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Abstract: Flood is a disaster that occurs every year in Indonesia with various risks. This 
study aims to create a spatial model of flood risk and determine the distribution of flood 
risk in Pemangkat, Sambas Regency. The method used is surveying and interpreting 
secondary data from the Digital Elevation Model, topographic maps, and land cover 
images. The data collected includes area, elevation, slope, distance from the river, land 
use, and rainfall. The tool used is a set of Geographic Information System tools, namely 
Arcgis 10.8. Data analysis using Weighted Sum for generated Flood risk map and 
Geographically Weighted Regression for flood risk spatial modeling. The results showed 
that the Pemangkat sub-district had flood risk classes, namely very low, low, moderate, 
high, and very high classes. Very high to high flood-risk classes are spread in the cities 
of Pemangkat and Sabatuan. In contrast, medium to deficient classes are spread in 
Jelutung, Gugah Sejahtera, Penjajap, Harapan, Lonam, and Parapakan. Very low flood 
risk area is 8.17 ha (8.16%), low 16.97 ha (16.97%, medium 28.17 ha (28.16%), high 32.28 
ha (32.28%) and very high 14.41ha (14.39%). The values obtained from the analysis show 
that GWR modeling is excellent because R2 is relatively tiny, 0.39. 
 
Keywords: Flood risk; GIS; Remote sensing; Spatial modeling 

  

Introduction  
 

Landforms have an essential role in studying 
flooding. They are a cross-sectional form for flowing 
water into the sea (Riadi et al., 2018). The areas most 
affected by flooding are areas with flat and sloping relief. 
That indicates a flood-prone landscape in the form of 
flood plains, sea terraces, swamps, and back swamps. 
Geomorphology Flooded areas are characterized by 
concave morphology or flat landforms associated with 
rivers, with winding and or meandering flow patterns, 
as one of the areas with potential for flooding, and this 
area needs to be mapped (Pourali et al., 2016; Riadi et al., 
2018). 

Flooding is a problem for a country and has even 
become a global problem in various countries (Coumou 
& Rahmstorf, 2012; Hu & Demir, 2021). Floods are one of 
the most damaging natural disasters and phenomena 
that occur in both rural and urban areas (Gianotti et al., 

2018; Hlodversdottir et al., 2015; Z. Li et al., 2020a; 
Morris et al., 2016; Zhou et al., 2019) even in coastal 
areas. Various losses were caused by flooding, including 
losses in the monetary and demographic fields (Z. Li et 
al., 2020a; Sayama et al., 2015), social and economic, as 
well as education. 

Flood risk is analyzed for spatial aspects 
emphasizing spatial aspects, including location and 
flood coverage. Flood modeling can be done 
conceptually based on processes and models according 
to data availability (data-driven model). Flood risk 
assessment is carried out by identifying three 
components, namely vulnerability, hazard, and 
exposure to floods (Agus, 2006; Riadi et al., 2018). The 
importance of risk spatial modeling and predicting flood 
inundation can be used as important information for 
flood mitigation (Bhola et al., 2018; Hu & Demir, 2021; 
Tadesse & Fröhle, 2020), preparedness (Arrighi et al., 
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2019; Hu & Demir, 2021), and planning and response 
efforts (Bhatt et al., 2017; Hu & Demir, 2021). 

Spatial modeling of floods can facilitate 
understanding of potential flood risks and damage 
impacts (Singh et al., 2017; Yildirim & Demir, 2021), 
supporting flood mitigation and planning (Hu & Demir, 
2021; Yildirim & Demir, 2021). Accurate information on 
flood-affected areas to prioritize relief efforts and plan 
damage mitigation measures (Rosser et al., 2017). Many 
factors cause flooding such as high rainfall (Dettinger, 
2011; Hu & Demir, 2021), surface runoff, flow patterns 
(Dettinger, 2011; Hu & Demir, 2021), and other problems 
that affect flooding significantly (Dettinger, 2011; Hu & 
Demir, 2021), such as human behavior in managing the 
environment. Therefore, flood prediction is very 
complex (Di Baldassarre & Uhlenbrook, 2012; Hu & 
Demir, 2021), because it must involve many parameters 
that cause flooding (Xiang & Demir, 2020). 

