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Abstract: Intensive exploitation of geothermal injection and production can trigger 
microearthquakes which it signals come from dynamic fractures. The purpose of this study 
is to decide the impact of local magnitude on mitigation in geothermal fields based on soil 
acceleration and vulnerability of seismic in geothermal fields. This study uses seismic wave 
recording data and the geology of the research area. It is focable on calculating local 
magnitude, ground acceleration and seismic susceptibility index to earthquakes based on 
ground acceleration and seismic susceptibility index in geothermal fields. The maximum 
amplitude value represent that the medium classification class (3<A0<6) is associated with 
a moderate degree of deformation. Natural frequency value are found with a moderate 
classification (4<f0<10) around the area of injection wells and production wells, indicating 
that the research area has a moderate level of soil hardness structure. The peak ground 
acceleration in the study area is classified as moderate (0.25<PGA<0.7) which means that 
the area has a moderate level of risk. Vulnerability of seismic in the study area is included 
in the low classification (Kg<10). The local magnitude impact on soil acceleration and 
vulnerability of seismic in this study has a moderate risk and can be categorised as safe. In 
the future, this research serves as a basis for proper decision-making in geothermal energy 
operations, monitoring, and infrastructure development. 
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Introduction  

 
Geothermal reservoir dynamics can be 

characterized by microearthquake activity. 
Microearthquake study is a best practice method, widely 
able by geothermal companies as part of Engineered 
Geothermal System (EGS). Intensive production and 
injection exploitation activities affect anisotropy 
conditions because its transformation fluid pressure in 
the pores which has the potential to impact new pore 
spaces (fractures) to open, reservoir volume 
transformation, and reservoir temperature decreases as 
part of a continuous reservoir, monitoring and 
evaluation (Hopp et al., 2019). Precise information from 
the region of the microearthquake hypocenter 

contributes to the understanding of geothermal 
reservoir activity. However, a bias can be found between 
the hypocentral parameters (quality of wave phase 
arrival time, number and placement of seismic stations, 
azimuth placement, etc.) and the subsurface seismic 
velocity model for the cluster area which contributes to 
the uncertainty of seismic fracture mapping and region. 
geothermal reservoir area (Midzi et al., 2020). 

In the preliminary study, the hypocenter region 
was improved using the Double Difference (DD) 
method and integrated with the coherence factor 
between hypocenters (Sevilla et al., 2020; Utama et al., 
2020). Furthermore, the local magnitude (ML) value is 
computed for each microearthquake around the 
geothermal field reservoir area starting from 
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determining and testing the region of the hypocenter 
(Bulo et al., 2020). Computation of ground acceleration 
is carried out from the magnitude and radius of the 
epicenter. While vulnerability of seismic is based on the 
maximum amplitude and natural frequency (Dwiyanti 
et al., 2020). The purpose of this research is to determine 
the impact of local magnitude on mitigation in 
geothermal fields based on peak ground acceleration 
and seismic vulnerability in geothermal fields. The 
novelty of this research is the integrated application 
through the calculation of regional local magnitude, 
peak ground accelaration, and seismic vulnerability 
index in geothermal areas. This research is important in 
the improvement, enhancement, utilization of 
geothermal energy, and seismic hazard management 
due to intensive exploitation activities in the geothermal 
field in the future such as hydraulic fracturing that 
causes fractures around the geothermal exploration area 
(Nezhad et al., 2021). 

 

Method  
 

This research specifically focable on identification 
of the local magnitude impact towards seismicity based 
on the peak ground acceleration and vulnerability of 
seismic in geothermal fields. 

 

 
Figure 1. Research Flowchart 

 
This study uses seismic wave recording data and 

the range time of the earthquake. The data able are 277 
earthquake data and 7 seismic wave recording stations. 
Recorded data with a period of 30 days and researched 
in the geothermal field of West Java province (Foytong 
& Ornthammarath, 2020).  

