
 

JPPIPA 8(6) (2022) 
 

Jurnal Penelitian Pendidikan IPA 
Journal of Research in Science Education  

 
http://jppipa.unram.ac.id/index.php/jppipa/index 

 
   

___________ 
How to Cite:  
Azizah, M., Yanuar, A., & Firdayani, F. (2022). Dimensional Reduction of QSAR Features Using a Machine Learning Approach on the SARS-Cov-
2 Inhibitor Database. Jurnal Penelitian Pendidikan IPA, 8(6), 3095–3101. https://doi.org/10.29303/jppipa.v8i6.2432  

Dimensional Reduction of QSAR Features Using a Machine 
Learning Approach on the SARS-Cov-2 Inhibitor Database 

 
Azizah Munaya1, Arry Yanuar1*, Firdayani2 

 
1Department of Biomedical Computation and Drug Design Laboratory, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 
16424, West Java, Indonesia. 
2Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia. 

 
 
Received: October 30, 2022 
Revised: December 25, 2022 
Accepted: December 30, 2022 
Published: December 31, 2022 

 
Corresponding Author:  
Arry Yanuar 
arry.yanuar@ui.ac.id 
  
 
 
© 2022 The Authors. This open 
access article is distributed 
under a (CC-BY License) 

 
 
 
 
DOI: 10.29303/jppipa.v8i6.2432  

Abstract: Quantitative Structure-Activity Relationship (QSAR) is a method that relates the 
chemical composition of a molecule to its biochemical, pharmaceutical and biological 
activities. The characteristics of a molecule's chemical constituents, such as chemical 
descriptors and fingerprints, are necessary to create a good QSAR model. Dimensionality 
reduction can alleviate the issue of several unnecessary and redundant chemical descriptors 
and chemical fingerprints in a high-dimensional feature-number data set by shrinking the 
high-dimensional original space to a low-dimensional intrinsic space. There are two categories 
of dimensional reduction techniques: feature extraction and feature selection. The dimension 
reduction approach can be utilized as a starting step in running a QSAR Virtual Screening 
Model on a dataset of SARS-CoV-2 inhibitor medications to create novel treatments for Covid-
19 cases based on machine learning (ML) and the idea of medicinal repurposing. Fe extraction 
and feature selection are crucial to determining which feature sets should be applied to a 
specific classification process in QSAR modeling to produce reliable virtual screening results. 
The SARS-Cov-2 inhibitor drug database's chemical descriptor and chemical fingerprint were 
extracted using a simple, quick, and accurate method in this work. The total number of 
selected features is 12122 features. PCA, Missing values, and Random Forest are the 
techniques employed. The Xgboost Tree Ensemble, Naive Bayes, Support Vector Machine, 
Random Forest, and Deep Learning (Artificial Neural Network/Multilayer Perceptron) were 
used to classify the QSAR modeling on the training and test data. The Random Forest 
approach, when applied to all chemical descriptors and chemical fingerprint features, along 
with the XGBoost algorithm, yields the best feature selection results (accuracy value of 0.845 
and AUC of 0.904). There are 233 characteristics for the regression QSAR approach and 273 
features for the feature selection-based QSAR method of classification. Next, virtual screening 
of QSAR modeling of prospective drugs for Covid-19 therapy can be done utilizing the 
outcomes of the characteristics that have been chosen using the Random Forest approach. 
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Introduction  
 

Quantitative structure-activity relationship (QSAR) 
is a method that compares the chemical composition of 
a molecule to its biochemical, pharmacological, and 
biological activities (Bastikar et al., 2022) and can be used 
to identify compounds with enhanced biological activity 
(Ishola et al., 2021). According to a report by the Eastern 
Research Group (ERG), developing a novel molecular 
entity can take between 10 and 15 years, with a success 
rate of only 2.01% (Xue et al., 2018) and a cost that can 

approach $3 billion USD (DiMasi et al., 2016). The QSAR 
model can assist the development of new compounds by 
saving costs and time in terms of synthesis and 
manufacture of molecules as well as in vitro and in vivo 
molecular testing using the concept of drug repurposing 
(drug reuse) (Bender et al., 2021) use computer Aided 
Drug Design (CADD) (Paul et al., 2021) through 
Artificial Intelligence-based virtual screening (Cavasotto 
et al., 2021). 

