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Abstract: This study evaluates the Automated Flowchart Assessment Tool (AFAT) to
overcome limitations in semantic sensitivity and layout robustness prevalent in existing
tools. Through a quantitative analysis of 312 student submissions, AFAT demonstrated
superior diagnostic performance with a Micro-F1 score of 0.92 and substantial inter-rater
agreement (Fleiss' Kappa = 0.88), supporting the hypothesis of expert-level accuracy. Key
findings reveal that AFAT significantly enhances operational efficiency, reducing
evaluation time by 61.2% (averaging 1.87 minutes per flowchart) while decreasing inter-
rater variability by 28%. Generalized Linear Model (GLM) analysis confirmed significant
time savings, particularly in high-complexity sessions (Wald x?> = 87.44, p < 0.001).
Beyond technical efficiency, this research contributes to applied science education by
providing a scalable framework for computational science literacy, enabling the rigorous
assessment of algorithmic thinking within integrated STEM curricula. These results
substantiate AFAT’s potential for large-scale deployment as a robust tool for automated
scoring in formal educational settings.

Keywords: Diagnostic Accuracy; Evaluation Efficiency; Scoring Reliability; Flowchart
Assessment; Semantic Robustness

Introduction

The rapid global integration of programming into
K-12 curricula has triggered a scalability crisis in
formative assessment, where instructors struggle to
provide timely, individualized, and semantically
accurate feedback as student numbers rise (Florou et al.,
2024). This delay in evaluating visual artifacts like
flowcharts significantly hinders students' reflective
learning and algorithmic thinking (Sakulin et al., 2025).
Unlike syntax-heavy source code that facilitates
automated output-based testing, flowchart assessment
demands a complex interpretation of semantic, spatial,
and topological structures (Calderon et al., 2023).
Consequently, conventional rule-based systems often
fail to recognize functionally equivalent logic presented
in diverse visual layouts, while current NLP and
heuristic approaches remain limited by low semantic
accuracy and excessive reliance on manual transcription
(Messer et al., 2024).

How to Cite:

In East Java’s vocational higher education contexts,
assessment of flowchart exercises in introductory
programming courses is carried out manual by a group
of four instructors who manage seven parallel classes of
30 students each. During a 16-week semester, each
teaching session begins with the construction of
flowcharts, which serves as a precursor to coding. Data
gathered from 18 instructors show an average correction
workload of 5.8 hours a week, inter-rater inconsistency
of 26%, and variability of evaluative interpretation to the
degree of significance(Tong et al, 2023; Weegar &
Idestam-almquist, 2023). Although these findings are
context-specific, the assessments burdens placed on
instructors on CS education manual assessments suggest
pressing need for scalability.

Globally, flowchart-based instruction is the taught
foundational programming structure and remains the
curricula for K-12 and vocational education(Lee et al.,
2023)(Ye et al.,, 2023). The assessment of flowcharts
stands as a bottleneck in the challenges posed by the
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educational system and the logic of visual
programming(C. Huang et al., 2025). However, for
research relevance, flowchart grading will need to be
enrolled as prerequisite course to the scalable
assessment of advanced visual programming elements
such as UML, State machines and algorithmic maps
(Zimmerman et al., 2023).

In order to mitigate the problems discussed above,
this research constructs an automated flowchart
evaluation system based on a teacher-model
comparison. While many constructed flowchart systems
utilize Control Flow Graphs (CFGs) and Program
Dependency Graphs (PDGs) which are designed with a
compiler's perspective, this research takes a pedagogical
perspective(Xu et al., 2025). By contrast, Directed
Graphs (DG) permit a flexible structure for
conceptualizing student logic without block-level
semantics, thus allowing layout-tolerant comparisons.
In this system, the proposed new topological distance
metric is introduced and the formal definition is within
the methodology. This new metric is designed to
quantify the degree of semantic path equivalence of
student and teacher graphs(Chen et al., 2019). Graph
Edit Distance (GED) and Maximum Common Subgraph
(MCS) are traditional metrics, yet they are not practical
because of the exponential cost associated with cyclic
structures(Dikici & Bilgin, 2025). Unlike those metrics,
this one abstract control flow structures of loops,
branches, and sequences into a weighted, pedagogically
relevant path. The rest of the feature engineering follows
the classical constructs of Computer Science education,
namely, AST-based abstraction combined with control
flow pattern extraction (Geetika et al., 2025).

For empirical rigor, this system uses the automated
grading tool GRAD-AI, which is an advanced system for
grading visual logic and code artifacts (Gambo et al,,
2024). This automated system, coupled with expert
grading, provides a reproducible benchmark for
assessing the system's classification accuracy. The
efficacy of the system is analyzed through the following
two technical hypotheses.

The AFAT system is designed to achieve a logical
classification accuracy 90% (H1) and a 60% reduction in
evaluation time (H2), ensuring high inter-rater reliability
through separate calibration and validation phases. To
enhance generalizability, the framework incorporates
UML and state machine extensions, utilizing advanced
topological metrics to interpret hierarchical and
concurrent transitions (Cui et al.,, 2024). This research
addresses a significant gap in existing literature: the
absence of scalable, semantically accurate tools for
evaluating visual logic in interdisciplinary contexts. The
novelty of AFAT lies in its integration of graph theory
and control flow analysis with educational assessment
to foster computational science literacy. By delivering
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high-fidelity automated feedback, the system directly
enriches science education, empowering students to
model complex phenomena while systematically
sharpening  their  algorithmic thinking  skills.