 
Computation of Maximum Amplitude (A0) and Natural 
Frequency (f0) 

The Geopsy is able in data processing to decide the 
maximum amplitude using microearthquake.mxd data. 
The steps in Geopsy are changing the components in the 
data, then inputting the wave-picking parameter with 
windowing for the wave smoothing parameter from the 
Floor Spectral Ratio noise and picking the data. There is 
a spectral analysis in Geopsy data processing. FSR (Floor 
Spectral Ratio) analysis was done using Geopsy 

software, the first step is by conducting Fourier 
spectrum analysis which was done to convert the initial 
microearthquake data from a time domain (time series) 
to a frequency domain (Jun et al., 2023; Shim et al., 2023). 
Each recording length of the Fast Fourier Transform 
(FFT) algorithm in spectrum analysis separated into 0 to 
15 seconds of non-overlapping window. Konno and 
Ohmachi smoothing filters are able to get smoother 
results from FFT process with a bandwidth coefficient of 
40. The average amplitude spectrum for each component 
is computed from the selected window (Maimun et al., 
2020). Then, the maximum amplitude and natural 
frequency values are accomplished from this stage 
(Mihaylov et al., 2019).  

 
Epicenter Radius Computation 

Isotropic homogeneous is assumed as the medium 
able in this study. In this medium, the earthquake waves 
propagate as rays and straight lines. The earthquake 
waves that propagate on the earth's structure consists of 
many layers at a constant speed will approach at the 
earthquake recording station in three ways, namely 
direct waves, reflected waves and refracted waves. It is 
complementary to the hypocenter radius, epicenter 
radius, and constant wave velocity in isotropic 
homogeneous medium (Sungkowo, 2018).The 
succeeding is the formula for calculating hypocenter 
radius: 
 

𝐽𝐻 = √(𝑋2 − 𝑋1)
2 + (𝑌2 − 𝑌1)

2 (1) 

 
With JH as hypocenter radius (km), while X and Y 

as the coordinate of station and hypocenter point. The 
succeeding is an illustration of epicenter radius 
computation in Figure 2. 

 

 
Figure 2. Illustration of epicenter radius computation 

(Sungkowo, 2018) 

 
From the illustration above, the Pythagorean formula is 
able to compute the epicenter radius with the succeeding 
formula: 
 

𝐽𝐻 = √𝑍2 + 𝐽𝐸2 (2) 

𝐽𝐸 = √𝑍2 − 𝐽𝐻2 (3) 
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With JH as the epicenter radius (km), Z as the 
deepness (km), and JE as epicenter radius (km) (Liu et 
al., 2022; Zhou et al., 2022). 

 
Local Magnitude Computation 

The local magnitude (ML) determines the radius 
from the epicenter to the seismograph and measures the 
maximum amplitude of the signal recorded on the 
seismograph, so that an approach can be done to 
determine the magnitude of the earthquake that occurs. 
(Lobos Lillo et al., 2023; Okamoto et al., 2022; Tang et al., 
2023). The local magnitude has the empirical formula as 
follows:  
 
𝑀 = log𝑎 + 2.76 log𝐷 − 2.48 (4) 

 
With a as the amplitude of ground vibration, D as 

the radius between recording station and the epicenter 
(km) with D <600 km (Bulo et al., 2020).   
 
Peak Ground Acceleration Computation 

The peak ground acceleration is the wave 
acceleration that reaches the earth's surface. The peak 
ground acceleration in a particular area which computed 
from the impact of vibration within a certain time and 
also by considering the magnitude value, epicenter 
radius, and period value (Xie et al., 2021). The 
computation of ground acceleration value can be done 
from several Tong and Katayama equations as follows: 
 

log 𝑃𝐺𝐴̅̅ ̅̅ ̅̅ = 𝛼𝑀 − 𝛽 log 𝐽𝐸 + 𝛾𝑇 + 𝛿 (5) 

 
With T as the period of time, M as the magnitude, 

JE as epicenter radius, and 𝛼=0.509, 𝛽=2.32, 𝛾=0.039, 
𝛿=2.33 (Cao et al., 2023; Hendra et al., 2019; Hofmann et 
al., 2021).  

