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Abstract: This research aims to determine the implementation of the Latent Gaussian 
Model in the forecasting process. This research focuses on developing a forecasting model 
using the Multivariate Latent Gaussian Model (LGM) approach with shared components. 
which offers a more accurate representation without the assumption of stationarity and 
cointegration as it accommodates random components in the model. The forecasting 
results for the five KPPs are considered to have a very good level of accuracy with MAPE 
values < 10%. This shows that LGM can achieve reliable forecasting when applied to the 
real life problems. This condition supports forecasting and can be an effective and targeted 
benchmark. The Latent Gaussian Model using the Bayesian Approach in parameter 
estimation can be utilized in forecasting Personal Income Tax Article 25/29. This is 
supported by the highly accurate MAPE value of 0.01%. The implementation of the 
developed model is not limited to forecasting Personal Income Tax Article 25/29. but can 
also be used in various other fields. With its hierarchical structure. the Bayesian approach 
proves to be an effective method for addressing complex modeling challenges. 
 
Keywords: Bayesian; Forecasting Process; Latent Gaussian Model;  Tax 

  

Introduction  
 

The forecasting method employed in this research 
involved the implementation of Multivariate Latent 
Gaussian Model (LGM) as random components are 

accommodated in the model (Rue et al.. 2009) On the 
other hand, multivariate forecasting using the VAR 
approach is a classical forecasting and relatively 
complex because it requires the assumption of 
stationarity and the presence of cointegration among 
time series to ensure that the model can be used for 
forecasting future period (Wei. 2019). The latent process 
in LGM is related to the unknown parameters. with 
efficient calculations to perform Bayesian inference on 
LGM using the Integrated Nested Laplace 
approximations (INLA) approach (Opitz. 2016)The full 
Bayesian approach provides a suitable framework for 
dealing with complexity through hierarchical structures 
(Lee. 2011; Oleson et al.. 2021; Richardson et al.. 
2006)One of the unique advantages of the Bayesian 
method providing robust results in interpreting 

posterior distributions and making inferences for the 
parameters in the model (Giacomini & Kitagawa. 2021; 
Wasserman. 1989)This research aims to obtain precise 
and accurate As a result. the accuracy of setting target 
figures is very important to encourage the realization of 
healthy and sustainable fiscal management in 
accordance with its potential (Badan Kebijakan Fiskal. 
2016) 

Latent Gaussian Models (LGM) is a forecasting 
method used in time series data analysis. LGM assumes 
that the observed time series data has a structure 
determined by latent (hidden) processes that follow a 
Gaussian distribution. These latent processes can 
explain variations in the data that cannot be explained 
by known observation processes. LGM consists of both 
observation and latent processes. The observation 
process is how data is observed. following a certain 
probability distribution. Meanwhile. the latent process 
describes how the data is related to a latent process that 
follows a Gaussian distribution. 

https://doi.org/10.29303/jppipa.v9i12.5835
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The implementation of LGM requires statistical 
techniques. such as Bayesian inference to determine the 
parameters of the model used and make inferences from 
the data (Rue. Martino. & Chopin. 2009). The LGM 
Bayesian approach integrates a likelihood function and 
a Gaussian prior distribution. resulting in the derivation 
of a Gaussian posterior distribution. 

Shared component model is a type of statistical 
model used to include correlation information between 
variables into the model. The shared component model 
was first introduced by Knorr-Held in 2000). This model 
concerns to the correlation between variables that 
influence observations. In the Bayesian Shared 
Component Model. variables that belong to a common 
group modeled together to estimate parameters and 
collectively explain that group. Moreover. one variable 
can provide information about the parameters used to 
explain other variables in the similar group. Through 
shared component modeling. it is possible to 
accommodate the temporal correlation of tax revenue 
data of tax service offices (KPP) so that forecasting 
modeling can be carried out more accurately. 

 

Method 
 

This research employed a Bayesian approach 
through the Latent Gaussian Model (LGM) to estimate 
parameters in a multivariate model as in equation (3). 
Bayesian method is a data analysis approach based on 
Bayes' theorem. where the available knowledge about 
the parameters in a statistical model is updated with 
information in the observed data (Van De Schoot et al.. 
2021)The Bayesian approach views parameters as 
random variables that have a distribution. namely a 
prior distribution (Wagenmakers et al.. 2008)From the 
prior and likelihood. the posterior distribution can be 
determined to obtain a Bayesian estimator from the 
posterior distribution. The subject of this research is tax 
revenue data for Personal Income Tax (PPh) Article 
25/29 at five Pratama Tax Service Offices (KPP) in the 
South Jakarta I Regional Office of the Directorate 
General of Taxes. These offices are KPP Pratama Jakarta 
Setiabudi Satu. KPP Pratama Mampang Prapatan. KPP 
Pratama Jakarta Tebet. KPP Pratama Jakarta Setiabudi 
Dua. and KPP Pratama Jakarta Pancoran. The data used 
are annual data from 2009 to 2022 obtained from the 
Directorate of Data and Information (DIP) of the 
Directorate General of Taxes. 
 