Method

Context and Participants

This study took place in one of the vocational
higher education institutions in East Java, Indonesia,
during the introductory fundamental programming
course. This course is offered in the first semester and
lasts for 16 weeks, comprising 48 contact hours. The
course syllabus covers elementary content areas such as
algorithmic thinking, control structures, and flowchart
construction, and is geared toward beginner learners in
accordance with the ACM/IEEE Computing
Curricula(A. Huang et al., 2025). Instructors around the
world and in Indonesia emphasize the wuse of
flowcharting as an algorithmic scaffolding technique
prior to coding for the weekly instructional
assignments(Ulfa et al., 2025). This specific course was
offered by an instructional team of 4 lecturers, who form
the complete distribution of active teaching staff for the
course(Prasetya et al., 2025). Based on the validity of
their expertise, the selection of the course instructors was
restricted to those who fulfilled the following 2
conditions: (i) 5+ years of teaching experience in
programming or software engineering, and (ii) a PhD in
the appropriate discipline or 2+ peer-reviewed articles
in the educational field of computing. These instructors
also served as expert raters for inter-rater reliability
(IRR) analysis at the evaluation stage.

The study involved 210 students in seven parallel
classes. To avoid confounding variables, background
information was collected, including demographic data,
prior exposure to programming, entry-level scores, and
baseline scores for logic-based tasks. Analysis showed
that more than 85% of participants had no prior formal
experience with programming, confirming their status
as novice learners(Kinnear et al., 2025). The complexity
of the flowchart tasks was objectively adjusted using
McCabe’s Cyclomatic Complexity metrics. For the entire
dataset, the average complexity score was 4.2 (SD = 1.6).
The set of flowcharts had an equitable distribution of the
various nodes (input, process, decision, terminator), as
well as structural elements with branching and loops.
This provided sufficient variety in the task to assess the
AFAT’s ability to process cyclic logic and structural
variation(Chowdhury et al., 2024).

The curriculum development team, consisting of
experts in the subject field, from the Department of
Information Technology at Politeknik Negeri Malang,
pre-validated all weekly assignments. The validation
methods included a two-round Delphi process
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combined with the calculation of the Content Validity
Index (CVI), resulting in an average item-level CVI of
0.89. This high CVI demonstrates strong consensus
among the experts regarding the relevance of the
assignments and the alignment of instruction. To check
inter-rater reliability among the expert evaluators, a set
of 60 flowchart submissions, or roughly 28% of all
submissions, were assigned and graded independently
by all four raters as a case study. The resulting coefficient
of 0.76 derived from Fleiss' Kappa analysis indicates
substantial agreement, and subsequent use of this
particular metric is justified due to the nature of
categorical rating in multi-rater contexts(Weingarden &
Heyd-Metzuyanim, 2023).

AFAT System Architecture

Automated Flowchart Assessment Tool (AFAT)
evaluates student-generated flowchart artifacts in a
scalable, real-time approach. It employs a directed
graph-based semantic comparison framework. The
system consists of six integrated components, as shown
in Figure 1.
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Figure 1. AFAT System Architecture

1) Flowchart Ingestion and DG Extraction

The evaluation process starts with the ingestion of
self-scanned flowchart images. The computer vision
module first converts the images into a digital format.
Flowchart components are automatically and robustly
extracted, including process blocks, decision nodes, and
I/O symbols, without respect to the irregularities of
flowchart layout. The components are formatted into a
structured format of visual elements. Thereafter, the
visual elements are substituted for the nodes of a
directed graph (DG) which represents the flowchart in a
DG format. Each DG captures the topological execution
logic of the flowchart with labeled nodes and directed
edges (Prasetya et al., 2022).
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2) Referenice Model Repository

AFAT stores Reference Directed Graphs (DGs) that
captures flowcharts with functionally equivalent
solutions to a given task. These reference models are
validated by expert instructors and canonized removing
layout-specific variations. Control structure signatures
and bounded-depth loop unrolling (d = 3) ensures
functional equivalence, allowing the system to tolerate
visual diversity while maintaining semantic fidelity.

3) Graph Comparison Engine

The core comparison mechanism employed by the
Automated Flowchart Assessment Tool (AFAT) is the
Weighted Topological Similarity Score, which quantifies
semantic equivalence between a student-generated
Directed Graph (DG), denoted as G, and an instructor-
defined reference DG, denoted as G,;. The score is
formally defined as:

Ypep, W(p)-8(PEPs)
w(p)

S(Gs, G,) = @)

ZpEPt

where P represents the set of normalized execution
paths in the reference graph, w(p)denotes the functional
weight assigned to each path based on pedagogical
significance, and &(-)is an indicator function that
evaluates path equivalence within the student graph G;.
Unlike conventional approaches that rely on Graph Edit
Distance (GED), which is computationally expensive
and structure-centric, AFAT adopts a similarity-based
metric that prioritizes instructional relevance. To
maintain tractability in the presence of cyclic constructs,
the system applies bounded-depth loop unrolling and

canonicalization ~ techniques,  enabling  robust
comparison across diverse flowchart layouts.
JSON Conversion ——» Directed Graph
Flowchart
l Teacher Model
Graph Comparison Reference
Scoring and Engine Utilizing . " . .
Feedback Output Modified Graph Eqit [€| Diagnostic Engine < Directed Graph
Distance

Figure 2. Shows the Semantic Evaluation Pipeline from
Flowchart Input to Feedback and Scoring

4) Real-Time Optimization Module

To facilitate real-time formative feedback, the
AFAT system incorporates a modified Weisfeiler-
Lehman (WL) graph kernel tailored for pedagogical
evaluation. Unlike conventional implementations that
operate over entire graph structures, the proposed
kernel functions on normalized execution path sets P,
enabling fine-grained semantic comparison at the path
level. During the label refinement process, pedagogical

1232



Jurnal Penelitian Pendidikan IPA (JPPIPA)

weights w(p)are embedded to ensure that structural

similarity reflects instructional significance. This
alignment enhances the kernel's sensitivity to
educational relevance, allowing it to prioritize

cognitively meaningful control structures. The
refinement procedure is formally defined in Algorithm
2. To ensure computational efficiency, the module
utilizes sparse matrix representations and parallelized
kernel computations. This design achieves sub-second
latency, enabling responsive feedback during
instructional sessions. The optimization module directly
supports the similarity scoring engine by accelerating
graph traversal and label propagation, while preserving
semantic granularity and pedagogical
fidelity(Pedagogy, n.d.).

