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Abstract: The helium ion is one of the ions classified as a hydrogenic atom 
because it has only one electron in its outer orbital so that the helium ion 
problem can be solved using the Schrodinger equation approach. The 
Schrodinger equation of the polar part of the helium ion can be solved by the 

associated legendary polynomial function, 𝑃𝑙(𝜈) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑣𝑙
(𝜈2 − 1)𝑙. The polar 

function expresses the angle formed by the vector of the electron's position 
relative to the z-axis of the helium ion's nuclear position. And it is produced that 
the polar function of the hydrogenic atom has the same polar function both in 

position space and in momentum space ( 𝐻𝑒+
2
4 ). 
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Introduction  
 

The photoelectric effect experiment and the 
Compton effect cannot be well explained by the theories 
of classical physics, but can be explained using the 
theories of quantum physics, as stated in the research of 
Zeng (2021) and Ferent (2019). In the experiment, 
particles and waves cannot be distinguished when to 
behave as particles and when to behave as waves, 
because these two things have a very fundamental 
relationship (Hari, 2019). Zeng (2021) proposes a 
modified quantum concept to bridge the gap between 
classical and quantum physics, providing a more 
comprehensive explanation for the phenomenon. 
However, Katzir (2006) points out that Richardson's 
theory of thermodynamics of the photoelectric effect, 
although not widely accepted, also offers a potential 
explanation. Klassen (2011) emphasizes the importance 
of accurately describing the history of this phenomenon, 

particularly in the context of quantum physics. In 
quantum physics, the behavior of microscopic objects is 
discussed, massive or non-massive objects that are about 
the diameter of an atom or smaller and have a dual 
behavior (Halim & Herliana, 2020). In addition, in 
quantum physics also discusses some polynomial 
functions (Supriadi et al., 2022). The dualism of particle 
waves has been fundamental in the development of new 
quantum theories, for example being the background for 
the formation of the Schrödinger equation as a 
fundamental equation in quantum mechanics 
(Chowdhury et al., 2021). Particle wave dualism being 
one of the most interesting concepts in quantum 
mechanics, the study of wave and particle 
interpretations is very different from the views of 
classical physics (Li et al., 2023). 

A hydrogenic atom is an atom that retains only one 
electron. Simply put, this atom has only one electron, 
similar to the Hydrogen atom (Pratikha et al., 2022). The 

https://doi.org/10.29303/jppipa.v10i5.5913
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hydrogen atom is a very simple atom and has a light 
mass because it consists of one proton and one electron 
in its orbital (Supriadi et al., 2020). Hydrogen has three 
isotopic forms consisting of protium, deuterium and 
tritium (Urrestizala et al., 2023). Protium is an isotope of 
hydrogen that has 1 electron and 1 proton. Deuterium is 
an isotope of hydrogen that has 1 electron, 1 proton and 
1 neutron. While tritium has 1 electron, 1 proton and 2 
neutrons (Karomah et al, 2021). 

Helium is one of the noble gas atoms that has 2 
electrons in its orbitals, 2 protons, and 2 neutrons. If one 
of the electrons in helium ionizes, it becomes a helium 
ion characterized as a hydrogenic atom (Widiastuti, 
2019). Gautreau et al. (2006) state that a hydrogenic atom 
is a single-electron atom in its outermost orbital. Thus, 
the helium ion ( 𝐻𝑒+

2
4 ) behaves the same as hydrogen, 

the difference being that its nucleus is positively charged 
2e, where Z = 2 is the atomic number. 

In everyday life, helium ions are widely used as 
fillers for hot air balloons because they have low vapor 
density and viscosity and stable concentrations, as 
coolants, and as a substitute for normal air to help 
underwater diving on the seabed (Nurroniah et al., 
2023). In addition, in the liquid state helium serves as a 
persistent coolant and is produced for its application as 
a semiconductor magnet, particularly in techniques such 
as Magnetic Resonance Imaging (MRI) and Nuclear 
Magnet Resonance (NMR) (Rillo et al., 2015). Alimah 
(2016) mentioned that helium can function as a 
refrigerant because it is classified as an inert gas or ideal 
gas, making it useful for heat transfer applications. 
Saputro (2019) said that helium ions can be used as a 
cold atmosphere plasma-based sterilizer (CAP) which 
effectively kills microbes in mangosteen fruit. According 
to Berganza et al. (2013), helium gas can also be used as 
an adjunct therapy for respiratory diseases and its 
potential in protecting the myocardium from ischemia. 