Statistical Modelling 

Tax revenue  data is continuous data with area of (i 
= 1) represents tax revenue of KPP Pratama Jakarta 

Setiabudi Satu; (i = 2) represents tax revenue of KPP 
Pratama Mampang Prapatan; (i = 3) represents tax 

revenue of KPP Pratama Jakarta Tebet; (i = 4) represents 
tax revenue of KPP Pratama Jakarta Setiabudi Dua; and (i 
= 5) represents tax revenue  of KPP Pratama Jakarta 
Pancoran and time (t). we describe a multivariate model 
to model tax revenue data. KPP tax revenue data 𝑖 at 
time 𝑡 is modeled as a Gaussian random variable. 
 

yit|𝜇𝑖𝑡 . 𝜎2
𝑦~ Gaussian (𝜇𝑖𝑡 . 𝜎²𝑦)  (1) 

 
with 𝑖 =  1. 2. … 𝑛 and 𝑡 =  1. 2. … 𝑇 
 

𝑦𝑖𝑡 = 𝛼𝑖 +  𝛽𝑖𝜁𝑡 + 𝛿𝑖𝜆𝑡+ 𝜀𝑖𝑡    
𝜀𝑖𝑡  ~𝑁(0. 𝜎²)  

 (2) 

 
𝐸[𝑦𝑖𝑡] = 𝜇𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝜁𝑡 + 𝛿𝑖𝜆𝑡 + 𝑢𝑡 + 𝑣𝑡  (3) 

 
with 𝜇𝑖𝑡: expectation of a random variable 𝑦𝑖𝑡 
𝛼𝑖: average tax revenue data of KPP i; 
𝛽𝑖: temporal coefficient for the tax revenue data of KPP 

i; 
𝜁𝑡 : temporal effect component (using Random Walk 

order 2); 
𝛿𝑖 : shared temporal component coefficient; 
λt : shared temporal components; 
𝑢𝑡: unstructured temporal random effects (temporal 

heterogeneity) 
𝑣𝑡 : random component 
 

There are three main stages in the Bayesian 
workflow. including the initial distribution is expressed 
as a prior distribution determined before using the data. 
determining the likelihood function using information 
about the parameters available in the observed data. and 
combining the prior distribution with the likelihood 
function using Bayes' theorem in determining the 
posterior distribution. This distribution reflect updated 
knowledge. balancing prior knowledge with observed 
data. and used to make predictions about future events 
(Van De Schoot et al.. 2021) 

The Bayesian approach distinguishes between 
observations and unknown quantities. Observation 
refers to data observed during research while unknown 
quantities are random variables that include the 

parameters to be estimated (Blangiardo & Cameletti. 
2015)In the Bayesian paradigm. unknown parameters in 
the model are treated as random variables and aims to 
calculate (or estimate). With Bayes' theorem the 
posterior probability distribution is defined as follows 
(Gelman et al.. 2013) 
 

𝑝(𝜃|𝒚) =
𝑝(𝒚|𝜃)𝑝(𝜃)

𝑝(𝒚)
  (4) 

with: 
𝑝 (𝜃|𝒚)  : posterior distribution 
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𝑝 (𝐲|𝜃) : likelihood function for the joint distribution 
function 𝒚 conditional on the parameters 𝜃in the model 
𝑝 (𝜃) : prior distribution for parameters 𝜃  
𝑝 (𝒚) : marginal probability distribution 𝒚 obtained 
from 𝑝 (𝒚)=∫ p(𝐲|𝜃)p(𝜃)d𝜃 
 

In order to obtain the posterior probability 
distribution of 𝑝 (𝜃|𝒚). which states the uncertainty of 
the parameters to be estimated after the observation 
data. so that it depends on the data 𝒚. The probability 
distribution function of 𝑝 (𝒚) expresses the marginal 
probability distribution of data 𝒚 and is considered as a 
constant normalizing factor that does not depend on the 
parameters 𝜃. Therefore. equation (4) can be expressed 
as (Jaya & Andriyana. 2020) 

 
p(𝜃|𝑦) ∝ p(𝑦|𝜃)p(𝜃)  (5) 

 
To obtain parameter estimates 𝜃. it can be obtained 

by looking for the posterior mean value 𝜃. namely E ( 𝜃) 
as follows (Lawson. 2013). 