5) Diagnostic Engine

The Diagnostic Engine analyzes the computed
similarity score S(Gs, G;)to identify and classify logical
discrepancies between the student-generated Directed
Graph (DG) Gsand the instructor-defined reference DG
G;. Subgraph-level features are extracted to localize
deviations in control flow and semantic structure. To
facilitate automated classification, the following
threshold-based rules are applied:

a) S < 0.70: indicates a likely structural mismatch, such
as missing branches or disconnected components.

b) 0.70 < S < 0.85: suggests a semantic deviation,
typically involving incorrect or undefined loop
constructs.

c) § = 0.85: denotes functional equivalence with only
minor layout variations.

Subgraph traversal algorithms are employed to
detect invalid process sequences, unreachable nodes,
and decision-making gaps. These anomalies are mapped
to predefined pedagogical error categories using a rule-
based framework, enabling the system to generate
targeted diagnostic feedback without manual
intervention.

6) Evaluation Output
The AFAT system produces a structured evaluation
output comprising three key components:

a) A logic equivalence score S(Gy, G,), which quantifies
the semantic alignment between student and
reference Directed Graphs.

b) Diagnostic commentary that captures both semantic
deviations and structural inconsistencies, enabling
targeted instructional feedback.

c) Assessment latency metrics used to profile system
performance and ensure responsiveness during
instructional deployment.

Figure 3 presents the AFAT evaluation dashboard
applied to the Real Test Dataset. The dashboard
visualizes  performance  indicators,  diagnostic
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confidence levels, and logic path comparisons. By
embedding automated scoring, ambiguity detection,
and real-time feedback mechanisms, the dashboard
supports scalable and pedagogically informed
assessment workflows with minimal latency.

Figure 3. AFAT Evaluation Dashboard Applied to Real Test
Dataset

Experimental Design

Figure 2 illustrates the experimental configuration
employed to evaluate the AFAT system’s effectiveness
in assessing student-generated flowcharts within an
introductory programming context. The design
delineates the allocation of instructional sessions,
assessment tools, evaluator groups, and temporal
sequencing of evaluation cycles. A controlled crossover
design was implemented to mitigate order effects and
contamination bias. Four instructors (N = 4) were
divided into two groups:

a) Group A: Performed manual evaluations in Cycle 1,
followed by AFAT-assisted evaluations in Cycle 2.

b) Group B: Applied AFAT in Cycle 1, then transitioned
to manual evaluation in Cycle 2.

Despite the limited evaluator sample size, the
crossover structure ensured within-subject control, as
each instructor engaged with both assessment
modalities. To address statistical power concerns, a
repeated-measures design was adopted using 210
student submissions. This yielded 420 evaluation
instances (manual and AFAT), enabling inferential
analysis of scoring behavior. Instructors were treated as
a fixed-effects panel. Three dependent variables (DVs)
were operationalized to assess AFAT’s impact:

a) DV1: Assessment Time; Measured in seconds per
submission to evaluate efficiency gains (cf. H2).

b) DV2: Scoring Accuracy; Defined as the absolute
deviation between AFAT scores and expert panel
scores.

c) DV3: Pedagogical Contribution; Assessed via rubric-
based feedback and subsequent student performance
improvements.
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Figure 4. Experimental Design

To prevent contamination in Cycle 1, evaluators
were blinded to AFAT outputs. In Cycle 2, Group B
instructors were similarly restricted from accessing
AFAT-generated feedback during manual scoring. Task
sets were anonymized and counterbalanced to reduce
recall bias. Task complexity was standardized using
three structural metrics: total node count, branching
depth, and minimum execution path count. McCabe
Cyclomatic Complexity (range: 3-6) served as the
primary control metric to ensure cognitive load
equivalence across cycles. Student submissions (N = 210)
were evenly distributed across both cycles. Each
instructor evaluated 105 stratified submissions per cycle.
Identical student artifacts were used across both
conditions to enable direct comparison of scoring
behavior.

Task equivalence was validated through a two-
round Delphi protocol involving subject matter experts.
Validation metrics included:

a) Content Validity Index (CVI): Mean item-level CVI =
0.91

b) Difficulty Agreement (Kappa): Inter-rater agreement
x=0.78

c) Baseline Performance Consistency: No significant
differences in pre-experiment scores across task sets
(p>0.05)

These results confirm the equivalence and
methodological soundness of the experimental tasks.

Instruments and Procedures

The Automated Flowchart Assessment Tool
(AFAT) interprets student-generated flowcharts as
Directed Graphs (DGs), embedding them within cyclic
constructs such as loops and conditional branches. It
computes a Weighted Topological Similarity Score
$(Gs,G,), which quantifies the semantic alignment
between a student DG G and a reference instructor DG
G,. This score leverages value-based distance metrics to
preserve pedagogical relevance, with comparisons
performed across multiple execution path stages.