The characteristics of a molecule's chemical 
components is one of the requirements for developing a 
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reliable QSAR model. This attribute helps establish the 
distinctions between compounds that give each its own 
properties. The QSAR model uses chemical descriptors 
and chemical fingerprints as features. Chemical 
descriptors are phrases that characterize certain 
information about the examined molecule. Utilization of 
physicochemical properties Because the chemical 
descriptor provides a bridge between the molecular 
structure and the biological activity of the molecule, its 
nature has a substantial impact on the interpretation of 
the QSAR model (Roy et al., 2015). Chemical fingerprints 
are characteristics that represent a compound's 
substructure. Typically, a collection of substructures is 
organized in hashtable format. The fingerprint is 
represented in binary bit strings, which represent the 
distinctive properties of each molecule. Each bit in the 
fingerprint reflects a feature that is unavailable (0) or 
available (1) (Jasial et al., 2016). 

In general, several irrelevant and redundant 
characteristics in chemical descriptors and chemical 
fingerprints raise the difficulty of data processing, 
knowledge mining, and pattern categorization. As a 
crucial solution to this issue, dimensionality reduction 
can eliminate noise and information overload by 
transforming the original high-dimensional space into 
the intrinsic low-dimensional space (M. Li et al., 2020). 
In general, dimensional reduction techniques can be 
categorized into two distinct categories: feature 
extraction and feature selection. Principal Component 
Analysis (PCA), Multi-Dimensional Scaling (MDS), 
Isometric Mapping (ISOMAP), and Local Linear 
Embedding (LLE) are dimensionality reduction 
techniques based on feature extraction. The feature 
selection approach ranks the original features based on 
predetermined criteria and chooses the highest-ranked 
features to generate a subset. There are three primary 
feature selection models: filter, wrapper, and 
embedding (M. Li et al., 2020). Random Forest is a 
generalized machine learning method focusing on 
feature selection utilizing ensemble methods like 
bagging (Jain et al., 2021). 

The feature extraction and selection methodology 
can be utilized as a first step in executing a QSAR Virtual 
Screening Model on a dataset of SARS-CoV-2 inhibitor 
compounds to produce novel medications in machine 
learning (ML)-based Covid-19 scenarios using the 
notion of drug repurposing. As of October 27, 2022, the 
World Health Organization (WHO) stated that 24 
countries were witnessing a surge in cases, with 
626,090,028 confirmed positive cases of Covid-19 and 
6,564,556 deaths worldwide (WHO, 2022). Thus, the 
initial stage in feature extraction and selection is crucial 
for determining which feature set should be employed 
in a specific classification process in QSAR modeling to 
produce correct virtual screening results (Mendes Junior 
et al., 2020). 

Several research on the reduced dimensions of 
SARS-Cov-2 inhibitor drugs has been undertaken. 
Extraction and feature selection performed by García et 
al. (2021) and Erlina et al. (2020) necessitates advanced 
programming skills, specifically using the paDel 
descriptor, Python, and protr R, Research (Rajput et al., 
2021). Only the extraction and selection of chemical 
descriptors were performed. In this study, chemical 
descriptors and chemical fingerprints from the SARS-
Cov-2 inhibitor drug database were extracted using a 
straightforward, rapid, and accurate method. Utilized 
techniques include PCA, Missing values, and Random 
Forest. The training and test data were then classified 
using the Xgboost Tree Ensemble, Naive Bayes, Support 
Vector Machine, Random Forest, and Deep Learning 
(Artificial Neural Network/Multilayer Perceptron) so 
that predictions of the activity of various molecules in 
large databases can be made more quickly than with the 
virtual method. Other presentations Using the KNIME 
Analysis Platform, the Artificial Intelligence application 
utilized in this work is simple to implement in academia 
and the drug raw material sector. An open-source 
platform that allows for the flexible creation of 
workflows without the need for significant 
programming abilities, hence simplifying and reducing 
analysis time (Jain et al., 2021). 
 
Method  

 
Virtual feature extraction and selection screening 

QSAR modeling with a Machine Learning approach is 
applied as the method (Figure 1). 
 