Spatial information related to the risk of flooding is 
a flood risk map (Hu & Demir, 2021; Lamichhane & 
Sharma, 2017; Sermet & Demir, 2019) and a new 
communication system about flooding (Sermet, Demir, 
et al., 2020). Flood risk maps are an essential resource for 
reducing flood damage that can be integrated into 
decision-making processes (Z. Li et al., 2020a, 2020b; 
Sermet, Demir, et al., 2020; Sermet, Villanueva, et al., 
2020; Xu et al., 2020), especially in collaborative 
processes. 

Flood risk modeling can be made by utilizing 
currently developing technology. Some of the models 
used are based on models that combine Remote Sensing, 
social media (Seo et al., 2019), topographical data 
sources (Seo et al., 2019), observation (Sermet, 
Villanueva, et al., 2020). However, modeling requires 
intensive computational requirements, large amounts of 
complex data, and calibration needs from experts 
(Mosavi et al., 2018; Teng et al., 2017; Tewari et al., 2021), 
which ,becomes an obstacle in the modeling process. 

Under these conditions, the need for a model that is 
easy to implement leads to the development of a 
simplified conceptual model. The model is in digital 
data form (Z. Li et al., 2020a; McGrath et al., 2018), 
making it a preferred choice. One relatively simple 
model is spatial modeling which emphasizes the risk of 
flood disasters by utilizing Geographic Information 
Systems and Remote Sensing technologies (Purwanto et 
al., 2022). 

The high intensity of rain in mountain areas causes 
flooding in residential areas under the mountain, and 
the water reservoirs in Mount Gajah burst. The shelter 
has experienced siltation. Mud and trash have piled up, 
and the shelter is decades old. The peak occurred on 
March 3, 2023, with flooding in the Pemangkat sub-
district area. In addition to these factors, the flooding 

was also caused by a large amount of mud and garbage, 
causing siltation and flooding (PPID, 2023). 

The provision of geospatial data on the flooding 
risk in this study was used to achieve the Sustainable 
Development Goals (SDGs), which require coordination 
between national, provincial, and district/city planning 
initiatives. This research is very important in supporting 
flood risk management and planning. Flood hazard 
maps and other outputs from flood risk spatial modeling 
can be used to inform a variety of flood risk management 
and planning activities, such as: identifying and 
prioritizing areas for flood protection measures, 
developing early warning systems and evacuation 
plans, assessing the potential economic and social 
impacts of flooding Making informed decisions about 
land use and development. This study aims to create a 
spatial model of flood risk and determine the 
distribution of flood risk in Pemangkat, Sambas 
Regency. 

 

Method 
  
Study Area 

The research area is located in Pemangkat District, 
Sambas Regency, which is located at 1080 54' 01” - 1090 

04' 49” E and 10 05' 01” - 10 12'14 N. Pemangkat sub-
district is in Sambas Regency consisting of the villages of 
Penjajap, Rapakan Besi, Harapan, Parit Baru, Sungai 
Toman, Serunai, Jelutung and Pemangkat Kota. The area 
of Pemangkat District is 8.247.05 Ha. For more details, 
the area of the research location can be seen in Figure 1. 

 

  
Figure 1. Study area 

 

Study Method 
Flood risk spatial modeling is a process to predict 

and visualize areas vulnerable to flooding. This method 
uses spatial data such as maps, satellite imagery, 
topographical data, and hydrological data such as 
rainfall and river flow to identify areas that can 
potentially experience flooding. The method used in this 
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study is the interpretation of primary and secondary 
data. The flood risk map is generated from the Digital 
Elevation Model (DEM) and vector data from the 
Indonesian Topographical Map. DEM data was obtained 
from ALOS PALSAR image data with a resolution of 
12.5 meters. DEM displays altitude or elevation 
information in the research area (Demirkesen et al., 2007; 
Kresch et al., 2002; Marfai et al., 2017). This DEM data is 
the primary data to create a spatial flood risk model in 
the study area. DEM is derived from ground-level points 
from the ALOS PALSAR image field measurements, 
which are then interpolated.  

