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Abstract: The lineaments with NE-SW direction formed by the Umbulan Spring, 
Banyubiru Spring, and Ranu Grati Maar in Pasuruan Regency indicate a geological 
structure. This structure is predicted to play a role in forming these springs and maar. 
Therefore, a study was conducted to identify the presence of these geological structures 
using the GGMPlus satellite gravity data. The data used in this study were 945 points 
with spacing intervals of about 200 to 300 meters. Satellite gravity data needs to be 
corrected so that the Complete Bouguer Anomaly (CBA) value is obtained, which can be 
used to determine the distribution of density contrast values in the research area. 
Gridding is done by using a Second Vertical Derivative (SVD) filter to determine existing 
fault that results in the lineaments of the two springs and maar based on the second 
derivative value from CBA. It was found that the range of interpolated CBA values in the 
study area was around 143 mGal to 150 mGal. SVD analysis indicates existing a fault 
plane exists through Umbulan Springs, Banyubiru Springs, and Ranu Grati Maar with E-
W direction. 
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Introduction 
 

Umbulan Spring, the largest spring in Indonesia, is 
a unique hydrogeological phenomenon on the northern 
side of the Bromo-Tengger Volcanic Complex (Fajar et 
al., 2021). Administratively, this spring is located in the 
Pasuruan Regency, with coordinates of 7°45’34.94” S 
112°56’3.65” E and a debit of 3500 L/s. Based on the 
genesis of spring formation, Umbulan is a type of spring 
that is formed due to a fault (Rengganis & Seizarwati, 
2015). The North Pasuruan fault zone surveyed shows 
the presence of a South-North graben forming the 
Pasuruan Plain (Marliyani, 2016; Toulier et al., 2019). In 
addition to the Umbulan Spring, the Banyubiru spring 
and the Maar Ranu Grati are considered to form a 
lineament. Physiographically, this lineament lies in the 
Ngawi and Quaternary Mountains Sub-zone, which 
includes the Solo and the Kendeng Zone (van 
Bemmelen, 1949). 

Based on the Geological Map, the Umbulan Spring 
is located in the Middle Quarter Volcanic Formation, 
which consists of volcanic breccia, tuff, lava, 
agglomerates, and lahars (Santosa & Suarti, 1992). 
However, the result of geoelectrical measurements 
shows that the rocks making up the Umbulan Spring are 
sand, tuffaceous sand, breccia, sandy breccia, sandy tuff, 
and tuff (Tatas et al., 2014). On the other hand, the 
Banyubiru Spring and the Ranu Grati Maar are included 
in the Rabano Tuff Formation, which consists of sandy 
tuff, floating tuff, tuffaceous breccia, and fine sandy tuff 
(Santosa & Suarti, 1992). It should be noted that Maar is 
formed from hydromagmatic eruptions driven by a 
direct interaction between magma and water, such as 
groundwater, sea, or rivers (Sottili et al., 2012). 
Therefore, the two springs considered as lineament 
could be called structural springs due to faults based on 
the lithology of the rock forming the springs. 
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In determining the presence of geological 
lineament, the Satellite Gravity method is used to map 
the distribution of subsurface rock density values due to 
the differences in gravitational field values from one 
observation point to other points (Hinze et al., 2010; 
Kamto et al., 2021; Lestari et al., 2023; Pratama et al., 
2023). Gravity anomaly became important object to 
identify gravitational anomaly in the research area 
related to rock density and structural geology (Abdullah 
et al., 2022; Bychkov et al., 2021; Nafian et al., 2022; 
Sanjaya et al., 2023). Gravity method is based on 
Newton`s Law of Gravity which states that two objects 
are mutually attracted because of the object’s 
gravitational field (Ansari & Abouelmagd, 2020; Qin, 
2022; Wei et al., 2023). By using First Horizontal 
Derivative (FHD) and Second Vertical Derivative (SVD) 
analysis, the Gravity method data can show geological 
feature anomalies so that they can detect the geological 
structures (Darmawan et al., 2021; Dewanto et al., 2022; 
Yanis et al., 2022; Yusvinda et al., 2021). Significant 
changes in anomaly values are generally controlled by 
the presence of faults beneath the surface (Sota, 2011). 
Therefore, the Satellite Gravity method in this research 
with SVD analysis was used to prove the presence of the 
lineament between Umbulan Spring, Banyubiru Spring, 
and Ranu Grati Maar. 
  

