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Abstract: Most physics books do not reveal clearly how the Heisenberg 
uncertainty principle was derived. This uncertainty comes from the 
consequence of the wave-particle duality of matter giving statement that 
position and momentum cannot be measured in the same time. This article 
tries to reveal mathematics background behind the expression the 
Heisenberg uncertainty using supported mathematics background such as 
Fourier transform, Fourier transform integral, the probability of Gaussian 
distribution and it ends up with the expression of wave function which 
describe the localized particle giving relation Heisenberg uncertainty 
principle. 
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Introduction 

 
The theory of quantum physics (Ren et al., 2020) 

was developed in a series of guesses based on physical 
insight rather than in a logical way and it is considered 
as the most successful human mind in expressing 
theoretical physics. The birth of quantum physics theory 
was based the failure classical physics in explaining 
natural phenomena particularly in atomic model (Sujito 
et al., 2019).  The classical physics could not explain the 
line spectra from emission or absorption spectrum 
(Atalay et al., 2023; Lyulin et al., 2023). Actually, Bohr’s 
model of the hydrogen atom proposed quantization of 
angular momentum but he could not give physical 
reason why this happened.  This quantization condition 
was able to explain the existence of line spectra of 
hydrogen atom related to any quantum level as 
designated by the quantum number 𝑛. 

The dual nature of light as wave-particle should 
have implication to open new paradigm for looking 
phyics in the atomic world (Pawly et al., 2019; Ray, 2023; 
Zhu et al., 2020). By symetry, it is reasonable to suppose 
that particle as an electron can behave like waves. It was 
Louis de Broglie who proposed matter waves, particles 
having zero mass exhibit a wave-particle duality as had 
been established for light. He deduced a relation 

between momentum and wavelength of photon and 
applied the same relation for particle. He proposed the 
expression of the wavelength associated with particle. 
     𝜆 = !

"
      (1) 

Where ℎ is Planck’s constant and 𝑝 is momentum of the 
particle. 

This was indeed a brilliant idea. The problem 
corresponds to quantization of angular momentum  𝐿 =
𝑛ℏ in Bohr’s model for hydrogen atom can be explained. 
Electron orbits the nucleus associated with a wavelength 
𝜆 . It relates to a whole number of waves fitting into 
circular orbit, 

 𝑛𝜆 = 2𝜋𝑟     (2) 
Recalling the Broglie relation, 𝜆 = ℎ/𝑝  then gives 𝐿 =
𝑝𝑟 = 𝑛ℏ  which is just Bohr’s quantization condition 
(Carosso, 2022; Dolce, 2023). 

The wave matter (Bercioux et al., 2020; Carnio et 
al., 2019) was confirmed first by Davisson and Germer 
when they fired a known energy of electron beam to a 
nickel crystal in which the crystal is functioned as an 
arranged slit. And what they got a such much surprise, 
the scattered of electrons formed an interference pattern. 
The existence of the pattern showed the evidence of 
wave properties of electrons that their wavelengths were 
consistent with de Broglie formula. 



Jurnal Penelitian Pendidikan IPA (JPPIPA) April 2023, Volume 9 Issue 4, 2223-2228 
 

2224 

The experimental evidence shows that the particle 
of microscopic particle system behaves as wave (Amico 
et al., 2020). Thus, the behavior of particle is represented 
by wave function that can be found by solving the 
Schrodinger equation and for one dimensional motion, 
the equation is defined as follows: 

 
𝑖ℏ #$(&,()

#(
= − ℏ!

+,
#!$(&,()
#&!

+ 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡)         (3) 
 

Where 𝑉(𝑥, 𝑡)  is potential energy and Ψ(𝑥, 𝑡)  is 
wave function associated with the motion of particle of 
mass m and ℎ = ℎ 2𝜋⁄ . The time-independent 
Schrodinger equation gives the following form: 

 
𝐸Ψ(𝑥) = − ℏ!

+,
#!$(&)
#&!