The following are general steps in flood risk spatial 
modeling: a) Data collection: Collect data required for 
modeling, such as topographical data, hydrological data 
(rainfall, river flow), and spatial data, such as maps and 
satellite imagery, b) Topographical analysis: 
Topographical analysis helps in understanding the slope 
of the land, water flow patterns, and drainage in the area 
to be modeled. This can be done using Geographic 
Information Systems (GIS) and Digital Elevation Model 
(DEM) data analysis, c) The hydrological analysis uses 
rainfall and river flow data to identify water flow 
patterns and predict potential flooding, d) Identification 
of flood-risk areas: Using topographical, hydrological, 
and other parameter data, identify areas potentially 
affected by flooding. This can be done by combining 
these data in a GIS analysis, e) Flood modeling: Use 
hydrological models and collected data to model flood 
behavior. Modeling can involve simulating water flow 
in rivers, raising water levels in flooded areas, and 
predicting the impact of flooding on residential areas or 
infrastructure, f) Visualization and evaluation: 
Visualization of modeling results using maps and other 
graphical representations. If available, evaluate model 
results by comparing them with historical flood data or 
by collecting field data to validate the model and, g) Risk 

analysis: Using modeling results, identify and analyze 
areas vulnerable to flooding, including areas with 
potential human loss, economic loss, or infrastructure 
damage. 

Data collection techniques with image 
interpretation. The interpretation in this study is the 
interpretation of topographic maps and DEM images. 
The data collected includes area, elevation, slope, 
distance from the river, land use, and rainfall. The tool 
used is a set of Geographic Information System (GIS) 
tools, namely Arcgis 10.8. Data analysis using Weighted 
Sum for generated Flood risk map and Geographically 
Weighted Regression (GWR) for flood risk spatial 
modeling. 

ArcGis 10.8 was used to explore the data, briefly, 
the steps in the research were carried out as follows: 

 

 
Figure 2. Research flowchart 

 

In brief, the weight of the factors that affect flood 
risk can be seen in Table 2. 

 

Table 1. Factors Used in Spatial Modeling for Flood Risk Assessment in the Study Area 
Classification Sub-classification Source of data Gis data type Derived map 

Flood  event inventory Flood inventory Pemangkat Regional Water 
Authority Field surveys 

Primary and secondary - 

 
DEM 

Altitude DEM GRID Elevation 
Slope angle DEM GRID Slope angle 

Distance from river DEM Line coverage Distance to river 
Land use type Land use OLI * of Landsat 8 image GRID Land use 
Precipitation Rainfall CHIRS 2022   GRID Rainfall 

GRID (graphic design); DEM (Digital Elevation Model) from ALOS PALSAR 
 

Table 2. Flood Risk Factors and Weighted 
Flood Risk Factors Descriptive Ranking Reclasses Influence (%)  Weighted 

Elevation (m) Very low 10 16 - 59  
 

10 

 
 

0.10 
Low 8 59 - 120 

Moderate 6 120 – 190 
High 4 190 - 274 

Very High 2 274 - 403 
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Flood Risk Factors Descriptive Ranking Reclasses Influence (%)  Weighted 
Slope (%) Very low 10 0 - 2  

 
15 

 
 

0.15 
Low 8 2 - 5 

Moderate 6 5 - 10 
High 4 10 - 15 

Very High 2 > 15  
Distance from drainage (m) Very low 10 0 - 100  

 
30 

 
 

0.30 
Low 8 100 - 200 

Moderate 6 200 - 300  
High 4 300 - 400 

Very High 2 > 400 
Rainfall  (mm/hr) Very low 10 > 2.620  

 
35 

 
 

0.35 
Low 8 2.590 – 2.620 

Moderate 6 2.570 -2.590 
High 4 2.550 – 2.570 

Very High 2 2.523 – 2.550 
Land Use Land Cover Very low 10 Waterbody  

 
10 

 
 

0.10 
Low 8 Swam 

Moderate 6 Settlement 
High 4 Ricefield 

Very High 2 Vegetation  

Result and Discussion 
 

Elevation is the most crucial factor affecting 
flooding. The effect of elevation on flood events in 
general, namely that flood events increase with 
decreasing elevation (Choubin et al., 2019; Mumbai, 
2020). It is proven that places with low elevations often 
experience flooding every rainy season. The DEM in this 
study provides altitude information (Figure 3) and slope 
angle (Figure 4) processed in ArcGIS 10.8. The height 
factor and slope angle are classified into five classes 
(Althuwaynee et al., 2012; Bui et al., 2019). Flat areas 
with low slopes and low altitude classes have a higher 
potential for flooding. To create the elevation factor, the 
digital map of the elevations was edited using the 
reclassify command in ArcGIS 10.8. Subsequently, this 
layer was divided into five classes16-59, 59-120, 120-190, 
190-274, and 274-403 m. 
 