Method 
 

This study used 945 satellite gravity data from 
Global Gravity Model Plus (GGMPlus) since it can detect 
observation gravity values. Satellite gravity data have 
geoid undulation interval between 200 to 300 meters 
from 60° LN - 60° LS (Hirt et al., 2013). The study has 44 
km2 areas with various morphology, which are steep 
areas in the south and sloping areas in the north study 
area. The satellite gravity data distribution is shown in 
Figure 1. 

Complete Bouguer Anomaly (CBA) was 
determined from several satellite gravity data 
corrections. Kriging gridding method was applied in 
CBA anomaly to interpret 2-D profile, which the data 
weighting is based on the distribution and correlation of 
the satellite gravity data (Kanda, 2018; Mulugeta et al., 
2021; Omollo & Nishijima, 2023). Second Vertical 
Derivative (SVD) filter was used to make shallow 
anomaly effects from residual influence and to 
determine the geological structure boundary in this 

location (Yulistina, 2017). SVD value is obtained from 
CBA value derivative to spatial data distance, so it can 
be used to identify a fault from contiguous maximum 
and minimum anomaly values (Dewanto et al., 2022). 
The second derivative has a clear and good figure 

because this filter emphasizes shallow anomaly over 
regional anomaly (Elkins, 1951). 

 

 
Figure 1. Satellite gravity data distribution in study area. 

 

Result and Discussion 
 

As a result, from satellite gravity data correction, 
the distribution value of Complete Bouguer Anomaly 
(CBA) is figured out in Figure 2 as 2-D profile. 

 

 
Figure 2. Complete Bouguer Anomaly (CBA) from satellite 

gravity data maps. 

 
From that map, very low value of gravity anomaly 

distributes in the south and low value distribute in the 
north study area, that is around 143 mGal. Meanwhile, 
the center study area has a high value of gravity 
anomaly around 150 mGal, which distribute in E-W 
direction. These maps have great representative grades 
because the satellite gravity data interval does not need 
to interpolate so far. 

First Vertical Derivative (FHD) results a first 
derivative value distribution of CBA, and Second 
Vertical Derivative (SVD) used at FHD value to results a 
second derivative of CBA to spatial data distance. Figure 
3 showing a distribution of SVD value. 
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Figure 3. Second Vertical Derivative (SVD) from CBA maps. 

 

Based on this map, SVD value starts from -
0.0000907 mGal/m2 until 0.0000597 mGal/m2. 
Distribution of SVD value shows a high value in the 
center study area, which have E-W direction. Fault plane 
interpretation must follow contrast value from one data 
to another data. Slicing in SVD value was applied to get 
second derivative value curve, which can be used to 
indicate fault plane in study area. For this reason, slicing 
must be perpendicular with the direction of the fault 
plane indication, as in Figure 4. 

 

 
Figure 4. Second Vertical Derivative (SVD) from CBA slicing 

maps. 
 

Maximum and minimum extreme values from the 
second derivative value curve are indicators for fault 
plane analysis. The curve analysis result is shown in 
Figure 5 and this interpretation is shown in Figure 6.  
Indicate fault plane exists in the center study area 
through Umbulan Springs, Banyubiru Springs, and 
Ranu Grati Maar with E-W direction. Moreover, some 
lineament indicated around the fault plane is estimated 
as a weak zone from this fault plane. Fault exists with 
springs because this geological structure makes a 
fracture in impermeable layer and confined aquifer so 

water can move up to the surface through that fracture 
(Kodoatie, 2012). In maar formation, faults make 
fractures to magma intrusion, which possible to meet an 
aquifer system and occur an explosion because the water 
in the aquifer getting hotter. The crater because 
explosion will fill by water from that aquifer. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Second Vertical Derivative (SVD) from CBA slicing 
curve of (a) Line 2 (b) Line 4 (c) Line 5 (d) Line 6. 

 

 
Figure 6. Fault indication based on Second Vertical Derivative 

(SVD) curve. 

 

Conclusion  
 

The analysis result using the Second Vertical 
Derivative (SVD) from CBA value on satellite gravity 

Line 1 

Line 2 

Line 3 

Line 4 
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that resulting gravity anomaly around 143 mGal to 150 
mGal. Data result indicates a fault in the SW-NE 
direction, which has a lineament from the Umbulan 
Spring area to the Ranu Grati Maar area. This lineament 
shows that the fault caused the emergence of Umbulan 
Spring and Banyubiru. In addition, magma intrusion 
from the Bromo Volcano complex can pass through the 
fault, which can form a maar due to the contact between 
the intrusion and the aquifer in the area. This research is 
fundamentally from further research that combined 
geology and geophysical data that would be 
representative condition of geoscience aspect in the 
research area. 
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