 

𝜃 = 𝐸(𝜃|𝑦) = ∫ 𝜃 𝑝(𝜃|𝑦) 𝑑𝜃  (6) 

 
Estimating the parameters of the posterior 

distribution is often difficult because the posterior 
function is not in the form of a distribution function that 
is commonly known. To overcome this condition the 
INLA approach can be used. 
 
Laplace Approximation 
 

Laplace approximation becomes a definite integral 
approximation expressed through the Taylor series. 
Laplace approximation is used to find the marginal 
posterior distribution of each parameter with the 
following formula (Blangiardo & Cameletti. 2015). 

 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑒𝑥𝑝 (𝑙𝑜𝑔(𝑓(𝑥)) 𝑑𝑥  (7)  
 
with 𝑓(𝑥) representing the density function of the 
random variable X. The function of log 𝑓 (𝑥) can be 
expressed in the Taylor series and evaluate log 𝑓 (𝑥) on 

𝑥 =  𝑥0 𝑎𝑠 follows: 
 

𝑙𝑜𝑔 𝑓(𝑥) ≈ 𝑙𝑜𝑔𝑓(𝑥0) + (𝑥 − 𝑥0)
𝜕𝑙𝑜𝑔(𝑓(𝑥)

𝜕𝑥
|

𝑥=𝑥0

 

+
(𝑥−𝑥0)2

2

𝜕2𝑙𝑜𝑔(𝑓(𝑥)

𝜕𝑥2 |
𝑥=𝑥0

  

(8)  

 
If 𝑥0 expressed as mode 𝑥∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 log 𝑓 (𝑥). 

then 
𝜕𝑙𝑜𝑔(𝑓(𝑥)

𝜕𝑥
|

𝑥=𝑥∗
= 0 and 𝑙𝑜𝑔𝑓(𝑥) in equation (8) can be 

estimated as follows: 

𝑙𝑜𝑔 𝑓(𝑥) ≈ 𝑙𝑜𝑔𝑓(𝑥∗)

+
(𝑥 − 𝑥∗)2

2

𝜕2𝑙𝑜𝑔 𝑓(𝑥∗)

𝜕𝑥2
|

𝑥=𝑥∗

 

(9) 

Then. the integral can be solved as follows: 
 

∫ 𝑓(𝑥)𝑑𝑥 ≈ ∫ 𝑒𝑥𝑝 (𝑙𝑜𝑔(𝑓(𝑥∗) +

(𝑥−𝑥∗)2

2

𝜕2𝑙𝑜𝑔 𝑓(𝑥∗)

𝜕𝑥2 |
𝑥=𝑥∗

)  𝑑𝑥  

 

  = 𝑒𝑥𝑝(𝑙𝑜𝑔 𝑓(𝑥∗)) ∫ 𝑒𝑥𝑝 (
(𝑥−𝑥∗)2

2

𝜕2𝑙𝑜𝑔 𝑓(𝑥∗)

𝜕𝑥2
|
𝑥=𝑥∗

)  𝑑𝑥  (10) 

where the integral in equation (10) can be approximated 
through the density of the normal distribution by taking 

the form 𝜎2∗ = −1
𝜕2𝑙𝑜𝑔(𝑓(𝑥∗)

𝜕𝑥2 |
𝑥=𝑥∗

⁄ to obtain: 

 

∫ 𝑓(𝑥)𝑑𝑥 =

𝑒𝑥𝑝(𝑙𝑜𝑔(𝑓(𝑥∗)) ∫ 𝑒𝑥𝑝 (−
(𝑥−𝑥∗)2

2𝜎2∗ )  𝑑𝑥  

   
 

(11) 

The integral in Equation (11) is identical to integratie the 
normal density function with mean 𝑥∗and variance 𝜎2∗. 
For the interval (𝑎. 𝑏) it can be written as follows: 
 

∫  𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≈

𝑓(𝑥∗)√2𝜋𝜎2∗
 ∫  

1

√2𝜋𝜎2∗
𝑒𝑥𝑝 (

(𝑥−𝑥∗)2

2𝜎2∗ )  𝑑𝑥
𝑏

𝑎
  

                                        ≈

𝑓(𝑥∗)√2𝜋𝜎2∗(Ф(𝑏) − Ф(𝑎))                                    

 

(12) 

with Ф(. )expressing the cumulative density function of 
the normal distribution 𝑁 (𝑥∗. 𝜎2∗). This concept will 
help to solve the problems contained in the Bayesian 
method. 
 