 
Figure 3. Elevation study area 

The slope is the most significant factor in hydrology 
because it is directly proportional to surface runoff and, 
thus, influences floods (Meraj et al., 2015). The slope in 
percent for the study area was extracted from the 
processed ALOS PALSAR using the surface-slope tool 
under the spatial analyst tool in ArcGIS 10.8 and further 
reclassified into five classes (Figure 4). 

 

 
Figure 4. Slope of study area 

 

Generally, the areas with low elevation have a 
gentle and, therefore, are more prone to floods and 
water-logging as steep slope generates more velocity 
than flatter or gentle slopes, and hence, can dispose of 
the runoff faster. For flat to gentle slopes, runoff gets 
stored over an area and disposed of gradually over time 
(Mumbai, 2020; Tehrany & Kumar, 2018). Therefore, 
low-gradient slopes at lower reaches are highly 
vulnerable to flood occurrence compared to high-
gradient slopes. The elevation and the resulting slope 
both show a significantly lower spatial variation. The 
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slope angle in this study was generated in percent units 
and classified into five classes, 0 – 2, 2 – 5, 5 – 10, 10 – 15, 
and >15. 
 

Distance from River 
Flood occurrences in the study area are frequent 

along the stream. Thus, distance from the river was 
considered another geomorphology-related 
conditioning factor. Subsequently, a distance from the 
river map was generated because the streams would 
disrupt the stability of the slopes either by toe 
undercutting or by saturating parts of the materials lying 
within the water level of stream ways (Mojaddadi et al., 
2017). The proximity of rivers and drainages represents 
the distance from a river.  

 To create the layer for the distance from the river 
factor, the digital map of the river was edited using 
Euclidean with ArcGIS 10.8. Subsequently, this layer 
was divided into five classes: 100, 267, 410, 636, and > 
1000 m. Distance from the river (or distance of the 
measurement points from the river) significantly affects 
the distribution and magnitude of floods in the area (Bui 
et al., 2019; Grayson & Ladson, 1991). Area with as a 
result of insufficient infiltration and percolation due to 
changes in soil characteristics, vegetation coverage, and 
ground surface slope, high-intensity rainfall events 
generate large amounts of runoff in the vicinity of the 
nearby river, causing catastrophic flood events in 
downstream areas with lower topographic gradients 
(Bui et al., 2019; Kia et al., 2012) 
 

 
Figure 5. Distance from river study area 

 

Rainfall 
Rainfall affects the process of flooding and is a 

critical issue for flood risk reduction and water use in an 
area (Cheng et al., 2021). Rainfall is a source of flood 
discharge and is very important in predicting the peak 
discharge of a flood. Heavier-than-usual rainfall can 
cause a rapid decrease in the daily river flow (and water 
level) (Ronchail et al., 2018). Likewise, rainfall is a critical 

factor causing changes in monthly flood occurrence 
(Cheng et al., 2021; Ronchail et al., 2018). Extreme rainfall 
is the main factor triggering flooding in various regions. 
An increase in the intensity and duration of extreme 
rainfall is currently expected due to global climate 
change (Tunas et al., 2021). 

The rainfall data inside and outside of the study 
area were used to generate an annual rainfall map. The 
rainfall data generate from Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS). The 
rainfall map generates with interpolation methods, 
Inverse Distance Weighting (IDW). The rainfall map of 
the study area was divided into five classes (Shafapour 
et al., 2014) (Figure 6). 

 

 
Figure 6. Rainfall study area 

 
Land Use Land Cover 

LULC causes changes to natural drainage systems 
(Danandeh Mehr & Akdegirmen, 2021; Jaya, 2022), 
impacts surface runoff, and affects infiltration capacity 
(Danandeh Mehr & Akdegirmen, 2021). These factors 
are believed to be the cause of frequent flooding. 
Meanwhile, the available level of vegetation cover and 
absorption rates also change the evapotranspiration rate 
(Das et al., 2018). These factors change behavior and the 
balance that occurs between water evaporation (Jaya, 
2022), water absorption (X. Li et al., 2021), and water 
distribution through rivers (Nahib et al., 2021; Sahoo et 
al., 2018). 

Another primary related factor that strongly 
contributes to flooding is LULC. A detailed 
understanding of LULC is essential for environmental 
and natural hazards (Rizeei et al., 2016). Vegetated areas 
are less prone to flooding because of the negative 
correlation between a flood event and vegetation 
density. However, urban areas typically comprise 
impermeable surfaces and bare lands, which increase 
stormwater runoff. In this research, a land-use map 
played a crucial role in flood hazard modeling as one of 
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the conditioning factors and criteria for vulnerability 
assessment. 