 
Figure 1. Workflow of method 
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Dataset  
The data used in this study is a SARS-CoV-2 

inhibitor compound molecule which was downloaded 
from the ChEMBL chemical molecular bioactivity 
database site on March 11, 2022, in CSV format, which 
can be accessed via (https://www.ebi.ac.uk/ chembl) 
and the PubChem website on October 7, 2022, in CSV 
format accessible via 
(https://pubchem.ncbi.nlm.nih.gov/#query=covid-
19&tab=bioassay). 
 
Data Pre-processing 

The dataset was screened for IC50 activity; then, the 
data set was curated with the activity unit being nM and 
an empty activity value (missing value). Then 
standardization was carried out in canonical SMILES, 
the duplicate compounds and salt were removed (using 
the RDKit salt stripper node), and the presence of free 
hydrogen (using the hydrogen remover node). 
 
Calculation of QSAR Features 

After data preparation, the next step is the 
calculation of the chemical descriptors and chemical 
fingerprint features (Figure 2). 

 

 
Figure 2. Workflow of features extraction 

 
Chemical descriptors: The nodes used are RDKit 

Descriptor Calculation and molecular properties 
descriptor. 

Chemical fingerprint: The nodes used are RDKit 
and CDK fingerprint. RDKit fingerprint consists of 
fingerprint MACCS, Morgan, Avalon, Feat Morgan, 
Atom pair, Rdkit, Torsion, and Layered; As for the CDK, 
fingerprint consists of standard, Extended, Estate, 
Pubchem, MACCS, and Circular fingerprints. 
 

Dataset Transform 
The inhibition activity of the compound dataset is 

presented as data on its biological activity IC50 (nM), 
which is then converted into the PIC50 value using 
equation (1) below: 
 

PIC50 = (9 – Log IC50) (1) 
 
Feature Extraction and Selection 

Feature selection uses 3 (three) methods, namely 
PCA, dividing into 9 (nine) principal components, the 
Missing Values method, and the Random Forest 
method. The features of the selected compounds are 
classified into 8 (eight) categories, as shown in Table 1. 
 
Table 1. The Group of Feature Selection 
The Group of Feature Selection 
RDKit Descriptor 
Descriptor molecular properties 
RDKit fingerprint 
CDK fingerprint 
Combination of RDKit Descriptor and Descriptor molecular 
properties 
Combination of RDKit Descriptor and RDKit fingerprint 
Combination of RDKit Descriptor and CDK fingerprint 
Combination of RDKit Descriptor, Descriptor molecular 
properties RDKit fingerprint, and CDK fingerprint 
 
Table 2. Model QSAR 

 Naive 
Bayes 

XGBoost Random 
Forest 

ANN 

RDKit Descriptor Des-
NB 

Des-XGB Des-RF Des-ANN 

Descriptor 
molecular 
properties 

MP-
NB 

MP-XGB MP-RF MP-ANN 

RDKit fingerprint FP-
NB 

FP-XGB FP-RF FP-ANN 

CDK fingerprint CDK-
NB 

CDK-
XGB 

CDK-RF CDK-ANN 

Combination of 
RDKit Descriptor 
and Descriptor 
molecular 
properties 

DesM
P-NB 

DesMP-
XGB 

DesMP-
RF 

DesMP-
ANN 

Combination of 
RDKit Descriptor 
and RDKit 
fingerprint 

DesF
P-NB 

DesFP-
XGB 

DesFP-
RF 

DesFP-
ANN 

Combination of 
RDKit Descriptor 
and CDK 
fingerprint 

RDK
CDK-
NB 

RDKCD
K- XGB 

RDKCD
K-RF 

RDKCDK- 
ANN 

Combination of 
RDKit Descriptor, 
Descriptor 
molecular 
properties RDKit 
fingerprint, and 
CDK fingerprint 

ALL-
NB 

ALL-
XGB 

ALL-RF ALL-ANN 
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These features were tested on various machine 
learning methods with supervised machine learning 
classification algorithms, such as Xgboost Tree 
Ensemble, Naive Bayes, Support Vector Machine, 
Random Forest, and Deep Learning (Artificial Neural 
Network/Multilayer Perceptron), as shown in table 2. 
 
Data Partition 

The SARS-CoV-2 inhibitor compound dataset with 
Chemical descriptors and Chemical fingerprint features 
was partitioned into two parts with a ratio of 80% as a 
training set and 20% as a test set. 
 