Schrödinger's equation is an equation used to 
explain the nature or state of a particle through the 
principles of the law of conservation of energy and the 
de Broglie hypothesis (Shukron et al., 2022). The 
Schrödinger equation must also behave well, that is, it is 
linear and homogeneous (Sudiarta, 2019). 

In general, the Schrodinger equation in spherical 
coordinates is written as (Kadri & Sani, 2017). 

 
ℎ2

𝑚0
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2] Ψ(r, θ, φ) −
𝑍𝑒2

4𝜋𝜀0𝑟
Ψ(r, θ, φ) = 𝐸Ψ(r, θ, φ)     (1) 

 
To solve the equation, the following variable separation 
method can be used by introducing two variable 
functions. 
 

𝜓(𝑟,𝜃,𝜙) = 𝑅(𝑟)𝑌(θ, ϕ)  (2) 

 
So, the equation is obtained: 
 

[
1

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅(𝑟)

𝜕𝑟
) +

2𝜇𝑟2

ℏ2
[𝐸 − 𝑉(𝑟)]] =

− [
1

𝑌(θ,ϕ)𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌(θ,ϕ)

𝜕𝜃
) +

1

𝑌(θ,ϕ)𝑠𝑖𝑛2𝜃

𝜕2𝑌(θ,ϕ)

𝜕𝜙2 ]          (3) 

 
If the radial equation is assumed to be a constant, then 
the radial and angulatory equations become:𝜆 

a. [
1

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅(𝑟)

𝜕𝑟
) +

2𝜇𝑟2

ℏ2
[𝐸 − 𝑉(𝑟)]] = 𝜆        (4) 

b. [
1

𝑌(θ,ϕ)𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌(θ,ϕ)

𝜕𝜃
) +

1

𝑌(θ,ϕ)𝑠𝑖𝑛2𝜃

𝜕2𝑌(θ,ϕ)

𝜕𝜙2 ] = −𝜆        (5) 

(Supriadi, et al., 2019). 
 

The angulatory section of the Schrödinger equation 
is a partial differential equation, the solution of which 
can be done using the variable separation method 

𝑌(𝜃,ϕ) = Θ(θ)Φ(ϕ)𝜃𝜙𝑚𝑙
2. So that the equation of the polar 

part that depends on the angle and the equation of 
azimuth that depends on the angle, using the constant 
then the equation is obtained as follows:  

 
a. Polar equation depends 𝜃 

 

[
𝑠𝑖𝑛𝜃

Θ(𝜃)

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ(𝜃)

𝜕𝜃
) + 𝜆𝑠𝑖𝑛2𝜃] = 𝑚𝑙

2         (6) 

 

b. The azimuth equation depends 𝜙 

 

− [
1

Φ(𝜙)

𝜕2Φ(𝜙)

𝜕𝜙2 ] = 𝑚𝑙
2    (7) 

(Supriadi, et al., 2019). 
 
The polar part equation as shown in equation (6) can be 
solved using the polynomial method. 

Polynomials are one of the infinitely power series 
functions that are often used in the solution of 
differential equations. Hidayatullah et al. (2017) states 
that a polynomial is a multiterm of degree n, with n 
numerical numbers. A polynomial in one variable with 
a constant coefficient has the following general form: 

 
𝑎𝑛𝑋𝑛 + 𝑎𝑛−1𝑋𝑛−1 + ⋯ + 𝑎2𝑋2 + 𝑎1𝑋1 + 𝑎0      (8) 

 
With, named as coefficients, named as variables of 

the power , n, n − 1, ..., 2, 1 are called ranks, and are called 
fixed terms. Discussion of ordinary differential 
polynomials (ODE), which includes hypergeometric 
equations. In general, hypergeometric equations can be 
written as follows: 𝑎𝑛 ≠ 0𝑎𝑛 , 𝑎𝑛−1, … , 𝑎2, 𝑎1𝑋𝑛 ,

𝑋𝑛−1, … , 𝑋2, 𝑋𝑎0 
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𝑠(𝑥)𝐹"(𝑥) + 𝑡(𝑥)𝐹′(𝑥) + 𝜆𝐹(𝑥) = 0     (9) 
(Aboites & Ramírez, 2019).  