 

 
Figure 7. Land use land cover study area 

 

The results showed that the Pemangkat sub-district 
had flood risk classes, namely very low, low, medium, 
high, and very high classes. Very high to high flood-risk 
classes are spread in the cities of Pemangkat and 
Sabatuan. In contrast, medium to very low classes is 
spread in Jelutung, Gugah Sejahtera, Penjajap, Harapan, 
Lonam, and Parapakan. Very low flood risk area is 8.17 
ha (8.16%), low 16.97 ha (16.97%, medium 28.17 ha 
(28.16%), high 32.28 ha (32.28%)) and very high 14.41ha 
(14.39%). Flood risk classes and their distribution can be 
seen in Figure 8. 

 

 
Figure 8. Flood risk map 

 

Geographically weighted regression (GWR) to the 
geography literature to investigate the possibility of 
correlations in a regression model is spatially variable, 
or what is known as parametric nonstationarity 
(Brunsdon et al., 1996). GWR has been proposed as a 
technique to perform inference on spatially changing 
connections to extend the initial focus on prediction to 
confirmatory analysis, while the emphasis on 

conventional locally weighted regression in statistics has 
been on curvetting, that is, estimating or predicting the 
response variable (Isazade et al., 2023). 

Although the model calibration sites are not limited 
to observation locations, any observation location in the 
dataset may have a regression model fitted using GWR. 
The weights that indicate the geographical dependency 
between observations are calculated using the inter-
point distances obtained from the spatial coordinates of 
the data points. Geographically weighted regression 
forms separate equations with the participation of 
independent and dependent variables placed inside a 
“distance” bar of each phenomenon and also allows 
parameter values to change continuously in geographic 
space. Equation 1 shows the GWR model (Kim & Graefe, 
2021; Kuo et al., 2017). 

 
yi = βi0 + βi1 x 1i + βi2 x 2i +…+ βin x ni + ei           (1)  

 
where yi is the dependent variable, βi0 is the intercept, 
βi is the coefficient, and ei is errors at location (i) (Isazade 
et al., 2023). Geographically weighted regression (GWR) 
analysis uses ArcGIS using spatial statistical tools and 
modeling spatial relationships and the results are as 
follows: 

 

 
Figure 9. GWR flood risk 

 
The results of calculations using Geographically 

weighted regression (GWR)   obtained the following 
results: 

 
Table 3. Results Obtained from the GWR Model for 
Indicators of Flood Risk 
Records Parameters Amount of Parameters 

1 Residual Squares    2.31 

2 Effective Number   2.78 
3 Sigma     0.67 
4 AICc   28.09 
5 R2   0.39 
6 R2Adjusted 0.19 
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Figure 9. Scatterplot observed Vs predicted 

 
The observed and predicted scatterplot results 

show a pattern of relationship between observed and 
predicted values indicating conditions that tend to be 
linear, so it can be concluded that the identical test is 
fulfilled. The model analysis results with GWR show a 
Residual Square with a small value of only 2.31, R2 0.39. 
In Geographically Weighted Regression analysis, the 
main thing that needs to be done is to identify a model 
based on the weighting function with the right side of 
the model's goodness. The goodness of the model being 
compared is AIC and AICc, which are seen from the 
smallest value, while the goodness of the R-square 
model is seen from the most significant value. The 
smaller the value of the model's goodness, the better the 
model. So that in the application of the GWR analysis, 
the model with the smallest AIC and AICc values is 
selected. 
 

Conclusion  
 

GIS approaches and remote sensing data are 
practical tools for mapping flood risk. In addition, GIS 
and remote sensing-based flood risk mapping is a 
valuable tool for estimating where flood risks will occur 
and assisting in making area-specific decisions when 
carrying out a more detailed flood hazard assessment. 
Geographic Information Systems and Remote Sensing as 
a tool for flood risk assessment and spatial modeling can 
minimize the risk of flooding that occurs. This is because 
this approach and model can predict places that have a 
high risk of flooding so that they can reduce property 
damage and even fatalities. Geospatial information 
obtained from remote sensing data, supported by GIS, is 
quickly applied and analyzed spatially. Therefore, 
mitigation efforts need to be carried out when managing 
risks that have the potential to become disasters or 
reduce their impact when they occur. From the facts 
above, Remote Sensing and GIS data need to be 

increased to support disaster management, especially 
floods. 
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