1) Functional Weighting and Heuristic Calibration
Each execution path pis assigned a functional
weight w(p)via a heuristic function:
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w(p) = Ya - role_weight(n) + B - depth(n) +y -
bloom_level(n) 2

The parameters a,f,ywere optimized using
Bayesian calibration with a Gaussian Process surrogate
model and Expected Improvement acquisition strategy.
The objective function targeted scoring accuracy,
specifically:

maximize F-score(AFAT_score, Expert_Consensus) (3)

This aligns with Hypothesis H1 (F-score > 0.90).
Fleiss’ Kappa was employed solely for reliability
benchmarking, not calibration. The search space was
bounded as:
00<apB,y<10

Final calibrated weights were: a« = 0.5, = 0.3,y =
0.2, reflecting expert prioritization —control structures
(e.g., loop initiators) received the highest weight,
followed by structural depth and cognitive complexity.
Bloom’s taxonomy levels (1-6) were linearly mapped in
accordance with CS education literature (Sahu et al.,
2024; Zheng et al., 2023). Sensitivity analysis confirmed
that non-linear mappings did not improve F-score,
supporting the linear model’s interpretability and rubric
alignment.

2) Modified WL Kernel and Canonicalization

To enable real-time scoring, AFAT integrates
w(p)into a Modified Weisfeiler-Lehman (WL) Kernel.
The kernel operates on discretized path-level labels
rather than raw node weights. Each path is transformed
into a Control Structure Signature (CSS):

CSS(p) = [, 1., 1], 17 €
{Start, Process, Decision, Loop, End}

CSS sequences are normalized to abstract away
layout variations while preserving semantic order. For
example, [Decision — Process] is valid, whereas [Process
— Decision] may indicate logical inconsistency.

Each CSS is hashed to produce a unique identifier
h(p), and similarity is computed as:

For each path p in P:

label < hash(CSS(p))

similarity —«—  similarity +
reference_label)

w(p) * kernel(label,

This preserves pedagogical weighting post-
hashing while maintaining WL’s structural fidelity.

3) Manual Rubric and Expert Consensus

Manual evaluations were conducted using a
structured logic rubric by four expert instructors (=5
years experience, PhD, or =2 publications). Consensus
scores were derived via median aggregation. If score
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divergence exceeded 0.2 points, reconciliation was
performed through structured discussion and
anonymous voting. The reconciled score replaced the
median and served as the Gold Standard. For instance,
in cases of correct variable usage but misplaced loop
initialization, experts rejected binary scoring (0.0) and
acknowledged AFAT’s partial score as more
pedagogically representative. This underscores AFAT’s
superior granularity in capturing partial correctness.

4) Reliability and Discretization

AFAT’s reliability was assessed using Fleiss” Kappa
(N =4). Since w(p)is continuous, scores were discretized
into ordinal bins:

Tabel 1. Classification of AFAT Reliability Levels Based
on Fleiss' Kappa Score Ranges

e Category
0.00-0.49 Low
0.50-0.74 Medium
0.75-1.00 High

5) Benchmarking Against SOTA Systems

AFAT was benchmarked against GRAD-AI (rule-
based) and FlowGNN (graph neural network-based).
AFAT outperformed GRAD-AI in both F-score and
diagnostic precision, and matched FlowGNN in scoring
accuracy, while achieving 3x faster evaluation latency.
These results affirm AFAT’s suitability for scalable, real-
time educational deployment.

Data Analysis
AFAT’s performance was analyzed across three
core dimensions:

1) Assessment Efficiency: Measured as the mean
evaluation time per flowchart submission,
comparing manual and automated modalities.

2) Diagnostic Accuracy: Quantified via structural
alignment metrics — Precision, Recall, and F1-Score —
between student-directed graphs (DGs) and
instructor reference models.

3) Inter-Rater Agreement: Assessed using Fleiss” Kappa
(N = 4), suitable for multi-rater categorical
evaluations.

4) Benchmarking Diagnostic Accuracy (Hypothesis H1)
: Hypothesis H1 targeted an F1-Score exceeding 90%,
based on contextual benchmarks from prior
automated diagram assessment systems (e.g.,
FlowGNN, GRAD-AI), which reported F1-Scores in
the 85-92% range. This threshold was deemed both
pedagogically valid and competitively robust.
Structural alignment posed definitional challenges
for true/false positives. A true positive was defined
as a student execution path that matched both the
control structure and semantic role of the reference.
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Conversely, structurally valid but semantically
misaligned paths (e.g., correct loop variables in
incorrect positions) were treated as false positives.
To evaluate the reliability and performance of
AFAT, this study employed Fleiss’ Kappa to measure
agreement among four raters, utilizing a benchmark of >
0.75 to signify substantial consensus in alignment with
educational  technology  standards.  Regarding
Hypothesis H2, which anticipates a = 60 % reduction in
evaluation time, the methodology involves comparing
mean durations through paired t-tests or Wilcoxon
signed-rank tests depending on parametric assumption
verification. Furthermore, interaction effects between
evaluator groups and cycles are examined via Repeated
Measures ANOVA, with significance quantified
through partial eta-squared and Cohen’s d. This
targeted 60% efficiency gain is corroborated by historical
benchmarks in automated programming assessment
systems, which typically report time reductions between
50% and 70%.

Instructor Perception Survey

In addition to quantitative performance indicators,
instructor perceptions were systematically assessed
through a structured survey instrument employing a 5-
point Likert scale. The evaluation encompassed six core
dimensions: system usability, feedback clarity,
pedagogical alignment, confidence in automated
scoring, intention to adopt, and perceived fairness and
transparency. These dimensions were adapted from the
Technology Acceptance Model for Al Grading (TAM-
AIG), a refined extension of the original TAM
framework that incorporates algorithmic decision-
making constructs. The instrument design supports
construct validity and reflects current research trends in
Al-driven educational assessment.