 
Polynomial Legendre was first introduced in 1782 

by Adrien-Marie Legendre. Spherical harmonic 
solutions constitute one of the important classes of 
special functions very closely related to Legendre 
polynomials (Nasution et al., 2023). The properties of the 
Legendre polynomial are if v = 1, then 𝑃𝑙(𝑣) = 1; If v = -

1, then 𝑃𝑙(−1) = (−1)𝑙; and if v = -v, then 𝑃𝑙(−1) =

(−1)𝑙𝑃𝑙(𝑣). Legendre polynomial functions are widely 
used in differential equations. Jena et al. (2020) states 
that the Legendre equation can be used to solve 
fractional order differential equations. The research is in 
harmony with research by Moshtaghi et al. (2021) those 
who use the Legendre equation as a numerical solution 
of a distributed order fractional differential equation. 

Associated legendre polynomials are obtained by 
derivation from angular equations. With is an associated 
legendre function, defined by: 𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃) 
 

𝑃𝑙
𝑚 = (1 − 𝑥2)

|𝑚|

2 (
𝑑

𝑑𝑥
)|𝑚|𝑃𝑙(𝑥)        (10) 

 
And is the 1th legendary polynomial𝑃𝑙(𝑥)𝑙, defined by 
Rodriges' formula, which is:  
 

𝑃𝑙(𝑥) =
1

2𝑙𝑙!
(

𝑑

𝑑𝑥
)𝑙(𝑥2 − 1)𝑙

     (11) 

(Abdelhakem & Moussa, 2023 ; Ciftja, 2022). 
The solution to the polar legendre equation is written as: 
 

1

sin 𝜃

𝑑

𝑑𝜃
(sin 𝜃

𝑑Θ

𝑑𝜃
) + [𝜆 −

𝑚2

sin2𝜃
] Θ = 0   (12) 

 
Based on this discussion, this study aims to apply 

associated legendre polynomials in the polar 
schrodinger equation of helium ions. The results of the 
study are expected to add references to the application 
of the method of associated legendre polynomials in the 
polar schrodinger equation on helium ions. 

 

Method  
 

This research is a type of non-experimental 
research. The method used is study literature, to develop 
existing theories by solving the Schrodinger equation of 
the polar part of the helium ion using the Legendre 
equation, 

    (1 − 𝜈2)
𝑑2Θ

𝑑𝑣2 − 2𝜈
𝑑Θ

𝑑𝑣
+ 𝜆Θ = 0  (13) 

 
The solution can be written in the form of infinite power 
series or polynomial functions, namely:  

 

   Θ(𝑣) = ∑ 𝑎𝑛𝜈𝑘+𝑛∞
𝑛=0     (𝑎0 ≠ 0)  (14) 

The first and second derivatives of the polynomial 
functions above are: 

           
𝑑Θ

𝑑𝑣
= (𝑘 + 𝑛) ∑ 𝑎𝑛𝜈𝑘−1+𝑛∞

𝑛=0   (15) 

and  
𝑑2Θ

𝑑𝑣2 = (𝑘 + 𝑛)(𝑘 − 1 + 𝑛) ∑ 𝑎𝑛𝜈𝑘−2+𝑛∞
𝑛=0  (16) 

By substituting equations (14), (15) and (16) to equation 
(13) it is obtained: 
 

 𝑘(𝑘 − 1)𝑎0𝜈𝑘−2 + 𝑘(𝑘 + 1)𝑎1𝜈𝑘−1 +  ∑ [(𝑘 + 𝑛 +∞
𝑛=0

2) (𝑘 + 𝑛 + 1)𝑎𝑛+2 − (𝑘 + 𝑛)(𝑘 + 𝑛 − 1)𝑎𝑛 −

2(𝑘 + 𝑛)𝑎𝑛 + 𝜆𝑎𝑛] 𝜈𝑘+𝑛 = 0  (17) 

 
Equation (17) requires that each of its term coefficients 
be zero for all values, so that 𝜈 𝑘 = 0 it  is 𝑎1 of such an 
arbitrary value  and 𝑘 = 1 and the recursion equation: 
 

       𝑎𝑛+2 =
[(𝑘+𝑛)(𝑘+𝑛−1)+2(𝑘+𝑛)−𝜆]

(𝑘+𝑛+2)(𝑘+𝑛+1)
𝑎𝑛       (18) 

 

Polynomial function, Θ(𝑣) having a convergence 
interval −1 < 𝜈 < 1. If , the interval of convergence 

becomes by 𝜈 = cos 𝜃 − 1 ≤ 𝜈 ≤ 1replacing with an 
integer always positive i.e. . 𝜆𝑙(𝑙 + 1). So that equation 
(18) can be expressed as: 

 

   𝑎𝑙−2𝑟 = (−1)𝑟 [
(𝑙!)2(2𝑙−2𝑟)!