+ 𝑉(𝑥)Ψ(𝑥)   (4) 
 

The simplest case is for free particles where the motion 
particle does not influence of forces which are described 
by potential energy function. Solving the Schrodinger 
equation for 𝑉(𝑥) = 0 and we get the wave function: 
 
 Ψ(𝑥, 𝑡) = 𝐴𝑒-.&     (5) 
Where 𝑘 = √+,0

ℏ
  that can be connected with momentum 

of particle by relation 𝑝 = ℏ𝑘. 
The coefficient A can be determined by normalization 
condition, 
∫ Ψ∗(𝑥)2
32 Ψ(𝑥)𝑑𝑥 = 1 ⟹ A∗𝐴∫ 𝑑𝑥2

32   (6) 
 

The integral value does not finite so the particle is 
completely delocalized in space. The problem is how to 
define a free particle wavefunction that is more realistic. 
This requires mathematical concepts such as Fourier 
series and Fourier transform integral and this will end 
up with wave packet (Kaneyasu et al., 2021; Uhl et al., 
2022) to describe the localized particle giving 
Heisenberg uncertainty principle. 
 

Method  
 
The method in this research is literature study 

through various references. Started to the question, how 
Heisenberg could derive the phenomenal equation 
called the Heisenberg Uncertainty Principle. Most 
references do not reveal directly the derivation of this 
equation. In fact, it needs mathematics background. 
Thus, study was started by showing a periodic function 
can be described using Fourier series. To give real 
representation of matter wave that localize in space, it 
needs integral transform that represent a single pulse in 
space and through Gaussian distribution as reference 
then it gets relation position and momentum known as 
Heisenberg Uncertainty Principle. 
 
 

Result and Discussion 
 
Let’s discuss briefly the previous mathematic 

background behind the Fourier series to give important 
points. The periodicity wave function can be explained 
by Fourier series. 

 

 
Figure 1. The simple periodic signal, square-wave function 

 
The periodicity signal can be occurred in position 

along the x direction and also can occur in time along the 
time axis. The periodicity of signal is shown in distance 
capital 𝐿 . This shape of periodic function can be 
represented as a closed as using an infinite series of 
periodic sines and cosines. 

The repeating signals can be explained using 
trigonometric function such as sin 𝑥 , cos 𝑥  or 
combination of these functions. The properties of these 
periodic functions are well understood such as the 
orthogonality. This orthogonality plays important roles 
in expressing Fourier series (Dani et al., 2021; Salim et 
al., 2022).  Fourier theorem (Sutrisna et al., 2019) defined 
that arbitrary periodic function can be written as a sum 
of sines and cosines function. 

 
𝑓(𝑥) = 𝑎4 +∑ I𝑎5 cos J

+65&
7
K + 𝑏5 sin J

+65&
7
KM8

59:  (7) 
 

where 𝑎4, 𝑎5	 and 𝑏5  are coefficients that can be 
determined as below: 
𝑎4 =

:
7 ∫ 𝑓(𝑥)7

4 𝑑𝑥    (8a) 

	𝑎5 =
+
7 ∫ 𝑓(𝑥)7

4 cos J+65&
7
K𝑑𝑥   (8b) 

	𝑏5 =
+
7 ∫ 𝑓(𝑥)7

4 sin J+65&
7
K 𝑑𝑥   (8c) 

 
The arguments of the sin and cos terms in the Fourier 
series (7) can be written in terms of wavenumbers (𝑘) or 
wavelengths (𝜆) with the relation 𝑘7 = !"

#  and 𝜆5 = #
$. 

The Fourier series is an extremely important 
result for any sort of math, physics or engineering 
applications because no matter how complicated the 
periodic function 𝑓(𝑥) , it can be represented as an 
infinite summation of sines and cosines. In following 
section, it will be revealed the basic concept how the 
periodic system can be expressed in the Fourier series. 
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For example, let’s take the simple periodic function as 
shown in figure.1. 