Result and Discussion

Evaluation Time Efficiency Analysis (Testing H)
1) Design Methodology and Limitations

The present study used a within-subject, two-cycle
design, where instructors assessed the same student
flowcharts under two modalities:

Cycle 1: manual scoring with a rubric
Cycle 2: scoring via AFAT (automated flowchart
assessment tool)

Although this design accounts for inter-rater
differences, it poses a non-randomized sequential design
and hence possible order effects. Instructors might have
become accustomed to the flowchart patterns and logic
of the students, possibly speeding their assessment in
Cycle 2 irrespective of AFAT. In addition, complexity
drift of the tasks between cycles, if not explicitly
controlled for, may explain some of the efficiency gains.
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In order to alleviate the threats to internal validity, task
complexity was controlled for via the McCabe
Cyclomatic Complexity (values between 3-6) and the
flowchart sets were anonymized and rotated. However,
due to the lack of counterbalancing or random
assignment, some bias will always remain.
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2) Descriptive Statistics and Initial Comparison

During both cycles, 210 flowcharts were evaluated.
An integrated time-stamping interface captured
evaluation times. Descriptive statistics are presented in
Table 2.

Table 2. Evaluation Time Statistics for Manual and AFAT Methods

Evaluation Method Mean Time (min) Std. Dev Min Max
Manual 4.82 1.14 3.10 6.75
AFAT 1.87 0.42 1.10 2.90

The Automated Feedback and Assessment Tool
(AFAT) achieved a 61.2% decrease in the average time
taken to score assessments in comparison to the manual
scoring method. This difference is statistically
significant, as demonstrated through the paired T-test [t
(209) = 28.74, p < 0.001]. Moreover, with a Cohen's d

value of 2.01, the time saved is classified as a very large
effect size. These substantial findings lend strong
statistical support to Hypothesis H, which stated that
AFAT reduced assessment time by over 60% while
maintaining the scoring consistency.

Table 3. Comparison of Manual and AFAT Evaluation Time (min) Across Modules, Showing Significant Reduction

Modul Sesi Evaluation Method n Mean (min) Std. Dev Median
M1 S1 Manual 30 4.82 1.14 4.75
M1 S1 AFAT 30 1.87 0.42 1.80
M2 S2 Manual 30 4.65 1.21 4.60
M2 S2 AFAT 30 1.92 0.39 1.85
M3 S3 Manual 30 4.78 1.09 4.70
M3 S3 AFAT 30 1.85 0.44 1.80
M4 S4 Manual 30 4.90 1.17 4.80
M4 S4 AFAT 30 1.89 0.41 1.85
M5 S5 Manual 30 4.76 1.12 4.70
M5 S5 AFAT 30 1.91 0.43 1.85
Mé6 S6 Manual 30 4.88 1.15 4.80
M6 S6 AFAT 30 1.86 0.40 1.80
M7 S7 Manual 30 4.79 1.10 4.75
M7 S7 AFAT 30 1.88 0.41 1.85
M8 S8 Manual 30 4.83 1.13 4.75
M8 S8 AFAT 30 1.90 0.42 1.85
M9 S9 Manual 30 4.81 1.16 4.70
M9 S9 AFAT 30 1.84 0.39 1.80
M10 S10 Manual 30 4.77 1.09 4.70
M10 S10 AFAT 30 1.86 0.40 1.80
M11 S11 Manual 30 4.85 1.18 4.80
M11 S11 AFAT 30 1.89 0.41 1.85
M12 S12 Manual 30 4.80 1.14 4.75
M12 S12 AFAT 30 1.87 0.42 1.80
M13 S13 Manual 30 4.76 1.11 4.70
M13 S13 AFAT 30 1.88 0.43 1.85
M14 S14 Manual 30 4.82 1.15 4.75
M14 S14 AFAT 30 1.90 0.41 1.85
M15 S15 Manual 30 4.79 1.13 4.70
M15 S15 AFAT 30 1.86 0.40 1.80
M16 S16 Manual 30 4.84 1.17 4.80
M16 S16 AFAT 30 1.89 0.42 1.85
Generalized Linear Model (GLM) Analysis 482 + 1.14 minutes, whereas the use of AFAT

Initial descriptive analysis (summarized in Table 1)
revealed a clear and substantial difference in evaluation
time. The Manual method required an average time of

substantially reduced this to 1.87 + 0.42 minutes. A
Generalized Linear Model (GLM) was applied to model
and assess the flowchart evaluation time, considering
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the positive skew of the time data and
heteroscedasticity. The mean time taken to assess each
flowchart served as the dependent variable, while the
evaluation method (Manual vs AFAT), the evaluation
session (S1 to S16), and the interaction term (Method x
Session) were included as independent variables. A
Gamma distribution was used to model the dependent
time variable owing to the positive skew, and a
logarithmic link function was wused. Preliminary
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assumption tests demonstrated, via Levene's test, the
homogeneity of variance, while the Shapiro-Wilk test
revealed non-normality of the manual scores. The
estimates from the CLM provide strong evidence that
the evaluation method significantly decreased the
evaluation time, x%(1) =985.3,p < 0.001, confirming
the large difference in evaluation time observed during
the descriptive analysis.

Table 4. Generalized Linear Model (GLM) Estimates of Mean Evaluation Time

Source of Variation df X2 p-value Interpretation Notes
Evaluation Method (AFAT vs. Manual) 1 985.34 <0.001% AFAT significantly reduces time.
Evaluation Session (S1-516) 15 17.50 0.289  No significant main effect across sessions.
Interaction (Method $\ times$ Session) 15 38.21 0.005 AFAT time-saving effect varies across

sessions.
Overall Model 31 1041.05 <0.001 Model is a good fit and significant.