(2𝑙)!𝑟!(𝑙−2𝑟)!(𝑙−𝑟)!
] 𝑎𝑙  (19) 

 
And the solution of the Legendre equation (14) can be 
expressed as: 
 

   Θ𝑙(𝜈) = 𝑃𝑙(𝜈) + 𝑄𝑙(𝜈) = ∑
(−1)𝑟(2𝑙−2𝑟)!𝜈𝑙−2𝑟

2𝑙𝑟!(𝑙−𝑟)!(𝑙−2𝑟)!

𝑁
𝑟=0  (20) 

 

Where 𝑃𝑙(𝜈) is a  first-order Legendre polynomial and is 
a second-order (divergent) Legendre polynomial. 
𝑄𝑙(𝜈)TheRodrigues umus for the Legendre polynomial 
is  

   𝑃𝑙(𝜈) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑣𝑙
(𝜈2 − 1)𝑙          (21) 

 
Obtained Legendre polynomials for the range l as 
presented in table 1. 
 
Table 1. Legendre Polynomial 𝑷𝒍(𝝂) 
l   𝑷𝒍(𝝂) 

0  1 
1  𝜈 

2  
 1

2
(3𝜈2 − 1) 

3 
1

 2
(5𝜈3 − 3𝜈)  
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The associated Legendre equation is formulated:  
 

   (1 − 𝜈2)
𝑑2Θ

𝑑𝜈2 − 2𝜈
𝑑Θ

𝑑𝜈
+ {𝑙(𝑙 + 1) −

𝑚2

1−𝜈2} Θ = 0 (22) 

by being solved by 𝑚2 < 𝑙2introducing in series notation 
(solutions related to the Legendre Polynomial), 
namely:Θ 
 

   Θ =  (1 − 𝜈2)
𝑚

2 𝑢(𝜈)  (23) 

Then the first and second differentials of equation (23) 
are obtained: 
 

       
𝑑Θ

𝑑𝜈
=  

𝑚

2
(1 − 𝜈2)

𝑚

2
−1(−2𝜈) 𝑢(𝜈) + (1 − 𝜈2)

𝑚

2
𝑑𝑢

𝑑𝜈
  

              =  (1 − 𝜈2)
𝑚

2
𝑑𝑢

𝑑𝜈
− 𝑚𝜈𝑢(1 − 𝜈2)

𝑚

2
−1 (24) 

And 
 

𝑑2Θ

𝑑𝜈2 =
𝑚

2
(

𝑚

2
− 1) (1 − 𝜈2)

𝑚

2
−2(4𝜈2) 𝑢(𝜈) −

𝑚

2
(1 −

𝜈2)
𝑚

2
−1(−2) 𝑢(𝜈) +

𝑚

2
(1 − 𝜈2)

𝑚

2
−1(−2𝜈) 

𝑑𝑢

𝑑𝜈
+

𝑚

2
(1 − 𝜈2)

𝑚

2
−1(−2𝜈)

𝑑𝑢

𝑑𝜈
+ (1 − 𝜈2)

𝑚

2
𝑑2𝑢

𝑑𝜈2      (25) 

or 

      
𝑑2𝛩

𝑑𝜈2 = (1 − 𝜈2)
𝑚

2
𝑑2𝛩

𝑑𝜈2 − 2𝑚𝜈(1 − 𝜈2)
𝑚

2
−1 𝑑𝑢

𝑑𝜈
−

𝑚𝑢(1 − 𝜈2)
𝑚

2
−1 + 2𝑚𝜈2𝑢 (

𝑚

2
− 1) (1 − 𝜈2)

𝑚

2
−2     (26) 

 
By substituting equations (24), (25) and (26) into 
equation (22), the associated Legendre equation can be 
expressed by the equation: 
 

(1 − 𝜈2)
𝑑2𝑢

𝑑𝜈2
− 2𝜈 (𝑚 + 1)

𝑑𝑢

𝑑𝜈
+ {𝑙(𝑙 + 1) − 𝑚(𝑚 + 1} 𝑢 = 0  (27) 