The periodic function which is comprised of a 
sequence of square pulses with distance L along the x-
axis.  The width of this pulse is 𝐿; . To represent the 
periodic system in terms of Fourier series, it should 
know the coefficients 𝑎4, 𝑎5 and 𝑏5. To simplify take 𝐿; =
𝐿 2⁄ , and Eqs. (8) become: 

 
𝑎5 =

< =>?(56)
65

= 0								𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛   (9a) 

𝑏5 =
<[:3AB=(56)]

65
= Q

+<
56
					𝑓𝑜𝑟	𝑛	𝑜𝑑𝑑	(1,3,5, … )

0			𝑓𝑜𝑟	𝑛	𝑒𝑣𝑒𝑛	(2,4,6, … )
 (9b) 

𝑎4 =
:
+
𝐴      (9c) 

 
Thus, the periodic function can be expressed as follows: 
 
𝑓(𝑥) = :

+
𝐴 + 0 + +<

6
∑ :

5
8
59:,D,E sin J+65&

7
K  (10) 

 
The 𝑏5  coefficients when 𝐿; = 𝐿 2⁄  and A=1 are 
represented with the following graph 
 

 
Figure 2. Square wave Fourier coefficients 

 
The reconstruction periodic function can be built 

by evaluating each terms in the Fourier series and 
adding all terms. The original periodic system, 𝑓(𝑥) is 
shown in the blue color while the summation for 𝑛 =
1,2,… ,20 in the Fourier series is shown in the red color. 
It can be seen that just take n=20, it will get a shape that 
roughly approximates the square shape of 𝑓(𝑥)  and it 
will be precisely match by adding infinite terms. 

 
Figure 3. Square Wave function combined with Fourier series 

It can be concluded that Fourier series contains an 
infinite number of sines and cosines to represent a 
periodic function 𝑓(𝑥)  which is specified by the 
parameter 𝐿 and the pulse width is designated by the 
parameter 𝐿" . It will be analyzed what happens if the 
spacing of periodicity L go infinity meaning that only 
one pulse located at the origin of the coordinate system. 
The implications of this condition making the Fourier 
series need more and more terms sines and cosines 
progressively.  The sines and cosines are represented by 
𝑒-.&  and the mathematics to describe the coefficients 
multiplied the sines and cosines are now turn going to 
be a continuous function 𝑔(𝑘). 

 

 
Figure 4. A single square pulse 

 
 The function 𝑓(𝑥)  is now specified by function 
𝑔(𝑘) and 𝑓(𝑥) no longer periodic. To reconstruct 𝑓(𝑥), it 
needs a continuous distribution of sines and cosines 
represented 𝑔(𝑘)𝑒-.&		 and the summation change into 
integral (Kusuma, 2020). The connection of function of 
𝑓(𝑥) and  𝑔(𝑘) can be determined using the following 
formula: 
 
𝑓(𝑥) = :

√+6
∫ 𝑔(𝑘)2
32 𝑒-.&	𝑑𝑘   (11a) 

𝑔(𝑘G) = :
√+6

∫ 𝑓(𝑥)2
32 𝑒3-.%&	𝑑𝑥   (11b) 

 
The function 𝑔(𝑘G) can actually be determined by 

the known function 𝑓(𝑥)integrated over all space times 
𝑒3-.%& so in this case, 𝑘G which is a dummy variable. If 
the function g(𝑘G) put back into  here and then got an 
identity, so it's very similar to a Fourier series but now 
the coefficients that multiply with sines and cosines are 
not discrete but a continuous function called 𝑔(𝑘G). Now 
there are a number of things that can be recognized with 
this formula. In the case of 𝑓(𝑥) is described in fig. 4 
which is consider as a single pulse with width 𝐿", thus 
the integral from minus infinity to infinity change into 0 
to 𝐿", the 𝑔(𝑘G) becomes: 

 

𝑔(𝑘G) = :
√+6

∫ 𝐴7&
4 𝑒3-.%&	𝑑𝑥 = <7&

√+6
𝑒3-.%7& +⁄ Y=>?I.

%7& +⁄ J
.%7& +⁄

Z	(12) 
 
It means that 𝑔(𝑘G) which is represent single function of 
𝑓(𝑥). This result show important point that there is no 
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restriction on 𝑘G that contrast with the case of periodic 
function. Due to 𝑘G is a dummy thus it can be changed 
with 𝑘 and the magnitude of 𝑔(𝑘) is: 
 

|𝑔(𝑘)|+ = 𝑔∗(𝑘)𝑔(𝑘) = <!7&!