Integrated Nested Laplace Approximations (INLA) 
 

Bayesian theory is always looking for new methods 
to recover the underlying posterior density assumptions 
of a model. When using an approach. such as Markov 
Chain Monte Carlo (MCMC). the issue often encountered 
is slow convergence to achieve accurate results (Robert 
& Casella. 2011)However. this can be overcome with 
LGM. which has a latent field structure containing 
unobserved parameters assumed to follow a Gaussian 
distribution. The additive structure combined with the 
Gaussian prior assumption on the latent field offers a 
natural way to encode data information into a precision 
matrix. The Integrated Nested Laplace Approximation 
(INLA) (Chiuchiolo. 2022) 

The INLA implementation relies on a combination 
of analytical approximation and an efficient numerical 
integration scheme to achieve accurate deterministic 
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approximation for the posterior (Martino & Riebler. 
2020)LGM for INLA-based inference as in equation (3) 
can be defined in three stages: likelihood function. latent 
Gaussian field. and hyperprior model (Morrison et al.. 
2016) 
 

First stage: likelihood function with the following 
equation: 
 

(𝑦|Ω. 𝜏) = ∏ 𝑝(𝑦𝑖|Ω𝑖 . 𝜏)𝑛
𝑖=1 =

∏ ∏ 𝑝(𝑦𝑖𝑡|Ω𝑖𝑡. 𝜏)𝑇
𝑡=1

𝑛
𝑖=1   

(13) 

 
where 𝒚 is a vector containing observation values. vector 
Ω is a Gaussian field containing all latent model 
components Ω= { 𝛼1 . …. 𝛼5 . 𝛽1 . …. 𝛽5 . 𝜁1 . …. 𝜁14. 𝛿1. …. 
𝛿5. 𝜆1 . …. 𝜆14 . 𝑢1. … . 𝑢14. 𝑣 1 . . . . 𝑣14 } andτ = {𝜎2} is a 

hyperparameter of Ω. 
 

Second stage: Latent Gaussian Field Distribution Ω 
conditional vector hyperparameters τ. p(Ω|τ) follows 
the Multivariate normal. The prior density function of is 
Ω denoted as follows: 

 

𝑝(Ω|𝜏) = |𝑄𝜏|
1 

2 𝑒𝑥𝑝 (−
1

2
Ω′ 𝑄𝜏 Ω)  (14) 

 
The latent variables are assumed to be multivariate 

Gaussians with a conditional independence structure 
that produces a sparse precision matrix (Rue & Held. 
2005). 

Third stage: The prior distribution of the 
hyperparameters is a hyperprior. The use of hyperprior 
in the model will produce robust parameter estimates 
(Aguerrebere et al.. 2014). 𝑝 (𝛕) is the hyperpior of 𝛕 . 
INLA provides a simple way to define priors. For 
computational reasons. INLA works with an internal 
representation of the parameters and not with random 
effect precision parameters τ. but rather with θ = log(τ). 
Therefore. the prior must be determined on θ (Gómez-
Rubio et al.. 2019). 

This study uses the Half–Cauchy prior with the 
scale parameter γ defined 𝜎as: 
 

𝑝(𝜎|𝛾) =  
2

𝜋𝛾(1+(𝜎/𝛾)2  (15) 

 
with scale parameter equal to 25 (Jaya & Folmer. 2020). 
From the three stages explained. the combined posterior 
distribution is as follows: 

𝑝(Ω. τ|y) =
𝑝(𝑦|Ω. 𝜏)𝑝(Ω|𝜏)𝑝(𝜏)

𝑝(𝑦|𝜏)
         

                 ∝ p(τ)p(Ω|τ)p(y|Ω. 𝜏)  (16) 
        

The INLA procedure does not consider the full 
posterior distribution of Ω and 𝛕 but rather is based on a 

marginal posterior distribution approach. namely 𝑝 
(Ω𝑖|𝒚) and 𝑝 (𝝉𝒌|𝒚). The marginal posterior distribution 
of Ωi is defined as follows: 
 

𝑝(Ω𝑖|𝑦) = ∫ 𝑝 (Ω𝑖. 𝜏|𝑦)𝑑𝜏 
 

                                                  

= ∫ 𝑝 (Ω𝑖|𝜏. 𝑦)𝑝(𝜏|𝑦)𝑑𝜏. 𝑖 = 1. … . 𝑛 

(17) 

while the marginal posterior distribution of 𝜏𝑘is defined 
as follows: 

p(𝜏𝑘|y) = ∫ p(τ|y)𝑑𝜏−𝑘 
(18) 

 
with 𝜏−𝑘 denoting all elements in 𝛕 except element − 𝑘. 