 
Differential equation (27) to obtain:𝜈 
 

(1 − 𝜈2)
𝑑

𝑑𝜈
𝑢" − 2𝜈{(𝑚 + 1) + 1}

𝑑

𝑑𝜈
𝑢′ + {𝑙(𝑙 + 1) − (𝑚 +

1)(𝑚 + 2)}𝑢′ = 0        (28) 

 
By supposing (i) you and (ii) equation (28) becomes:′ =
𝑢(𝑚 + 1) = 𝑚 
 

    (1 − 𝜈2)
𝑑2u

𝑑𝜈2 − 2𝜈(𝑚 + 1)
𝑑u

𝑑𝜈
+ {𝑙(𝑙 + 1) − 𝑚(𝑚 + 1}𝑢 = 0 

(29) 

 
At the time, equation (29) has a solution of the form 

Legendre function, 𝑚 = 0𝑃𝑙(𝜈) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑣𝑙
(𝜈2 − 1)𝑙. For  

the solution is and for 𝑚 = 1 𝑃𝑙
′(𝜈) =

𝑑𝑃𝑙(𝜈)

𝑑𝜈
𝑚 = 2 the 

solution is 𝑃𝑙
′′(𝜈) =

𝑑2𝑃𝑙(𝜈)

𝑑𝜈2 .  Sefinite in general for all 

values with can be formulated𝑚, 0 ≤ 𝑚 ≤ 𝑙 
 

       
𝑑𝑚

𝑑𝜈𝑚 𝑃𝑙(𝜈) = 𝑃𝑙
𝑚(𝜈) = (1 − 𝜈2)

𝑚

2
𝑑𝑚

𝑑𝜈𝑚 𝑃𝑙(𝜈)  (30) 

called the associated Legendre function. 𝑃𝑙
𝑚(𝜈) = Θ =

(1 − 𝜈2)
𝑚

2
𝑑𝑚

𝑑𝜈𝑚 𝑃𝑙(𝜈)  

 

Result and Discussion 
 

Solution of the polar section Schrodinger equation, 

    
1

sin 𝜃

𝑑

𝑑𝜃
(sin 𝜃

𝑑Θ

𝑑𝜃
) + [𝜆 −

𝑚2

sin2𝜃
] Θ = 0  (31) 

 

Done by suppose 𝜈 = cos 𝜃 then 
𝑑𝑣

𝑑𝜃
= − sin 𝜃  and 

sin2𝜃 = 1 − 𝑣2. So that the polar Schrodinger equation 
can be expressed in the form of: 

 

        (1 − 𝜈2)
𝑑2Θ

𝑑𝑣2 − 2𝜈
𝑑Θ

𝑑𝑣
+ [𝜆 −

𝑚2

1−𝑣2] Θ = 0 (32) 

Using the solution of the associated Legendre equation, 

namely:  

(i) 𝑃𝑙
𝑚(𝜈) = (1 − 𝜈2)

𝑚

2
𝑑𝑚

𝑑𝜈𝑚 𝑃𝑙(𝜈)  

(ii) 𝑃𝑙(𝜈) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑣𝑙
(𝜈2 − 1)𝑙 

 
And by using that relationship  
 
   𝑃𝑙

−𝑚(𝜈) = 𝑃𝑙
𝑚(𝜈)     

 
Then the solution to the polar Schrodinger equation can 
be written as: 
 

    Θ𝑙𝑚(𝜃) = 𝑁𝑙𝑚  𝑃𝑙
𝑚(cos 𝜃)   (33) 

 

where 𝑁𝑙𝑚 =  (−1)(𝑚+[𝑚])/2√
2𝑙+1

2

(𝑙−⌈𝑚⌉)!

(𝑙+⌈𝑚⌉)!
 is the 

normalization constant. 
Using the Legendre function and the associated 

Legendre function, the polar wave function of the 
Helium ion, 𝐻𝑒+

2
4  in quantum numbers is (𝑙, 𝑚) =  (0,0) 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃0

0(𝜈) =
𝑑0

𝑑𝑣0 𝑃0(𝜈) 

Because 𝑃0(𝜈) = 1 

So  𝑃0
0(𝜈) = 𝑃0(𝜈) = 1  

(ii)   𝑁00 = (−1)0√
1

2
= √

1

2
 

(iii) (iii) Θ00(𝜃) = √
1

2
 

For quantum numbers  (𝑙, −1), the polar wave function 
is 

(iv) 𝑃𝑙
𝑚(𝜈) =  𝑃0

0(𝜈) =
𝑑0

𝑑𝑣0 𝑃0(𝜈) 