+6
Y=>?I.7& +⁄ J

.7& +⁄
Z
+
       (13) 

 
The Fourier integral (Riyani et al., 2019) provide 

some insight into what it's actually doing the physical 
application of this Fourier integral. In fact, it represents 
wave function which are going to be localized in space. 
This localized wave function is used to represent free 
particles that are moving either to the left or to the right. 
Let’s bring this consequence to explain the particle in 
microscopic world represented by wave function. 

The free particle wave functions are completely 
delocalized in space because the probability to find these 
particles which are represented by the square of wave 
functions gives constant value meaning that the 
amplitude is constant throughout space implying the 
wave function cannot give information on the position 
of particle. To represent a physical particle, the 
amplitude of wave function should be nearly zero in 
throughout space except for one localized region, ideally 
a point. Thus, to construct the wave function that has 
this property, we consider to combine together an 
infinite large number of harmonic waves for 𝑡 = 0, each 
with infinitesimally different wavelength number. The 
summation of this infinite harmonic waves turns into an 
integral called the Fourier integral or Fourier transform 
and this result can be plotted as a single beat. This single 
beat is usually referred to as a wave packet. 

The localization of particle represented by a small 
region in space as an envelope function that can be 
brought to the concept of Gaussian distribution function 
(Rosdianto et al., 2017) that can be related with 
uncertainties in position and momentum. 

 

𝑃(𝑥) = :
K+6L'!

𝑒3
(')'*)!

!,'!     (14a) 

𝑃(𝑘) = :
K+6L-!

𝑒
3.-)-

*/!

!,-!     (14b) 
 

 
Figure 5. Gaussian normal distribution 

 

The probability density associated with 
wavefunction is represented by Gaussian probability 
distribution factor. The expression of Gaussian 
distribution in real x space is also equivalent with 
expression in k space. There are two important 
parameters of this curve distribution. Firstly, the mean 
position of curve is represented by 𝑥̅  and secondly, the 
width of the curve is designated by 𝜎& . These two 
parameters can identify the location of particle thus the 
integral of 𝑃(𝑥)over all x is equal to unity known as 
normalization. 

If a particle which is represented as a wave has an 
uncertainty in position meaning that the particle is 
localized to some region in space which is corelated to 
uncertainty in the momentum of particle. This 
correlation is fundamental in physics to explain 
characteristic of quantum particle known as the 
Heisenberg uncertainty principle. 

To represent localized particle, it can be conclude 
that the wave function of free particle in eq. (5) change 
into the form of integral transform defined as follows: 

 
Ψ(𝑥) = :

√+6
∫ ΦM2
32 (𝑘)𝑒-.&𝑑𝑘   (15a) 

where 
Φ(𝑘) = :

√+6
∫ ΨM2
32 (𝑥)𝑒3-.&𝑑𝑥   (15b) 

 
The wave function Ψ(𝑥)  that produces a localized in 
space around 𝑥 = 0 indicated by the following form: 
 

Ψ(𝑥) = J :
+6N

K
:/P

𝑒-.0&𝑒3&! PN⁄    (16) 
 

The first term of the above wave function (Eq.16) 
represents a normalization term to assure that the 
probability density of wave function identified as 
integral of  Ψ(𝑥)Ψ(𝑥)∗  over 𝑑𝑥  is equal to unity. The 
second term identify free particle wave function (Eq.5) 
at wave vector 𝑘4 and the last term invoked the envelope 
function which is a basically comes from the Gaussian 
distribution. 