Evaluation of Feature Selection Results 

All models were analyzed with statistical 
parameters with the concept of confusion matrix, mainly 
accuracy and Plot Receiver Operating Characteristic 
(ROC). 
 
Result and Discussion 

 
The dataset of SARS-CoV-2 inhibitor compounds 

generated from the ChEMBL database consisted of 
10,465 compounds; after screening for biological 
activity, the number decreased to 9.808. According to the 
PubChem database, 1053 biologically active chemicals 
were obtained. Therefore, the total number of 
biologically active chemicals in the dataset was 10.861. 
The dataset is then curated and standardised by 
removing duplicate, salt, and free hydrogen 
components, obtaining 5611 compounds which are 
eligible for extraction and feature selection (Figure 3). 

The feature calculations yields 118 chemical 
descriptors, 42 molecular properties descriptors, 7735 
RDKit fingerprint features, and 4217 CDK fingerprint 
features, bringing the overall number of features to 
12122. The obtained range of PIC50 values is between 0 
and 9.046 (Figure 3.). The pIC50 value of biological 
activity offers better precision than the IC50 value (Attiq 
et al., 2022). In addition, the data were classified into 
active and inactive compounds based on the pIC50 limit 
value, with pIC50 ≤ 4.698 suggesting inactive 
compounds and > 5.25 suggesting active compounds. 
This number was chosen based on the range of observed 
pIC50 values for the full data set in order to maximize 
the chemical space representation for each structure 
class (active and inactive). The structures with pIC50 
values between 5.250 and 4.698 (range 0.55 units) were 
omitted to prevent edge effects and improve the 
prediction power of the model by limiting potential 
changes in activity caused by experimental errors and 
procedures (Janeiro, 2018). 

Three extraction and feature selection techniques 
were selected because they represent a variety of types, 
especially extraction type (PCA), filter type (missing 
value), and bagging type (Random Forest). PCA was 

chosen because it is a straightforward nonparametric 
method for extracting a large number of important 
features from a set of redundant or noisy data. PCA 
compute, which calculates the components of the 
reduced variable, and PCA Apply, which displays the 
PCA group, which is the projected variable from the 
original column reduction, are the nodes utilized by the 
PCA technique. The missing values method was selected 
because it is simple, quick, and effective in filtering out 
missing data. While the Random Forest Method was 
chosen because it uses various possible Decision Trees 
that segment features randomly, initially with the widest 
segmentation range and reducing as it approaches, so 
that the results seem to be more specific. 
 

 
Figure 3. Pre-processing result data 

 
Each of these methods was evaluated within five 

classification-based supervised learning algorithms. The 
methods with the highest accuracy were the Missing 
Values method for the chemical descriptor feature with 
the ANN algorithm (0.961), the Missing Values method 
for the chemical descriptor feature with the XGBoost 
algorithm (0.948), and the Random Forest method with 
the CDK fingerprint feature with the XGBoost algorithm 
(0.858). Combining all descriptor and fingerprint 
characteristics, the XGBoost algorithm (0.845).
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Table 3. Accuracy Value 
 Naive Bayes XGBoost Support Vector Machine ANN 

RDKit Descriptor 
Missing Value 0.781 0.948 0.553 0.961 
PCA 0.480 0.630 0.566 0.742 
Random Forest 0.520 0.605 0.605 0.703 
Molecular properties Descriptor 
Missing Value 0.553 0.643 0.540 0.631 
PCA 0.536 0.596 0.738 0.631 
Random Forest 0.476 0.451 0.549 0.558 
RDKit fingerprint 
Missing Value 0.712 0.811 0.566 0.785 
PCA 0.562 0.579 0.527 0.704 
Random Forest 0.527 0.785 0.785 0.753 
CDK fingerprint 
Missing Value 0.708 0.841 0.566 0.753 
PCA 0.605 0.618 0.549 0.742 
Random Forest 0.755 0.858 0.553 0.776 
RDKit Descriptor and Molecular Properties Descriptor 
Missing Value 0.690 0.832 0.562 0.729 
PCA 0.605 0.832 0.562 0.729 
Random Forest 0.643 0.818 0.553 0.781 
RDKit Descriptor and RDKit fingerprint 
Missing Value 0.708 0.811 0.566 0.759 
PCA 0.562 0.579 0.527 0.708 
Random Forest 0.665 0.785 0.532 0.742 
RDKit Descriptor and CDK fingerprint 
Missing Value 0.649 0.819 0.566 0.789 
PCA 0.618 0.618 0.549 0.682 
Random Forest 0.712 0.739 0.533 0.799 
Combination of RDKit Descriptor, Descriptor molecular properties RDKit fingerprint, and CDK fingerprint 
Missing Value 0.626 0.794 0.566 0.785 
PCA 0.635 0.485 0.605 0.738 
Random Forest 0.515 0.845 0.536 0.716 
 