Because 𝑃0(𝜈) = 1 

So  𝑃0
0(𝜈) = 𝑃0(𝜈) = 1  



Jurnal Penelitian Pendidikan IPA (JPPIPA) May 2024, Volume 10, Issue 5, 2736-2744  

 

2740 

(v)    𝑁00 = (−1)0√
1

2
= √

1

2
 

(vi) (iii) Θ00(𝜃) = √
1

2
 

For quantum numbers (𝑙, 𝑚) =  (1, −1), the 
function of the polar wave is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃1

−1(𝜈) =
𝑑1

𝑑𝑣1 𝑃1(𝜈) 

Because 𝑃1(𝜈) = cos 𝜃 

So  𝑃1
−1(𝜈) = sin 𝜃 

(ii) 𝑁00 = (−1)0√
3

4
 

(iii) Θ1(−1)(𝜃) =
√3

2
sin 𝜃  

For quantum numbers (𝑙, 𝑚) =  (1,0), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃1

0(𝜈) =
𝑑0

𝑑𝑣0 𝑃1(𝜈) 

Because 𝑃1(𝜈) = cos 𝜃 

So  𝑃1
0(𝜈) = 1 

(ii) 𝑁10 = (−1)0√
3

2
 

(iii) Θ10(𝜃) = √
3

2
cos 𝜃 

For quantum numbers (𝑙, 𝑚) =  (1,1), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃1

1(𝜈) =
𝑑1

𝑑𝑣1 𝑃1(𝜈) 

Because 𝑃1(𝜈) = cos 𝜃 

So  𝑃1
1(𝜈) = sin 𝜃 

(ii) 𝑁11 = (−1)1√
3

4
 

(iii) Θ11(𝜃) = −
√3

2
sin 𝜃 

For quantum numbers (𝑙, 𝑚) =  (2, −2), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃2

−2(𝜈) =
𝑑2

𝑑𝑣2 𝑃2(𝜈) 

Because 𝑃2(𝜈) =
1

2
(3 cos2 𝜃 − 1) 

So  𝑃2
−2(𝜈) = 3 sin2 𝜃 

(ii) 𝑁2(−2) = (−1)0√
5

48
 

(iii) Θ2(−2)(𝜃) =
√15

4
sin2 𝜃 

For quantum numbers (𝑙, 𝑚) =  (2, −1), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃2

−1(𝜈) =
𝑑1

𝑑𝑣1 𝑃2(𝜈) 

Because 𝑃2(𝜈) =
1

2
(3 cos2 𝜃 − 1) 

So  𝑃2
−1(𝜈) = 3 sin 𝜃 cos 𝜃 

(ii) 𝑁2(−1) = (−1)0√
5

12
 

(iii) Θ2(−1)(𝜃) =
√15

2
sin 𝜃 cos 𝜃 

For quantum numbers (𝑙, 𝑚) =  (2, 0), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃2

0(𝜈) =
𝑑0

𝑑𝑣0 𝑃2(𝜈) 

Because 𝑃2(𝜈) =
1

2
(3 cos2 𝜃 − 1) 

So  𝑃2
0(𝜈) =

1

2
(3 cos2 𝜃 − 1) 

(ii) 𝑁20 = (−1)0√
5

2
 

(iii) Θ20(𝜃) = √
5 

2

1

2
(3 cos2 𝜃 − 1) 

For quantum numbers (𝑙, 𝑚) =  (2,1), the polar 
wave function is 

(i) 𝑃𝑙
𝑚(𝜈) =  𝑃2

1(𝜈) =
𝑑1

𝑑𝑣1 𝑃2(𝜈) 

Because 𝑃2(𝜈) =
1

2
(3 cos2 𝜃 − 1) 

So  𝑃2
1(𝜈) = 3 sin 𝜃 cos 𝜃 

(ii) 𝑁21 = (−1)1√
5

12
 

(iii) Θ21(𝜃) = −
√15

2
sin 𝜃 cos 𝜃 

 

The polar function of the Helium ion atom 
expresses the angle formed by the electron position 
vector relative to the starting point of the coordinate 
system which is the position of the helium ion nucleus 
with the z-axis. So it is worth . The polar function and 
azimuth function are 2 functions related to the value of 
magnetic quantum numbers and are known as spherical 
harmonic functions, namely:( 𝐻2

