexity was controlled for via the McCabe 
Cyclomatic Complexity (values between 3–6) and the 
flowchart sets were anonymized and rotated. However, 
due to the lack of counterbalancing or random 
assignment, some bias will always remain. 
 

2) Descriptive Statistics and Initial Comparison  
During both cycles, 210 flowcharts were evaluated. 

An integrated time-stamping interface captured 
evaluation times. Descriptive statistics are presented in 
Table 2.   
 

Table 2. Evaluation Time Statistics for Manual and AFAT Methods 
Evaluation Method Mean Time (min) Std. Dev Min Max 

Manual 4.82 1.14 3.10 6.75 
AFAT 1.87 0.42 1.10 2.90 

 
The Automated Feedback and Assessment Tool 

(AFAT) achieved a 61.2% decrease in the average time 
taken to score assessments in comparison to the manual 
scoring method. This difference is statistically 
significant, as demonstrated through the paired T-test [t 
(209) = 28.74, p < 0.001]. Moreover, with a Cohen's d 

value of 2.01, the time saved is classified as a very large 
effect size. These substantial findings lend strong 
statistical support to Hypothesis H₂ which stated that 
AFAT reduced assessment time by over 60% while 
maintaining the scoring consistency. 
 

 
Table 3. Comparison of Manual and AFAT Evaluation Time (min) Across Modules, Showing Significant Reduction 
Modul Sesi Evaluation Method n Mean (min) Std. Dev Median 

M1 S1 Manual 30 4.82 1.14 4.75 
M1 S1 AFAT 30 1.87 0.42 1.80 
M2 S2 Manual 30 4.65 1.21 4.60 
M2 S2 AFAT 30 1.92 0.39 1.85 
M3 S3 Manual 30 4.78 1.09 4.70 
M3 S3 AFAT 30 1.85 0.44 1.80 
M4 S4 Manual 30 4.90 1.17 4.80 
M4 S4 AFAT 30 1.89 0.41 1.85 
M5 S5 Manual 30 4.76 1.12 4.70 
M5 S5 AFAT 30 1.91 0.43 1.85 
M6 S6 Manual 30 4.88 1.15 4.80 
M6 S6 AFAT 30 1.86 0.40 1.80 
M7 S7 Manual 30 4.79 1.10 4.75 
M7 S7 AFAT 30 1.88 0.41 1.85 
M8 S8 Manual 30 4.83 1.13 4.75 
M8 S8 AFAT 30 1.90 0.42 1.85 
M9 S9 Manual 30 4.81 1.16 4.70 
M9 S9 AFAT 30 1.84 0.39 1.80 
M10 S10 Manual 30 4.77 1.09 4.70 
M10 S10 AFAT 30 1.86 0.40 1.80 
M11 S11 Manual 30 4.85 1.18 4.80 
M11 S11 AFAT 30 1.89 0.41 1.85 
M12 S12 Manual 30 4.80 1.14 4.75 
M12 S12 AFAT 30 1.87 0.42 1.80 
M13 S13 Manual 30 4.76 1.11 4.70 
M13 S13 AFAT 30 1.88 0.43 1.85 
M14 S14 Manual 30 4.82 1.15 4.75 
M14 S14 AFAT 30 1.90 0.41 1.85 
M15 S15 Manual 30 4.79 1.13 4.70 
M15 S15 AFAT 30 1.86 0.40 1.80 
M16 S16 Manual 30 4.84 1.17 4.80 
M16 S16 AFAT 30 1.89 0.42 1.85 

 
Generalized Linear Model (GLM) Analysis 

Initial descriptive analysis (summarized in Table 1) 
revealed a clear and substantial difference in evaluation 
time. The Manual method required an average time of 

4.82 ± 1.14 minutes, whereas the use of AFAT 
substantially reduced this to 1.87 ± 0.42 minutes. A 
Generalized Linear Model (GLM) was applied to model 
and assess the flowchart evaluation time, considering 
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the positive skew of the time data and 
heteroscedasticity. The mean time taken to assess each 
flowchart served as the dependent variable, while the 
evaluation method (Manual vs AFAT), the evaluation 
session (S1 to S16), and the interaction term (Method x 
Session) were included as independent variables. A 
Gamma distribution was used to model the dependent 
time variable owing to the positive skew, and a 
logarithmic link function was used. Preliminary 

assumption tests demonstrated, via Levene's test, the 
homogeneity of variance, while the Shapiro-Wilk test 
revealed non-normality of the manual scores. The 
estimates from the CLM provide strong evidence that 
the evaluation method significantly decreased the 
evaluation time, 𝑥2(1) = 985.3, 𝑝 < 0.001, confirming 
the large difference in evaluation time observed during 
the descriptive analysis. 