 
The first step is to estimate the marginal posterior 

distribution of the hyperparameter. 𝑝 (𝝉|𝒚). using the 
Laplace approach (Jaya et al.. 2022; Jaya & Folmer. 2020) 
 

𝑝(𝜏|𝑦) =
𝑝(Ω. 𝜏|𝑦)

𝑝(Ω|𝜏. 𝑦)
=

𝑝(𝑦|Ω. 𝜏)𝑝(Ω|𝜏)𝑝(𝜏)

𝑝(𝑦|𝜏)

1

𝑝(Ω|𝜏. 𝑦)
  

 

 

            ∝  
𝑝(𝑦|Ω. 𝜏)𝑝(Ω|𝜏)𝑝(𝜏)

𝑝(Ω|𝜏. 𝑦)
   

                                                                

≈
𝑝(𝑦|Ω. 𝜏)𝑝(Ω|𝜏)𝑝(𝜏)

𝑝𝐺(Ω|𝜏. 𝑦)
|

Ω=Ω∗(τ)

 

 

        ≕ 𝑝 ̃(𝝉|𝒚) (19) 

 
where 𝑝 (Ω|𝝉.𝒚) is the conditional distribution of the 
Ω approximation. which 𝑝𝐺 (Ω|τ. y) is a Gaussian 
approximation based on the Laplace transform. Ω∗(𝛕) is 
the posterior mode of 𝑝 (Ω|𝝉. 𝒚) for the hyperparameter 
𝝉. and 𝑝 ̃(𝝉|𝒚) are Laplace approximations for 𝑝 (𝝉|𝒚). 
The second step is to calculate the marginal posterior 
conditional distribution 𝑝 (Ω𝒊|𝝉.𝒚). In the process. it is 
rewritten Ω as Ω = (Ω𝑖. Ω−𝑖) so the equation becomes: 
 
 

 𝑝(Ω|𝜏. 𝑦) = 𝑝((Ω𝑖 . Ω−𝑖)|𝜏. 𝑦)    

                    = 𝑝(Ω−𝑖|Ω𝑖. 𝜏. 𝑦)𝑝(Ω𝑖|𝜏. 𝑦)  (20) 
From equation (20) obtained: 
 

𝑝(Ω𝑖|𝜏. 𝑦) =  
𝑝((Ω𝑖. Ω−𝑖)|𝜏. 𝑦)

𝑝(Ω−𝑖|Ω𝑖.𝜏.𝑦)
  

  

= 𝑝(Ω|𝜏. 𝑦)
1

𝑝(Ω−𝑖|Ω𝑖.𝜏.𝑦)
   

=
𝑝(Ω.𝜏|𝑦)

𝑝(𝜏|𝑦)𝑝(𝑦)

1

𝑝(Ω−𝑖|Ω𝑖.𝜏.𝑦)
   

∝
𝑝(Ω.𝜏|𝑦)

𝑝(𝜏|𝑦)

1

𝑝(Ω−𝑖|Ω𝑖.𝜏.𝑦)
   

∝
𝑝(Ω.𝜏|𝑦)

𝑝(Ω−𝑖|Ω𝑖.𝜏.𝑦)
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≈
𝑝(Ω.𝜏|𝑦)

𝑝𝐺(Ω−𝑖|Ω𝑖.𝜏.𝑦)
|

Ω−𝑖=Ω∗
−𝑖(Ω−𝑖.τ)

   

 =: �̃�(Ω𝑖|𝜏. 𝑦)  (21 ) 
 
by Ω−𝑖 showing all the inner elements Ω. except the 
element 𝑖-th. 𝑝𝐺(Ω−𝑖|Ω𝑖. 𝜏. 𝑦) showing the Gaussian 
approximation of 𝑝 (Ω−𝑖|Ω𝑖. 𝝉. 𝒚). then Ω∗

−𝑖(Ω−𝑖. 𝛕) 
showing the mode of 𝑝 (Ω−𝑖|𝜇𝑖. 𝝉. 𝒚) and 𝑝 ̃( Ω𝑖|𝝉.𝒚) is 
Laplace approximation for 𝑝 (Ω𝑖|𝝉. 𝒚). 
The third stage after getting �̃�(Ω𝑖|𝜏. 𝑦)and 𝑝 ̃(𝝉|𝒚) then 
the marginal posterior distribution of the parameter 𝑝 
(Ω𝑖|𝑦) can be calculated with the following equation: 
 

  𝑝(Ω𝑖|𝑦)  ≈ ∫ �̃� (Ω𝑖|𝜏. 𝑦)�̃�(𝜏|𝑦)𝑑𝜏 
(22) 

 
Multivariate Forecasting 
 

To obtain the multivariate forecasting value for 
each KPP. the researchers use the multivariate posterior 
prediction distribution. which is defined as follows: 
 

   𝑝(�̂�𝑇+ℎ|y. 𝜃)  

=  ∫  𝑝(�̂�𝑇+ℎ|Ω. 𝜃)  𝑝(Ω|𝑦. 𝜃)𝑑Ω 

(23) 

Where �̂�𝑇+ℎ =  (�̂�1(𝑇+ℎ). �̂�2(𝑇+ℎ). �̂�3(𝑇+ℎ). �̂�4(𝑇+ℎ). �̂�5(𝑇+ℎ)) 

represents a vector of forecasting values for each KPP at 
time t. In INLA. forecasting is implemented by entering 
'Not Available (NA)' for the period T + h in which the 
forecast is made (Morrison et al.. 2016). 
 