 
Computation of Vulnerability of Seismic 

Vulnerability of seismic is presented as a number 
that express vulnerability of the surface soil layer due to 
transformation in the condition of the soil layer during 
an earthquake/vibration (Guglielmi et al., 2023).  
 

𝑉𝐼 =
𝐴0

2

𝑓0
 

(6) 

 
With VI as the vulnerability of seismic, A0 as the 

maximum amplitude, and f0 as natural frequency 

(Núñez et al., 2022; Yoo et al., 2021). 
 

Result and Discussion 
 

The maximum amplitude, natural frequency, 
epicenter radius, local magnitude, and maximum 

acceleration have been accomplished in this research. 
The result of microearthquakes data processing is 
presented as follows. 
 
Results of Maximum Amplitude (A0) and Natural Frequency 
(f0) 

The Geopsy was able to determinate maximum 
amplitude. There are 277 event data that able in this 
study. The maximum amplitude is capable by 
deformation. Natural frequency illustrates the level of 
soil structure hardness (Ahn et al., 2021; Zhu et al., 2020). 
The succeeding is the event data able: 

 
Table 1. Computation of Maximum Amplitude and 
Natural Frequency 
Recording A0  f0 

20180101 22 

5.18 11.48 

4.32 7.32 

8.30 1.49 

7.18 5.91 

 
Understanding the seismic behavior in geothermal 

areas holds significant importance for both scientific 
investigation and practical implementation, particularly 
with regards to the well-being of infrastructures and 
communities. In this particular investigation, an 
extensive examination was carried out on the utmost 
magnitude and inherent frequency linked to seismic 
incidents of localized magnitude within a geothermal 
region. The primary objective of this analysis was to 
unravel the intricate interplay between geological 
characteristics, tectonic pressures, and geothermal 
operations, all of which exert an influence on seismic 
activity (Esquivel-Mendiola et al., 2022; Li et al., 2023; 
Zhang et al., 2023).  

The examination of maximum magnitudes 
recorded in the seismic records offers valuable insights 
into the magnitude of seismic events in the geothermal 
region. The detection of elevated magnitudes can serve 
as an indication of substantial energy release during 
seismic activities. Our discoveries unveiled a correlation 
between elevated magnitudes and specific geological 
characteristics such as fault lines and areas with 
heightened tectonic stress. These observations align with 
existing literature, suggesting that regions characterized 
by geological faults have a tendency to display higher 
seismic magnitudes due to the sudden release of 
accumulated stress along these fault lines. The 
maximum amplitude distribution map presented in 
Figure 3 (Keil et al., 2022; Wamriew et al., 2022). 
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Figure 3. Maximum Amplitude Distribution Map 

 
The examination of natural frequencies linked to 

seismic occurrences yields significant insights into the 
fundamental geological configurations. The natural 
frequencies are impacted by the elastic characteristics of 
rocks and the distribution of stress within the Earth's 
crust. Our investigation disclosed clear-cut frequency 
ranges that align with distinct geological formations 
within the geothermal region. These discoveries exhibit 
conformity to the resonance phenomenon, whereby 
specific geological structures intensify seismic waves at 
specific frequencies.and the natural frequency 
distribution map are presented in Figure 3 and Figure 4 
(Elbshbeshi et al., 2022).  