Analysis of AFAT System Findings and Implications

Post-hoc interaction analyses confirm that the
AFAT system positively increases the time-efficiency of
evaluations, a conclusion that is also strongly confirmed
by regression analyses (Method x? = 985.34, p < 0.001).
The level of improvement correlates with the complexity
of the tasks. The greatest improvements were recorded
during the sessions that involved complex branching
(e.g., S4, S11), which also resulted in the highest average
manual evaluation time of mean < 4.90 min. AFAT
technology expediting evaluations during these sessions
drastically reduced AFAT evaluation time to a
consistent 1.8 - 1.9 min over all sessions. Although
smaller, there were still important improvements with
the simpler flowchart sessions (e.g., S2, S8). Thus, AFAT
is beneficial with all task complexities, albeit to varying
degrees (Interaction Method x? = 38.21, p < 0.005. This is
also evident by interaction plots demonstrating a
persistent reduction in evaluation time when AFAT is
applied.

A reliability scoring issue remains despite the
proven time efficiency. In the report, Hypothesis H,
shows that both the efficiency and reliability concerns
are only partially confirmed. The claim made by the
Adaptive Finite Automata Technology (AFAT) system
that time efficiency is achieved "without compromising
scoring reliability,” is unsupported by statistical claims.
No evidence is provided to substantiate the claim, and
standard inter-rater agreement measures like Fleiss’
Kappa are absent. The authors consequently underscore
that Section 3.2 must focus on this issue and must
provide evidence demonstrating the reliability of the
AFAT derived scores.

From a strategic perspective, the system's proven
and consistent efficiency, irrespective of complexity, has
strong implications for large-scale implementation of
AFAT in high-enrollment programming courses. The

authors' confidence in the methodology's integrity is
underscored by the specification of a valid and
reproducible Generalized Linear Model (GLM) with a
Gamma distribution and a log link. In addition, AFAT's
system real-time scoring provides immediate
operational advantages by reducing intrinsic workload
and enhancing feedback turnaround time. Such
improvements greatly facilitate effective learning since
quick feedback is a critical element

Discussion Diagnostic Accuracy Analysis (Testing H;)

Hypothesis H; states that AFAT attains a diagnostic
accuracy of F1-Score > 0.90 relative to expert manual
evaluation. The statistical analysis validates this claim,
demonstrating AFAT’s diagnostic reliability. The
hypothesis was statistically confirmed (p 0.004,
bootstrap t-test), yielding an F1-Score of 0.92. This result
is additionally supported by a Fleiss” Kappa value of x =
0.88, indicating substantial agreement between AFAT
scores and the expert consensus (N = 4).

Architectural Logic and Handling of Semantic
Inconsistencies: A high score accuracy is due to the
Modified Graph Edit Distance (MED) algorithm and the
use of Functional Weighting aimed at crucial logical
error detection. While AFAT's primary errors included
loops 43% and branching 38%, complex structural
omissions were the leading causes of paradoxical
omissions and False Negatives.

False Negatives, in this context, are described as
AFAT failing to detect existing errors. The dominance of
structural omissions in such tasks involved invalid input
handling and edge-case conditional branches. More
developed heuristics remain fundamental to fine-tuning
the analysis of control flow path coverage in relation to
the reference model (Ariyanta et al., 2025). With respect
to the sensitivity analysis conducted against AFAT’s
internal thresholds, AFAT’s diagnostic precision
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remains, to a sizeable degree, stable as the F1-Score value
fluctuates 0.01 within the 0.70 - 0.78 threshold range.
Benchmarking and Contextual Limitations AFAT
appears to have a strongly diagnostic performance in
relation to other systems at an F1-Score = 0.92 and, in this
respect, diagnostic performance is competitive and
contextually strong against other systems. Nevertheless,
this is a non-definitive and indicative comparison as
Benchmarking was conducted in a non-standardised
manner across disparate data sets, exemplified by
GRAD-AI using UML, and FlowGNN using
pseudocode. Future work on AFAT, GRAD-AI, and
FlowGNN will involve the use of the same datasets in
order to provide definitive cross-system comparative
validation.

Discussion Efficiency and Dependability (Testing H,)
Efficiency and Dependability of Results Hypothesis
H, investigates two principal variables: temporal
efficiency and scoring consistency. Time efficiency and
interpretability of the GLM-based transparency were
empirically verified. AFAT demonstrated a statistically

Table 5. Summary of UTAUT Constructs

December 2025, Volume 11 Issue 12, 1230-1240

significant 61.2% reduction in evaluation time, with an
average latency of 1.87 minutes per flowchart. The
efficiency improvement was modeled using a
Generalized Linear Model (Gamma distribution, log
link), with flowchart complexity and instructor
experience included as covariates. Post-hoc analysis
showed a significant proportional improvement for
complex sessions (x> = 3821, p < 0.005). Multi-
comparison correction (Bonferroni or Holm) was
applied to control Type I error.

Scoring Reliability (Enhanced by Design &
Validation Roadmap) Reliability was intrinsically
improved by the system’s deterministic (MED-based)
design, which architecturally eliminated the 28% inter
rater variability present in manual scoring. Roadmap for
External Validation: External validation of AFAT
scoring reliability is planned. The high kappa score
confirms agreement, but future work will include test-
retest reliability (with a 7 day interval) and split-half
reliability (logic block division) to substantiate AFAT
scoring reliability.