 
Evaluation of Forecasting Models 

A model evaluation is performed to determine 
when a forecasting model has a high level of accuracy. 
Evaluate forecasting models generally aims to minimize 
out-of-sample prediction errors. Mean Absolute 
Percentage Error (MAPE) is one of the most commonly 
used measures to calculate forecasting accuracy. MAPE 
is the average of Absolute Percentage Errors (APE) (Kim 
& Kim. 2016). The MAPE value is defined as follows: 
 

𝑀𝐴𝑃𝐸 =  
1

𝑛𝑇
∑ ∑ |

�̂�𝑖𝑡 − 𝑌𝑖𝑡

𝑌𝑖𝑡

|

𝑇

𝑡=1

𝑛

𝑖=1

 x 100% 
(24) 

with : 
n : number of KPP units 
T: amount of data 

�̂�𝑖𝑡 :Forecasting value of the i-th tax revenue at the t-th 
time 
𝑌𝑖𝑡: Actual value of the i-th tax revenue at time t 
 

Results and Discussion 
 

South Jakarta I Regional Tax Office is one of 34 
regional offices in Indonesia (pajak.go.id). In this study. 
we utilized tax revenue data at the South Jakarta I 
Regional Office of DJP with several KPPs. including KPP 
Pratama Jakarta Setiabudi Satu. KPP Pratama Jakarta 

Mampang Prapatan. KPP Pratama Jakarta Tebet. KPP 
Pratama Jakarta Setiabudi Dua. and KPP Pratama 
Jakarta Pancoran as response variables Multivariate. 
Before carrying out further analysis. we carried out 
descriptive analysis of each research variable to better 
understand the characteristics of each variable. 

 

Table 1. Descriptive Analysis 
Office Minimal Average Median Maximum 

Jakarta Setiabudi Satu 10.05 20.57 16.52 55.50 

Jakarta Mampang Prapatan 20.66 39.93 30.99 101.68 

Jakarta Tebet 16.91 38.08 30.09 84.13 

Jakarta Setiabudi Dua 8.81 25.65 19.93 58.50 

Jakarta Pancoran 6.98 26.49 20.35 54.63 

The table 1 presents tax revenue data for 2009 - 2022 
with minimum tax revenue ranging from IDR 
6.976.642.060 to IDR 20.665.236.039 and maximum tax 
revenue ranging from IDR 54.638.175.452 to IDR 
101.683.887.079. 
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Table 2. Correlation Analysis 
Office Jakarta Setiabudi 

Satu 
Jakarta Mampang 

Prapatan 
Jakarta 

Tebet 
Jakarta Setiabudi 

Dua 
Jakarta 

Pancoran 

Jakarta Setiabudi Satu 1     
Jakarta Mampang 

Prapatan 0.65 1    
Jakarta Tebet 0.67 0.88 1   

Jakarta Setiabudi Dua 0.59 0.66 0.80 1  
Jakarta Pancoran 0.30 0.53 0.63 0.66 1 

Table 2 presents the positive correlation between 
each KPP which ranges from 0.3087 to 0.8853. which 
shows that there is a fairly strong correlation between 
each KPP. These results indicate that KPPs have 
relatively similar characteristics regarding tax revenues. 
thus supporting the suitability of using shared 
components in LGM multivariate model modeling. 
 
Bayesian hierarchical temporal modeling 

Table 3 shows the intercept value for the Jakarta 
Setiabudi Satu KPP is 23.820. which can be concluded 

that the posterior mean of the KPP tax revenue data is 
exp (23.820) = IDR 22.125.574.641 when there are no 
random effects from the temporal component and 
shared component. Likewise for other KPP intercepts 
have almost the same intercept values. 

Based on the Table 4. it is found that the temporal 
patterns are similar between each KPP. which is 
indicated by the relatively similar shared component 
coefficient values which are in the range 0.927 – 1.03. 
This is considered normal because the five KPPs are 
located in the same regional office. 