 
Table 4. Generalized Linear Model (GLM) Estimates of Mean Evaluation Time 
Source of Variation df χ2 p-value Interpretation Notes 

Evaluation Method (AFAT vs. Manual) 1 985.34 < 0.001$ AFAT significantly reduces time. 
Evaluation Session (S1–S16) 15 17.50 0.289 No significant main effect across sessions. 
Interaction (Method $\times$ Session) 15 38.21 0.005 AFAT time-saving effect varies across 

sessions. 
Overall Model 31 1041.05 < 0.001 Model is a good fit and significant. 

 
Analysis of AFAT System Findings and Implications 

Post-hoc interaction analyses confirm that the 
AFAT system positively increases the time-efficiency of 
evaluations, a conclusion that is also strongly confirmed 
by regression analyses (Method 𝑥2 = 985.34, p < 0.001). 
The level of improvement correlates with the complexity 
of the tasks. The greatest improvements were recorded 
during the sessions that involved complex branching 
(e.g., S4, S11), which also resulted in the highest average 
manual evaluation time of mean ~̃ 4.90 min. AFAT 
technology expediting evaluations during these sessions 
drastically reduced AFAT evaluation time to a 
consistent 1.8 - 1.9 min over all sessions. Although 
smaller, there were still important improvements with 
the simpler flowchart sessions (e.g., S2, S8). Thus, AFAT 
is beneficial with all task complexities, albeit to varying 
degrees (Interaction Method 𝑥2 = 38.21, p < 0.005. This is 
also evident by interaction plots demonstrating a 
persistent reduction in evaluation time when AFAT is 
applied. 

A reliability scoring issue remains despite the 
proven time efficiency. In the report, Hypothesis 𝐻2 
shows that both the efficiency and reliability concerns 
are only partially confirmed. The claim made by the 
Adaptive Finite Automata Technology (AFAT) system 
that time efficiency is achieved "without compromising 
scoring reliability,” is unsupported by statistical claims. 
No evidence is provided to substantiate the claim, and 
standard inter-rater agreement measures like Fleiss’ 
Kappa are absent. The authors consequently underscore 
that Section 3.2 must focus on this issue and must 
provide evidence demonstrating the reliability of the 
AFAT derived scores.  

From a strategic perspective, the system's proven 
and consistent efficiency, irrespective of complexity, has 
strong implications for large-scale implementation of 
AFAT in high-enrollment programming courses. The 

authors' confidence in the methodology's integrity is 
underscored by the specification of a valid and 
reproducible Generalized Linear Model (GLM) with a 
Gamma distribution and a log link. In addition, AFAT's 
system real-time scoring provides immediate 
operational advantages by reducing intrinsic workload 
and enhancing feedback turnaround time. Such 
improvements greatly facilitate effective learning since 
quick feedback is a critical element 

. 
Discussion Diagnostic Accuracy Analysis (Testing H₁) 

Hypothesis H₁ states that AFAT attains a diagnostic 
accuracy of F1-Score ≥ 0.90 relative to expert manual 
evaluation. The statistical analysis validates this claim, 
demonstrating AFAT’s diagnostic reliability. The 
hypothesis was statistically confirmed (p = 0.004, 
bootstrap t-test), yielding an F1-Score of 0.92. This result 
is additionally supported by a Fleiss’ Kappa value of κ = 
0.88, indicating substantial agreement between AFAT 
scores and the expert consensus (N = 4). 

Architectural Logic and Handling of Semantic 
Inconsistencies: A high score accuracy is due to the 
Modified Graph Edit Distance (MED) algorithm and the 
use of Functional Weighting aimed at crucial logical 
error detection. While AFAT's primary errors included 
loops 43% and branching 38%, complex structural 
omissions were the leading causes of paradoxical 
omissions and False Negatives.   

False Negatives, in this context, are described as 
AFAT failing to detect existing errors. The dominance of 
structural omissions in such tasks involved invalid input 
handling and edge-case conditional branches. More 
developed heuristics remain fundamental to fine-tuning 
the analysis of control flow path coverage in relation to 
the reference model (Ariyanta et al., 2025). With respect 
to the sensitivity analysis conducted against AFAT’s 
internal thresholds, AFAT’s diagnostic precision 



Jurnal Penelitian Pendidikan IPA (JPPIPA) December 2025, Volume 11 Issue 12, 1230-1240 
 

1238 

remains, to a sizeable degree, stable as the F1-Score value 
fluctuates 0.01 within the 0.70 – 0.78 threshold range. 
Benchmarking and Contextual Limitations AFAT 
appears to have a strongly diagnostic performance in 
relation to other systems at an F1-Score = 0.92 and, in this 
respect, diagnostic performance is competitive and 
contextually strong against other systems. Nevertheless, 
this is a non-definitive and indicative comparison as 
Benchmarking was conducted in a non-standardised 
manner across disparate data sets, exemplified by 
GRAD-AI using UML, and FlowGNN using 
pseudocode. Future work on AFAT, GRAD-AI, and 
FlowGNN will involve the use of the same datasets in 
order to provide definitive cross-system comparative 
validation.  
 