 

 
Figure 4. Natural Frequency Distribution Map 

 

Epicenter Radius Results 
Epicenter radius computation shows the radius 

between hypocenter and epicenter. The succeeding is 
the result from the recordings: 

Table 2. Computation of Epicenter Radius 

Recording 
Hypocenter 
radius (km) 

Z (km) 
Epicenter 

radius (km) 

20180101 22 

1.68 0.4 1.63 

1.06 0.4 0.98 

2.23 0.4 2.2 

2.27 0.4 2.24 

 
The epicenter radius shows the radius from the 

earthquake’s epicenter to the station. Epicenter analysis 
also serves as an indicator of ongoing geothermal 
activity. Seismic events located in close proximity to 
known geothermal reservoirs or vents suggest a strong 
connection between geothermal processes and 
seismicity. The movement of geothermal fluids can 
induce seismic events, highlighting the dynamic nature 
of geothermal systems (Andinisari et al., 2021; Ryu et al., 
2022; Yue et al., 2023). 

 
Local Magnitude Results 

The local magnitude is computed by considering 
epicenter radius and the maximum amplitude value. 
The succeeding is the result of the magnitude 
computation: 

 
Table 3. Computation of Local Magnitude 

Recording Local magnitude Local magnitude event 

20180101 22 

1.18 

1.08 
1.87 

0.62 

0.66 

 
The recorded data illustrates that the local event 

magnitude is 1.08. The magnitude is affected by the 
maximum amplitude and the radius from the epicenter 
(Bulo et al., 2020). The local magnitude of the event is 
accomplished from the average value of the local 
magnitude from each station. The local magnitude 
distribution map is shown in Figure 5. Investigating the 
regional scale of seismic occurrences in connection with 
geothermal energy offers irreplaceable comprehension 
into the interplay between tectonic pressures and 
geothermal procedures. Earthquakes are frequently 
initiated or impacted by the motion of geothermal fluids, 
rendering the assessment of the regional scale an 
indispensable instrument for overseeing these 
operations (Lobos Lillo et al., 2023; Okamoto et al., 2022; 
Tang et al., 2023). 
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Figure 5. Magnitude Distribution Map 

 
Peak Ground Acceleration Results 

The peak ground acceleration of an area is 
computed from the impact of vibration within a certain 
time and by considering the magnitude value, 
hypocenter radius, and the period value. The succeeding 
is the computation result of peak ground acceleration: 

 
Table 4. Computation of Peak Ground Acceleration 
Recording PGA PGA event 

20180101 22 

0.46 

0.41 
0.87 

0.15 

0.15 

 
In the recorded data, the ground acceleration of the 

event is 0.41. The event ground acceleration is 
accomplished from the average ground acceleration 
value of each station. The distribution map of peak 
ground acceleration is shown in Figure 6  (Keil et al., 
2022). 

PGA values represent the maximum ground 
acceleration encountered during an earthquake and are 
of utmost importance for the quantification of seismic 
hazard. In geothermal regions, where seismic activity is 
frequently influenced by both tectonic forces and 
geothermal processes, accurate evaluation of PGA is 
indispensable. High PGA values indicate vigorous 
ground shaking, which can present significant dangers 
to infrastructure, particularly in areas where geothermal 
energy extraction is in progress. Through precise 
quantification of PGA, scientists are able to classify the 
degree of seismic hazard, facilitating the 
implementation of appropriate safety measures and 
regulations for geothermal operations (Kim et al., 2018; 
Kowsari et al., 2021; Ramirez et al., 2022; Tao et al., 2021). 

 
Figure 6. Peak Ground Acceleration Map 

 
Vulnerability Index of Seismic Results 

Vulnerability index or vulnerability seismic index is 
affected by the value of maximum amplitude and 
natural frequency. The evaluation of the seismic 
vulnerability index, which serves as a crucial measure in 
assessing the potential impact of earthquakes on 
structures and communities, is significantly influenced 
by a range of seismic parameters. Among these 
parameters, maximum amplitude and natural frequency 
emerge as key factors that play substantial roles. This 
analysis delves into the intricate connection between 
these parameters and the seismic vulnerability index, 
shedding light on the implications for earthquake 
preparedness, structural design, and strategies for 
mitigating risk (Kim et al., 2018; Kowsari et al., 2021; Tao 
et al., 2021). 