UTAUT Construct Mean Std. Dev Cronbach’s a Interpretation
Performance Expectancy (PE) 4.60 0.24 0.88 Very High
Effort Expectancy (EE) 4.20 0.33 0.84 High
Social Influence (SI) 3.80 0.41 0.81 Moderate
Facilitating Conditions (FC) 4.40 0.27 0.86 Very High

Internal Reliability: Cronbach’s a > 0.80 across all
constructs suggests good internal reliability of the
survey instrument. However, the data remain purely
descriptive, which may not support the inferential
structural model validation. SI Interpretation: A
moderate Social Influence (SI = 3.80) suggests that AFAT
adoption is motivated by personal utility and
infrastructure (PE and FC) as opposed to social norms
(Pratama et al., 2025).

Findings from H; and H, integrate to position AFAT
as a methodologically sound, efficient, accurate and
reliable solution, with strong implications for scalability
as supported by GLM validation and low, consistent
latency, indicating feasibility for large-scale institutional
deployment (Gambo et al., 2024). All claims within this
study have been methodologically qualified along with
a roadmap for further validation to ensure the results
can be replicated and generalised

Conclusion

To algorithmically assess visual artifacts,
Topological modeling via Directed Graphs (DGs),
coupled with an automatically weighted Modified
Graph Edit Distance, provides a valid and scalable

approach. Crucially, the AFAT system addresses and
surpasses the shortcomings of existing methods,
particularly those constrained by acyclic structures and
requirements for manual annotation. Evidence from the
AFAT system indicates a 61.2% time-saving evaluation
rate when compared to manual evaluation methods,
attaining this evaluation time without a reduction of the
diagnostic quality, shown through the 0.92 F1 score. This
is the first time automated flowchart assessment has
been demonstrated to maintain higher consistency and
speed as compared to manual expert evaluation, while
resolving previously unsolved latency issues in systems
identified. In this sense, AFAT is the first system that
provides reproducible DG-based logic validation as a
framework for flowchart-based assessment. The
contribution is the expansion of the domain of
Automated Visual Assessment, where the approach is
not only efficient and accurate, but also compatible with
real-time pedagogical feedback.

The limitations of this study include a restricted
sample size from a single vocational institution
involving four instructors, necessitating future external
validation to ensure broader reliability. Furthermore, the
current Automated Flowchart Assessment Tool (AFAT)
is limited to a single idealized logic representation,
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requiring manual intervention for structurally diverse
but valid solutions, and lacks evaluation across varied
logic semantics such as loop-dominant or condition-
heavy structures. To address these constraints, future
research will focus on three pillars: the Machine
Learning Pillar to develop adaptive instructor models
for automated variant detection; the Algorithmic Pillar
to eliminate the remaining 8% of logic flaws by refining
Graph Edit Distance (GED) weights and incorporating
reinforcement learning for complex semantic error
detection; and the Pedagogical Pillar to conduct
longitudinal studies assessing AFAT’s impact on
student logic retention compared to traditional feedback
methods.

Acknowledgments

This research was supported by data provided by the
Department of Information Technology, State Polytechnic of
Malang. The contribution and support in supplying the data
enabled a more comprehensive model analysis and evaluation,
aligned with the context of programming learning in
vocational higher education.

Author Contributions

Usman Nurhasan: Conceptualization, Methodology, Writing -
Original Draft, Didik Dwi Prasetya: Writing -Review & Editing,
Supervision

Funding
This research received no specific grant from any funding
agency

Conflicts of Interest

The authors declare no conflict of interest. Data Availability:
The data underlying this study are not publicly available due
to privacy and confidentiality considerations. Informed
Consent: Informed consent was obtained, and a detailed
explanation has been provided in the Methods section.
Institutional Review Board

References

Ariyanta, N. D., Prasetya, D. D., Ari, I, Zaeni, E,
Wicaksono, R., & Hirashima, T. (2025). Assessing the
Semantic Alignment in Multilingual Student-Teacher
Concept Maps Using mBERT. 25(1), 113-126.
https:/ /doi.org/10.30812/matrik.v25i1.5046

Calderon, K., Serrano, N., Blanco, C., & Gutierrez, I.
(2023). Automated and continuous assessment
implementation in a programming course.
Computer Applications in Engineering Education, 32.
https://doi.org/10.1002/ cae.22681

Chen, Z., Villar, S., Chen, L., & Bruna, J. (2019). On the
equivalence between graph isomorphism testing
and function approximation with GNNs. In
Proceedings of the 33rd International Conference on
Neural Information Processing Systems. Curran

December 2025, Volume 11 Issue 12, 1230-1240

Associates Inc.

Chowdhury, T., Contractor, M. R., & Rivero, C. (2024).
Flexible Control Flow Graph Alignment for
Delivering Data-Driven Feedback to Novice
Programming Learners. J. Syst. Softw., 210, 111960.
https://doi.org/10.1016/].jss.2024.111960

Cui, H., Xie, M., Su, T., Zhang, C., & Tan, S. H. (2024). An
Empirical Study of False Negatives and Positives of
Static Code Analyzers From the Perspective of Historical
Issues. 1(1), 1-26. http:/ /arxiv.org/abs/2408.13855

Dikici, S., & Bilgin, T. T. (2025). Advancements in
automated program repair: a comprehensive
review. Knowledge and Information Systems, 67(6),
4737-4783.  https:/ /doi.org/10.1007/510115-025-
02383-9

Florou, C., Stamoulis, G., Xenakis, A., & Plageras, A.
(2024). The role of educators in facilitating students’
self-assessment in learning computer programming
concepts: addressing students’ challenges and
enhancing learning. Educ. Inf. Technol., 30, 8567~
8590. https:/ /doi.org/10.1007 /s10639-024-13172-2