The greatest accuracy findings suggest that the 
missing value and random forest feature selection 
method is a feasible method that can generate accurate 
features for the virtual screening of QSAR models. 
However, the missing value method's accuracy is only 
high for one feature, the RxDKit descriptor and CDK 
fingerprint. As for Random forest, the combination of 
chemical descriptors and chemical fingerprint features 
has a good accuracy value. Thus, the Random Forest 
technique is the best for all features. 

The PCA method implies a linear relationship 
between variables that will reduce the prediction 
accuracy of the QSAR model (P. Li et al., 2022) and PCA 
only retains the main components from an informatics 
perspective, but the main chemical features related to 
QSAR is ignored causing overfitting and low accuracy 
(J. Li et al., 2021). 

The graph of the accuracy results in the 3 (three) 
methods is shown in Figure 4. 

 

 
Figure 4. The graph of accuracy results 



Jurnal Penelitian Pendidikan IPA (JPPIPA) December 2022, Volume 8, Issue 6, 3095-3101 
 

3100 

Furthermore, the largest Area Under Curve (AUC) 
of the ROC analysis was obtained for the missing values 
method for the chemical descriptor feature (0.987), the 
Random Forest CDK fingerprint method (0.915), and the 
Random Forest method combined with all chemical 
descriptor features and chemical fingerprints (0.915) and 
(0.904) (Figure 5). The curve demonstrates that AUC 
results are linear with accuracy outcomes, with Random 
Forest being the optimal method for all characteristics. 
 

 
Figure 5. ROC Curve of feature selection 

 
The feature selection of the random forest method 

is adapted from Hermansyah et al. (2021), in which 
training and validation data and test results are used to 
identify essential features with the parameters 2000 and 
10 for tree depth. The QSAR method of classification 
generated from feature selection obtains 273 features 
consists of RDKit fingerprints (Morgan, Feat Morgan, 
Torsion, Atom pair, Avalon, Layered and MACCS) anad 
CDK fingerprints (Standard, Extended, Pubchem, 
MACCS, and Circular). The QSAR method of regression 
obtains 233 features consists of Molecular Quantum 
Numbers (MQN), RDKit fingerpints (Morgan, Feat 
Morgan, Torsion, Atom pair, Avalon, Layered and 
MACCS), CDK fingerprints (Standard, Extended, 
Pubchem, MACCS, and Circular). Most of the features in 
the classification method are hashed fingerprints where 
certain substructures are hashed into bit strings, these 
fingerprints are most useful in classification methods 
when used with molecules that are likely to be covered 
by a given structural key (Cereto-Massagué et al., 2015). 
As for the selected features in regression methods, in 
addition to hashed fingeprints, there are also MQN 
features that can describe the number of five- or six-
membered rings, topological surface area, cyclic 
trivalent and tetravalent vertices, and vertices and edges 
shared by more than two rings (Batra et al., 2020). 

However Zhang et al. (2022) reported that no 
fingerprints can outperform the others considering all 
targets and that different fingerprint types are effective 
on different targets and different fingerprints take 
different active compounds, and the combination of 
multiple fingerprints gives the best performance (Xie et 
al., 2020). 

 

Conclusion  
 
Dimension reduction methods, including feature 

extraction and feature selection, are essential steps to 
evaluate which feature sets should be used in the virtual 
screening process of QSAR modeling so that accurate 
virtual screening results will be obtained (Kabir et al., 
2022). The best feature selection method obtained is the 
Random Forest method against a combination of all 
chemical descriptors and chemical fingerprints with the 
XGBoost algorithm (accuracy value of 0.845 and AUC 
value of 0.904). Then the results of the features that have 
been selected using the Random Forest method can be 
used for the next step, namely virtual screening of QSAR 
modeling of potential compounds for Covid-19 therapy. 
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