The maximum amplitude, which represents the 
highest level of ground motion experienced during an 
earthquake, directly affects the destructive potential of 
seismic events. Greater amplitudes correspond to more 
intense shaking, resulting in heightened structural stress 
and the possibility of damage. Structures situated in 
regions with high maximum amplitudes are inherently 
more susceptible to the impact of seismic events. By 
incorporating maximum amplitude values into the 
seismic vulnerability index, it becomes possible to 
identify areas where structures face greater risk. This 
prompts the implementation of stricter building codes 
and retrofitting measures (Alkan & Akkaya, 2023; 
Mahjour & Faroughi, 2023). 

The natural frequency, determined by geological 
and structural properties of an area, represents the 
inherent vibrational frequency of buildings and 
infrastructures. When the frequency of seismic waves 
aligns with the natural frequency of a structure, 
resonance can occur, amplifying ground motion and 
consequently leading to structural damage. 
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Consequently, areas with specific natural frequencies 
are more prone to the effects of resonance, thereby 
heightening the vulnerability of buildings and bridges. 
Understanding the natural frequency of both the ground 
and structures is vital in the design of earthquake-
resistant buildings and the mitigation of vulnerabilities 
related to resonance (Gori et al., 2023). The result of 
seismic vulnerability value is as follows: 

 
Table 5. Computation of vulnerability of seismic 

Recording Vulnerability index 
Vulnerability index 

event 

20180101 22 

2.34 

14.96 
2.55 

46.23 

8.72 

 
The recorded data shows seismic event 

vulnerability index of 14.96. Seismic event susceptibility 
index is accomplished from the average value of the 
vulnerability of seismic for each station. Then 
distribution map of vulnerability of seismic is shown in 
Figure 7 (Elbshbeshi et al., 2022). 

 

 
Figure 7. Vulnerability Index Distribution Map 

 

Incorporation of the maximum amplitude and 
natural frequency data into the seismic vulnerability 
index results in a more nuanced and accurate evaluation 
of the potential impact of earthquakes. The inclusion of 
these parameters renders the vulnerability index a 
comprehensive tool, which takes into account not only 
the seismicity of the region but also the specific 
characteristics of structures and the geological 
formations on which they are situated. This integrated 
approach empowers authorities and engineers to 
allocate resources efficiently by prioritizing areas with 
heightened vulnerabilities, and implement targeted 
interventions to enhance the resilience of critical 

infrastructure and communities (Gori et al., 2023; 
Mahjour & Faroughi, 2023). 

 
Discussion 

The research outcomes offer significant and 
precious understandings into the seismic features of the 
geothermal area. Specifically, they shed light on the local 
magnitude (ML), peak ground acceleration (PGA), and 
the seismic vulnerability index. This comprehensive 
discussion delves deeply into the implications of these 
findings, placing particular emphasis on the intricate 
and subtle relationship that exists between these 
parameters. Furthermore, it explores the collective 
influence of these parameters on various aspects of 
seismic risk assessment, including infrastructure 
resilience and geothermal operations. The multifaceted 
nature of this relationship is thoroughly examined and 
analyzed, providing valuable insights and knowledge in 
these areas (Gori et al., 2023; Mahjour & Faroughi, 2023). 

The act of classifying seismic events into two 
distinct categories, namely microearthquakes and ultra-
microearthquakes, serves to emphasize the presence of 
seismic activities in the region that may otherwise go 
unnoticed due to their subtle nature (Hopp et al., 2020; 
Kinscher et al., 2023; Nibe & Matsushima, 2021). By 
specifically identifying microearthquake zones in close 
proximity to injection and production wells, it becomes 
apparent that seismicity is localized to these areas. The 
fact that these zones exhibit moderate maximum 
amplitude values, which are indicative of their 
deformation capability, suggests that there is a moderate 
level of ground deformation potential during seismic 
events within these specific areas. This potential for 
deformation, when combined with the presence of 
specific geological features such as pyroclastic andesite 
lava lithology, highlights the necessity for careful and 
thorough evaluation in both the design of structures and 
the planning of geothermal infrastructure. The intricate 
nature of these factors necessitates a meticulous 
approach in order to ensure the safety and efficiency of 
such projects (Suzuki et al., 2022; Toledo et al., 2022). 