 

 
Figure 6. Wave packet in envelope 

 
Substituting Eq. 16 to Eq. 15b, then it can be 

calculated Φ(𝑘)  giving the Fourier transform pair as 
below: 
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Φ(𝑘) = J+N
6
K
:/P

𝑒3+N(.3.0)   (17) 
 

the magnitude of quantum mechanical probability as 
below: 

Φ(𝑘)∗Φ(𝑘) = J+N
6
K
:/+

𝑒3+N(.3.0)!   (18) 
Comparing this the quantum mechanical probability 
density to the standard form of probability of 
distribution Gaussian in Eq. (14) with 𝑘̀ = 𝑘4 gives the 
following relation: 
 
2𝛼 = :

+L-
! ⇒ 𝜎. =

:
+√N

    (19) 
 
The obtained parameters give the following relation: 
 
𝜎&𝜎. = Δ𝑥Δ𝑘 = √𝛼 :

+√N
= :

+
   (20) 

 
Using the relation 𝑝 = ℏ𝑘 ⇒ Δ𝑝 = ℏΔ𝑘, then 
 
Δ𝑥Δ𝑝 = ℏ

+
     (21) 

 
The above equation known Eq. 21 as Heisenberg 

uncertainty principle.  The equal sign comes out when it 
deals with Gaussian shape wave packets. In fact, if the 
wave packet does not the Gaussian shape, then the 
greater sign comes into play (Pebralia, 2020). It can be 
shown for case one-dimensional quantum harmonic 
oscillator giving Δ𝑥Δ𝑝 = ℏJ𝑛 + :

+
K ≥ ℏ

+
 and for case a 

particle in one-dimensional box of length 𝐿  resulting 

Δ𝑥Δ𝑝 = ℏ
+
f6!

D
− 2 ≈ 0.568ℏ ≥ ℏ

+
. The implication of 

Heisenberg uncertainty explain that it is impossible to 
measure both the position and the momentum of a 
particle at the same time. This principle is based on the 
wave-particle duality of matter. But for macroscopic 
world the uncertainties in the position and velocity of 
objects with relatively large masses can be ignored 
(Firman, 2019). This contrast to the quantum world, 
since atoms and subatomic particles have very small 
masses, the effect increasing of the accuracy of their 
positions will be accompanied by increasing uncertainty 
related with their velocities. It can be stated that one of 
fundamental principles in quantum physics is 
Heisenberg uncertainty since this principle reveal a 
fundamental aspect of the behavior of matter and energy 
at the quantum level (Dalimier et al., 2014), and it has 
important implications for our understanding of the 
fundamental nature of the universe. There are several 
applications of Heisenberg uncertainty that will discuss 
briefly in the following: (1) The uncertainty principle 
proves a limitation measurement on the precision with 
which certain physical quantities, such as position and 
momentum, also energy and time. This principle has 
important implications for the precision of 

measurements in physics and other fields, and it is a 
fundamental limitation on our ability to know and 
understand the world around us; (2) This principle 
describes the behavior of subatomic particles that 
explain the strange and counterintuitive behavior of 
particles at the quantum level; (3) The uncertainty 
principle  is used in modern quantum mechanics theory 
such as quantum field theory and quantum 
electrodynamics to describe the behavior of particles and 
fields at the quantum level, and they are essential for 
understanding the fundamental forces of nature. (4) This 
principle has important implications for the 
development of new technologies, such as quantum 
computers and quantum cryptography. These 
technologies rely on the principles of quantum 
mechanics, and they use the uncertainty principle to 
achieve capabilities that are not possible with classical 
computers. It ends up that Heisenberg's uncertainty 
principle is a fundamental principle in quantum 
mechanics with many important applications in physics, 
technology, and other fields 
 
Conclusion  
 

The certain concept in mathematics is needed to 
derive Heisenberg uncertainty principle. The first step is 
an understanding of the Fourier series. This concept 
gives a way how the periodic function can be described 
in discrete parameters identified as 𝑎5  and 𝑏5 
coefficients. In fact this Fourier series cannot described 
localized of wave function identified as single pulse 
called a beat which is an envelope function. The next 
step is how to describe this single beat. It needs the 
integral transform. This transform changes discrete 
parameters into continuous function identified with 
𝑔(𝑘). By comparing the quantum mechanical probability 
density to the probability of distribution Gaussian gives 
relation of Heisenberg uncertainty principle. This result 
gives important point to explain microscopic world 
feature as consequence of the wave-particle duality of 
matter that explains both position and velocities cannot 
be measured accurately in the same time. 
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