 
Table 3. Summary statistics for the fixed effects 

KPP Posterior Mean Standard Deviation 95% Credible Interval 
Lower bound Upper bound 

Intercept Jakarta Setiabudi Satu  23820 0.06 23703  23937 
Intercept Jakarta Tebet  24326 0.05 24225  24427 
Intercept Jakarta Setiabudi Dua  23924 0.05 23812  24036 
Intercept Jakarta Mampang Prapatan  24357 0.07  24216  24499 
Intercept Jakarta Pancoran  23800 0.09  23620  23980 

 
Table 4. Shared Component Model Estimation 

KPP Posterior Mean Standard Deviation 95% Credible Interval 
Lower bound Upper bound 

Jakarta Setiabudi Satu 1.00 - - - 
Jakarta Tebet 0.927 0.309 0.321 1.54 
Jakarta Setiabudi Dua 1.03 0.301 0.440 1.63 
Jakarta Mampang Prapatan 1.00 - - - 
Jakarta Pancoran 0.958 0.313 0.348 1.58 

Table 5 presents the posterior mean value of the 
statistics for standard deviation (SD) in the temporal 
unstructured effect of tax revenue data for the five KPPs. 
The standard deviation value for KPP Jakarta Setiabudi 
Satu. KPP Jakarta Tebet and KPP Setiabudi Dua has 
almost the similar value. namely in the range 0.0622 – 
0.0762 which indicates that the three KPPs have the same 
characteristics in terms of tax revenue contribution. as 
well as for KPP Jakarta Mampang Prapatan and KPP 
Jakarta Pancoran. which has standard deviation values 
of 0.1131 and 0.1009. Apart from that. there is also a 95% 
credible interval. Hyperparameters provide information 
regarding the contribution of each fitted random effect 
in the model. 

Based on the shared component plot above. it can 
be seen that the five KPPs have similar fluctuations. This 

means that the model is significant for the parameter 
estimates in the forecasting model. 

It can be seen that KPP Pratama Jakarta Setiabudi 
Satu. KPP Pratama Jakarta Tebet. and KPP Pratama 
Jakarta Setiabudi Dua have relatively the similarr 
temporal pattern. Likewise with KPP Pratama 
Mampang Prapatan and KPP Pratama Jakarta Pancoran 
also have relatively the same pattern. This shows that the 
forecasting model can be used with information based 
on KPP temporal patterns. which have relatively similar 
characteristics and patterns. 
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Figure 1. Plot shared components 

 

 
Figure 2. Temporal plot 

 

 
Figure 3. Temporal heterogeneity plot 

 
Figure 3. shows in detail the existence of variations 

in tax revenues that are relatively the same from each 
KPP. This can occur because each KPP has the same tax 
policy but different number of potential taxpayers in 
each region. Therefore. a KPP with a larger of potential 
taxpayers will result in greater tax revenues. 

 
Forecasting Result using LGM 

Based on Table 6. almost the similar MAPE values 
are obtained for all five KPPs. under 10% using training 
data. This indicates that the forecast using LGM with the 
INLA approach produces very accurate MAPE values. 

Table 7 shows the forecast results for tax revenue 
data in the five KPPs in the South Jakarta I Regional 
Office of the Directorate General of Taxes using the 
INLA approach for the years 2023 and 2024. The visual 
representation of actual and forecasted tax revenue 
values for each KPP can be seen in Figure 4. 

Figure 4 represents the plot of actual data and 
forecasted revenue for the personal income tax Article 
25/29 in the five KPPs in the South Jakarta I Regional 
Office of theDirectorate General of Taxes using the INLA 
approach. Based on the above figure. it can be observed 
that the forcasted data patern aligns well. following the 
increase or decrease observed in the data pattern. It can 
be seen that among the five KPPs. KPP Jakarta Pancoran 
experiences a decrease revenue. mainly due to the 
distinctive temporal data pattern of Jakarta Pancoran 
compared to the other four KPPs. Forecasting using the 
Multivariate Latent Gaussian Model tends to perform 
better when there is a stronger correlation between 
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variables. In a ddition. Bayesian forecasting tends to 
provide better results by avoiding constant outcomes. 
 
Table 5. Statistics of the posterior means for temporally unstructured effect 

Hyperparameters Posterior 
Mean 

Standard 
Deviation 

95% Credible Interval 

Lower bound Upper bound 

SD for Temporally unstructured effects Jakarta Setiabudi Satu 0.09 0.06 0.02 0.08 
SD for Temporally unstructured effects Jakarta Tebet 0.24 0.06 0.13 0.23 
SD for Temporally unstructured effects Jakarta Setiabudi Dua 0.26 0.07 0.14 0.25 
SD for Temporally unstructured effect Jakarta Mampang 
Prapatan 

0.30 0.11 0.15 0.27 

SD for Temporally unstructured effect Jakarta Pancoran  0.2651 0.1009 0.1200 0.2474 

 
Tabel 6. Result of MAPE Value 

KPP MAPE 

Jakarta Setiabudi Satu 0.09 
Jakarta Tebet 0.01 
Jakarta Setiabudi Dua 0.01 
Jakarta Mampang Prapatan 0.01 
Jakarta Pancoran 0.01 