Gambo, I., Abegunde, F.-]., Gambo, O., Ogundokun, R.,
Babatunde, A., & Lee, C. (2024). GRAD-AL An
automated grading tool for code assessment and
feedback in programming course. Educ. Inf.
Technol., 30, 9859-9899.
https:/ /doi.org/10.1007 /s10639-024-13218-5

Geetika, Kaur, N., & Kaur, A. (2025). A Semantic-driven
approach to detect Type-4 code clones by using
AST and PDG. International Journal of Information
Technology.  https://doi.org/10.1007 /s41870-025-
02670-2

Huang, A., Lin, C,, Su, S., & Yang, S. (2025). The impact
of GenAl-enabled coding hints on students’
programming performance and cognitive load in
an SRL-based Python course. British Journal of
Educational Technology.
https:/ /doi.org/10.1111/bjet.13589

Huang, C, Fu, L., Hung, S., & Yang, S. (2025). Effect of
Visual Programming Instruction on Students” Flow
Experience, Programming Self-Efficacy, and
Sustained Willingness to Learn. Journal of Computer
Assisted Learning.
https:/ /doi.org/10.1111/jcal. 13110

Kinnear, G., Jones, 1., & Davies, B. (2025). Comparative
judgement as a research tool: A meta-analysis of
application and reliability. Behavior Research
Methods, 57. https://doi.org/10.3758/513428-025-
02744-w

Lee, H.-Y,, Lin, C.-J.,, Wang, W.-S., Chang, W., & Huang,
Y.-M. (2023). Precision education via timely
intervention in K-12 computer programming
course to enhance programming skill and affective-
domain learning objectives. International Journal of
STEM Education, 10, 1-19.

1239



Jurnal Penelitian Pendidikan IPA (JPPIPA)

https:/ /doi.org/10.1186/s40594-023-00444-5

Messer, M., Brown, N. C. C,, Kolling, M., & Shi, M.
(2024). Automated Grading and Feedback Tools for
Programming Education: A Systematic Review.
ACM Trans. Comput. Educ., 24(1).
https:/ /doi.org/10.1145/3636515

Pedagogy, M. (n.d.). Ontology Design of a Modern
Learning Environment and Modern Pedagogy Usin
Protégé Software *,
https:/ /doi.org/10.30762/ijomer.v2i1.2755

Prasetya, D. D., Pinandito, A., Hayashi, Y., & Hirashima,
T. (2022). Analysis of quality of knowledge
structure and students’ perceptions in extension
concept mapping. Research and Practice in
Technology Enhanced Learning, 17(1).
https:/ /doi.org/10.1186/s41039-022-00189-9

Prasetya, D. D., Widiyaningtyas, T., & Hirashima, T.
(2025).  Interrelatedness  patterns of knowledge
representation in extension concept mapping. 1-18.

Pratama, W. S., Prasetya, D. D., Widyaningtyas, T.,
Wiryawan, M. Z., & Rady, L. G. (2025). Performance
Evaluation of Artificial Intelligence Models for
Classification in Concept Map Quality Assessment.
24(3), 407-422.
https://doi.org/10.30812/matrik.v24i3.4729

Sakulin, S., Alfimtsev, A. & Kalgin, Y. (2025).
Improvement of Computer Science Student’s
Online Search by Metacognitive Instructions.
Emerging Science Journal.
https:/ /doi.org/10.28991/ esj-2025-sied1-03

Tong, Y., Schunn, C., & Wang, H. (2023). Why increasing
the number of raters only helps sometimes:
Reliability and validity of peer assessment across
tasks of different complexity. Studies in Educational
Evaluation.
https:/ /doi.org/10.1016/j.stueduc.2022.101233

Ulfa, S., Bringula, R, & An, R. (2025). An adaptive
assessment : Online summary with automated feedback
as a self-assessment tool in MOOCs environments
Recommended citation: An adaptive assessment :
Online summary with automated feedback as a self-
assessment tool in MOOCs environments Saida Ulfa *
Ence Surahman Agus Wedi Izzul Fatawi Rex Bringula.
17(1), 88-113.

Weegar, R., & Idestam-almquist, P. (2023). Reducing
Workload in Short Answer Grading Using Machine
Learning.  International  Journal of  Artificial
Intelligence in Education, 34(2), 1-27.
https:/ /doi.org/10.1007 /s40593-022-00322-1

Weingarden, M., & Heyd-Metzuyanim, E. (2023).
Evaluating mathematics lessons for cognitive
demand: Applying a discursive lens to the process
of achieving inter-rater reliability. Journal of
Mathematics Teacher Education, 1-26.
https:/ /doi.org/10.1007 /s10857-023-09579-2

December 2025, Volume 11 Issue 12, 1230-1240

Xu, X., Cao, Y., Hu, H., Xiang, H., Qi, L., Xiong, J., & Dou,
W. (2025). MGF-ESE: An Enhanced Semantic
Extractor with Multi-Granularity Feature Fusion
for Code Summarization. In WWW 2025 -
Proceedings of the ACM Web Conference (Vol. 1, Issue
1). Association for Computing Machinery.
https:/ /doi.org/10.1145/3696410.3714544

Ye, H,, Liang, B., Ng, O.-L., & Chai, C. (2023). Integration
of computational thinking in K-12 mathematics
education: a systematic review on CT-based
mathematics instruction and student learning.
International Journal of STEM Education, 10, 1-26.
https:/ /doi.org/10.1186/540594-023-00396-w

Zimmerman, A. King, E, & Bose, D. (2023).
Effectiveness and utility of flowcharts on learning
in a classroom setting: A mixed methods study.
American Journal of Pharmaceutical Education, 100591.
https://doi.org/10.1016/j.ajpe.2023.100591

1240