Discussion Efficiency and Dependability (Testing 𝐻2) 

Efficiency and Dependability of Results Hypothesis  
H2 investigates two principal variables: temporal 
efficiency and scoring consistency.  Time efficiency and 
interpretability of the GLM-based transparency were 
empirically verified. AFAT demonstrated a statistically 

significant 61.2% reduction in evaluation time, with an 
average latency of 1.87 minutes per flowchart. The 
efficiency improvement was modeled using a 
Generalized Linear Model (Gamma distribution, log 
link), with flowchart complexity and instructor 
experience included as covariates. Post-hoc analysis 
showed a significant proportional improvement for 
complex sessions (χ² = 38.21, p < 0.005). Multi-
comparison correction (Bonferroni or Holm) was 
applied to control Type I error. 

Scoring Reliability (Enhanced by Design & 
Validation Roadmap) Reliability was intrinsically 
improved by the system’s deterministic (MED-based) 
design, which architecturally eliminated the 28% inter 
rater variability present in manual scoring. Roadmap for 
External Validation: External validation of AFAT 
scoring reliability is planned. The high kappa score 
confirms agreement, but future work will include test-
retest reliability (with a 7 day interval) and split-half 
reliability (logic block division) to substantiate AFAT 
scoring reliability.  

 
Table 5. Summary of UTAUT Constructs  
UTAUT Construct Mean Std. Dev Cronbach’s α Interpretation 

Performance Expectancy (PE)  4.60   0.24   0.88  Very High 
Effort Expectancy (EE)  4.20   0.33   0.84  High 
Social Influence (SI)  3.80   0.41   0.81  Moderate 
Facilitating Conditions (FC)  4.40   0.27   0.86  Very High 

 
Internal Reliability: Cronbach’s α > 0.80 across all 

constructs suggests good internal reliability of the 
survey instrument. However, the data remain purely 
descriptive, which may not support the inferential 
structural model validation. SI Interpretation: A 
moderate Social Influence (SI = 3.80) suggests that AFAT 
adoption is motivated by personal utility and 
infrastructure (PE and FC) as opposed to social norms 
(Pratama et al., 2025).  

Findings from 𝐻1 and 𝐻2 integrate to position AFAT 
as a methodologically sound, efficient, accurate and 
reliable solution, with strong implications for scalability 
as supported by GLM validation and low, consistent 
latency, indicating feasibility for large-scale institutional 
deployment (Gambo et al., 2024). All claims within this 
study have been methodologically qualified along with 
a roadmap for further validation to ensure the results 
can be replicated and generalised 
 

Conclusion  

 
To algorithmically assess visual artifacts, 

Topological modeling via Directed Graphs (DGs), 
coupled with an automatically weighted Modified 
Graph Edit Distance, provides a valid and scalable 

approach. Crucially, the AFAT system addresses and 
surpasses the shortcomings of existing methods, 
particularly those constrained by acyclic structures and 
requirements for manual annotation. Evidence from the 
AFAT system indicates a 61.2% time-saving evaluation 
rate when compared to manual evaluation methods, 
attaining this evaluation time without a reduction of the 
diagnostic quality, shown through the 0.92 F1 score. This 
is the first time automated flowchart assessment has 
been demonstrated to maintain higher consistency and 
speed as compared to manual expert evaluation, while 
resolving previously unsolved latency issues in systems 
identified. In this sense, AFAT is the first system that 
provides reproducible DG-based logic validation as a 
framework for flowchart-based assessment. The 
contribution is the expansion of the domain of 
Automated Visual Assessment, where the approach is 
not only efficient and accurate, but also compatible with 
real-time pedagogical feedback.  

The limitations of this study include a restricted 
sample size from a single vocational institution 
involving four instructors, necessitating future external 
validation to ensure broader reliability. Furthermore, the 
current Automated Flowchart Assessment Tool (AFAT) 
is limited to a single idealized logic representation, 
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requiring manual intervention for structurally diverse 
but valid solutions, and lacks evaluation across varied 
logic semantics such as loop-dominant or condition-
heavy structures. To address these constraints, future 
research will focus on three pillars: the Machine 
Learning Pillar to develop adaptive instructor models 
for automated variant detection; the Algorithmic Pillar 
to eliminate the remaining 8% of logic flaws by refining 
Graph Edit Distance (GED) weights and incorporating 
reinforcement learning for complex semantic error 
detection; and the Pedagogical Pillar to conduct 
longitudinal studies assessing AFAT’s impact on 
student logic retention compared to traditional feedback 
methods. 
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