 

Table 7. Forecast result 
KPP Year Prediction Value  95% Credible Interval 

Lower bound Upper bound 

Jakarta Setiabudi Satu 2023  80.28  40308042404  159886883816 
2024  116.27  33629925851 401961947660 

Jakarta Tebet 2023  76.77  35719557703  165014315011 
2024  84.34  31179144.405 228169107527 

Jakarta Setiabudi Dua 2023  47.23  20244331242  110215131963 
2024  51.08  16896827161  154448629887 

Jakarta Mampang Prapatan 2023  62.45  23007058.942  169557903185 
2024  62.93  14968974.261 264579745579 

Jakarta Pancoran 2023  28.93  9167531.592  91329740606 
2024  25.84  3945604.016  169271486430 

 
Figure 4. Plot forecasts the personal income tax revenue 

Article 25/29 in the Five KPPs 

 
Tax reform in Indonesia was started in 1993. 

transitioning from the official assessment to self-

assessment. Since tax reform. taxes have played a crucial 
role in government operations and have become a 
backbone of the country. representing one of the largest 
sources of revenue in the state budget (Bawazier, 2018). 
The state utilizes taxes as a promary instrument to fund 
central and regional government expenditures for the 
welfare of the community. Expenditures on 
development or state operations. such as providing 
healthcare. education. infrastructure. and other public 
services. can only be achieved if tax revenue is 
effectively mobilized. Taxation shares a concept similar 
to mutual cooperation (gotong royong) as it requires 
contributions from all citizens. 

The government’s efforts through tax reform aimed 
not only at improving taxpayer compliance but also to 
increase tax revenue (Kemenkeu. 2023). Personal Income 
Tax Article 25/29 is one form of tax that is a practice of 
the self-assessment system and affects state revenues . 
With the high revenue from Personal Income Tax. it can 
be interpreted that there is a positive increase in the 
income of the population. Tax revenue plays a dominant 
role as a source of state income.  
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Tax revenues are the largest contributor to state 
income. More than 70% of Indonesia's state income 
comes from tax revenues . The role of tax revenues in 
financing the State Budget is getting increase every year. 
Considering the important role of taxes in financing state 
development. a series of efforts which include analyzing 
tax potential. forecasting tax revenues. and monitoring 
the realization of tax revenues must be implemented 
properly to ensure the stability of tax and expenditure 
policies (Jenkins et al.. n.d.) 

Several researchers have forecasted tax revenues 
using different models and methods. including 
comparing tax forecasting models using the Random 
Walk. SARIMA. and BATS techniques (Erdoğdu & 
Yorulmaz. 2019)then forecasting tax revenues using 
ARMA and GARCH (Cyril. 2017)Next. forecast types of 
VAT taxes in Ghana using the ARIMA method with 
intervention and the Holt linear trend method (Ofori et 
al.. 2020)and forecast taxes for the types of VAT taxes 
using the ARIMA Box – Jenkins Method (Fathoni & 
Saputra. 2023) 

Forecasting tax revenues is an important thing 
because it can be an effective and targeted benchmark 
and can be used as a baseline for calculating tax revenue 
targets in the following year. Therefore. the tax revenue 
target in the State Budget will be a reference and 
performance for the government in generating the 
amount of tax revenue for one year so that it can be used 
in making policies for preparing the State Budget. which 
influence the design of government activity programs. 
LGM with a Bayesian approach is one of the forecasting 
methods used in time series data analysis by offering a 
more accurate representation without the assumptions 
of stationarity and cointegration as it is accommodated 
in the model. Correct model specification is necessary to 
produce accurate forecasts. 

The data used in this research involved 14 
temporal data. and in obtaining MAPE values. only the 
training data is used. Bayesian approaches are generally 
carried out on small samples with limited information. 
The use of the Bayesian method through the prior 
distribution can be a solution to incomplete information 
obtained from the data and provide good results for 
small sample sizes compared to the Maximum 
Likelihood method (Jaya & Andriyana. 2020)As a result. 
one of the advantages of using a Bayesian approach is 
that it does not have to use large sample data (Van De 
Schoot et al.. 2014).  
 

Conclusion  
 

The Latent Gaussian Model using the Bayesian 
Approach in parameter estimation can be utilized in 
forecasting Personal Income Tax Article 25/29. This is 

supported by the highly accurate MAPE value of 0.01%. 
The implementation of the developed model is not 
limited to forecasting Personal Income Tax Article 
25/29. but can also be used in various other fields. With 
its hierarchical structure. the Bayesian approach proves 
to be an effective method for addressing complex 
modeling challenges. 
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