The classification of natural frequency within the 
moderate range (4<f0<10) suggests a moderate level of 
soil hardness in the research area. Soil stiffness, 
determined by natural frequency, plays a pivotal role in 
how seismic waves propagate through the ground. The 
moderate soil hardness, observed in tandem with 
seismic vulnerability assessments, indicates the need for 
tailored engineering solutions. Understanding the 
geological composition, specifically the identified Qv2 
lithology, aids in predicting ground behavior during 
seismic events and guides construction practices for 
geothermal facilities (Gajek & Malinowski, 2021; Nibe & 
Matsushima, 2021). 
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The classification of peak ground acceleration as 
moderate (0.25<PGA<0.7) provides a quantitative 
measure of the ground shaking intensity. The correlation 
between PGA, magnitude values, and the proximity to 
injection wells and production wells indicates localized 
seismic risks. Higher PGA values signify greater risk 
potential, emphasizing the importance of establishing 
safety zones around critical geothermal infrastructure. 
This knowledge is essential for implementing 
appropriate safety protocols, designing structurally 
sound facilities, and safeguarding both workers and 
surrounding communities. 

The identification of the seismic vulnerability index 
within the low classification (VI<10) signifies a relatively 
low susceptibility to surface soil layer deformation 
during earthquakes. This suggests that while the area 
experiences seismic activity, the ground deformation 
risk to surface structures is relatively low. However, it's 
crucial to note that this low vulnerability should not lead 
to complacency. Continuous monitoring and regular 
updates to vulnerability assessments are necessary to 
adapt to any changes in seismic patterns or geological 
conditions (Alkan & Akkaya, 2023; Sevilla et al., 2020). 

The seismic susceptibility index, influenced 
significantly by maximum amplitude and natural 
frequency, underlines the need for a multidimensional 
approach to seismic risk assessment. Maximum 
amplitude reflects the energy released during seismic 
events, while natural frequency indicates the soil's 
inherent stiffness. Integrating these factors into 
vulnerability assessments provides a holistic view of the 
seismic landscape, enabling more accurate risk 
mitigation strategies and ensuring the resilience of 
geothermal operations (Ferrario et al., 2022; Menna et al., 
2022). 

The interplay between local magnitude, peak 
ground acceleration, and vulnerability index in the 
geothermal area underscores the complexity of seismic 
behavior. This research not only enhances our 
understanding of the region's seismicity but also 
provides a foundation for informed decision-making. By 
leveraging this knowledge, geothermal engineers and 
stakeholders can implement adaptive and effective 
strategies, ensuring the sustainable and safe exploitation 
of geothermal resources in seismic-prone regions. 
Continuous research, monitoring, and collaboration 
between geologists, seismologists, and engineers remain 
essential in navigating the intricate challenges posed by 
seismic activities in geothermal areas (Keil et al., 2022; 
Majidi Nezhad et al., 2021; Toledo et al., 2022). 

 
Figure 8. Research Area Geology Map  

 

Conclusion  

 
Intensive activities of geothermal injection and 

production can trigger microearthquakes. The 
microearthquake signal comes from dynamic fractures 
and fractures in the reservoir. The microearthquakes 
zone is located around the injection wells and 
production wells.  The local magnitude impact on 
ground acceleration and seismic susceptibility index in 
this study has a moderate risk and can be categorized as 
safe. the integration of local magnitude, peak ground 
acceleration, and the seismic vulnerability index 
provides a comprehensive understanding of the seismic 
landscape in the geothermal area. This knowledge not 
only enhances our understanding of the region's 
geophysical behavior but also serves as a foundation for 
informed decision-making in geothermal energy 
operations and infrastructure development. 
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