4 𝑒+)𝜃0 ≤ 𝜃 ≤  𝜋Θ(𝜃)𝑚 
 
 𝑌𝑙,𝑚(𝜃, 𝜙) =  Θ𝑙,𝑚(𝜃)Φ𝑚(𝜙)   (34) 

with  

      Φ𝑚(𝜙) =
1

√2𝜋
𝑒𝑖𝑚𝜙    (35) 

 
So that the complete function of the angulatory 

helium ion race for quantum numbers is shown in table 
2.𝑌𝑙,𝑚(𝜃, 𝜙) =  Θ𝑙,𝑚(𝜃)Φ𝑚(𝜙)𝑙 ≤ 3 

 
Table 2. Results of Legendre Polynomial Functions 
Associated with Polar Helium Ions Using Schrödinger's 
Equation 
l m Θ𝑙𝑚(𝜃)   Φ𝑚(𝜙) 

0 0  √
1

2
 √

1

2𝜋
  

1 

-1  
√3

2
sin 𝜃 √

1

2𝜋
𝑒−𝑖𝜙  

0  √
3

2
cos 𝜃 √

1

2𝜋
  

1  −
√3

2
sin 𝜃  √

1

2𝜋
𝑒−𝑖𝜙 

2 -2  
√15

4
sin2 𝜃  √

1

2𝜋
𝑒−2𝑖𝜙  
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l m Θ𝑙𝑚(𝜃)   Φ𝑚(𝜙) 

-1  
√15

2
sin 𝜃 cos 𝜃  √

1

2𝜋
𝑒−𝑖𝜙 

0  √
5

8
(3 cos2 𝜃 − 1)  √

1

2𝜋
 

1  −
√15

2
sin 𝜃 cos 𝜃  √

1

2𝜋
𝑒𝑖𝜙 

2  
√15

4
sin2 𝜃  √

1

2𝜋
𝑒2𝑖𝜙 

 
 
 
 
 
 
 
3 

-3  √
7

1440
 15 sin3 𝜃  √

1

2𝜋
𝑒−3𝑖𝜙  

-2  √
7

240
 15 sin2 𝜃  cos 𝜃  √

1

2𝜋
𝑒−2𝑖𝜙  

-1  √
7

24

3

2
sin 𝜃  (5 cos2 𝜃 − 1)  √

1

2𝜋
𝑒−𝑖𝜙 

0  √
7

2
 
1

2
(5 cos3 𝜃 − 3 cos 𝜃)  √

1

2𝜋
 

1  −√
7

24

3

2
sin 𝜃 (5 cos2 𝜃 − 1)  √

1

2𝜋
𝑒𝑖𝜙 

2  √
7

240
 15 sin2 𝜃  cos 𝜃  √

1

2𝜋
𝑒2𝑖𝜙 

3  −√
7

1440
 15 sin3 𝜃  √

1

2𝜋
𝑒3𝑖𝜙 

 
The angulatory wave function of helium ions on 

quantum numbers as table 2 is in accordance with the 
results of research by Supriadi et al. (2019) on hydrogen 
atoms, Karomah et al. (2021) on Deuterium atoms and 
Ningrum et al. (2023) on Tritium atoms in momentum 
space. The angulatory wave function consists of a polar 
function that shows the orientation of the electron's 
motion around the helium ion nucleus in the XY plane 
and an azimuth function that shows rotational motion 
on the Z-axis.  Based on equation (33) it is seen that the 
polar wave function depends on the value of the 
quantum number of orbitals, determines the number of 
sub-shells and the magnetic quantum number. 
determines the angular momentum of electron orbitals 
in the direction of the Z-axis. 𝑙𝑚 

The number of polar wave functions is largely 
determined by the principal quantum number. At that 
time and so there is only 1 polar function. For there is a 
polar wave function. For so there are 9 polar gelombag 
functions. And for then and. There are 16 polar wave 
functions, starting from 𝑛𝑛 = 1𝑙 = 0𝑚 =  0𝑛 = 2 (𝑙 =
0, 1 ; 𝑚 =  −1, 0, 1)𝑛 = 3 (𝑙 = 0, 1, 2 ; 𝑚 =
 −2, −1, 0, 1, 2)𝑛 = 4𝑙 = 0, 1, 2, 3𝑚 =

 −3, −2, −1, 0, 1, 2, 3Θ00(𝜃) = √
1

2
Θ33(𝜃) = −√

7

1440
 15 sin3 𝜃. 

Under the state, the electron is at a ground energy 
level with (𝑛, 𝑙 , 𝑚) = (1, 0, 0) an s orbital  and no angular 
component of magnetic momentum. This corresponds to 
Atkin & Paula (2006: 302) that there is no angular node 
around the z-axis for a function with ml = 0, which 
means there is no orbital angular momentum 
component around that axis.  The greatest probability of 
finding a 1s electron in a helium ion lies along the z-axis 
and intersects the xy plane. This corresponds to the orbital 
symmetry characteristic of the sphere as shown by figure 
1.  
 

 
Figure 1.  Graph of angular functions on quantum numbers 

(𝒍, 𝒎) = (𝟎, 𝟎)

 

 
Figure 2. Graph of angular functions on quantum numbers and (𝒍, 𝒎) = (𝟏, 𝟎)(𝒍, 𝒎) = (𝟏, ±𝟏) 

 
The three-dimensional shape of the2𝑝𝑧 orbital is 

obtained by rotating the cross section around the z-axis. 
This results in two distorted ellipsoids, one above and 
another below the xy plane. The 2𝑝𝑥, 2𝑝𝑦, and 2𝑝𝑧 
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orbitals have the same shape but different spatial 
orientations. The two distorted ellipsoids are located on 
the x-axis for the 2𝑝𝑥 orbital, on the y-axis for the 2𝑝𝑦 

orbital, and on the z-axis for the 2𝑝𝑧 orbital (Levine, 2009: 
645). Figure 2 illustrates electrons in states (𝑛, 𝑙 , 𝑚) =
(2, 1, 0) or in orbitals 2𝑝𝑧 that represent the probability 

of electrons being found along the positive z and 
negative z axes. While in the state (𝑛, 𝑙 , 𝑚) = (2, 1, 1), 
electrons have different orbital levels, namely 2𝑝𝑥 or 2𝑝𝑦. 

Then electrons are most likely to be found along the x-
axis or y-axis. 

 

 
Figure 3. Graph of Angular Functions on quantum numbers and  (𝒍, 𝒎) = (𝟐, 𝟎); (𝒍, 𝒎) = (𝟐, ±𝟏)(𝒍, 𝒎) = (𝟐, ±𝟐) 

 
If n equals 3, the possible values of the azimuth 

quantum number (l) are 0, 1, or 2. As a result, these 
energy levels include one 3s orbital, three 3p orbitals, 
and five 3d orbitals. Five d-orbitals have magnetic 
quantum numbers (ml) +2, +1, 0, −1, −2, representing 
different angular moments around the z-axis (but of the 
same magnitude, since in each case l = 2) (Atkin & Paula, 
2006: 334). Figure 3 illustrates electrons at the orbital 

state (𝑛, 𝑙 , 𝑚) = (3, 2, 0) or 3𝑑 level, showing the 
probability density distribution with a maximum along 
the z-axis. For state (𝑛, 𝑙 , 𝑚) = (3, 2, ±1)  indicates the 
probability with a maximum value along a given 
direction in the space corresponding to the x and y axes. 
As for the state (𝑛, 𝑙 , 𝑚) = (3, 2, ±2) shows the greatest 
probability is found in certain regions along the positive 
z-axis or along the negative z-axis.

 

 

 
Figure 4. 3D angular graph for the sets of quantum number (n=4) with (l=3,m=0), (l=3,m=±1), (l=3,m=±2), and (l=3,m=±3) 
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In the state (𝑛, 𝑙 , 𝑚) = (4, 3, 0), the electron is at the 
level of the 4f orbital. From the graph it can be seen that 
the maximum probability of finding electrons is along 
the z-axis. For the (𝑛, 𝑙 , 𝑚) = (4, 3, ±1) situation shows 3 
different orientations of the 4f orbital where electrons are 
most likely to be found. And also from the chart it is seen 
that the maximum probability is along the direction of 
the x or y axis. The (𝑛, 𝑙 , 𝑚) = (4, 3, ±2) situation shows 
that there are two orientations of these orbitals. The 
greatest chance of finding electrons along the positive z-
axis (𝑚 = +2)  or along the negative z-axis 𝑚 = −2. And 
under the state (𝑛, 𝑙 , 𝑚) = (4, 3, ±3), the greatest 
probability is found along the positive z-axis or negative 
z-axis.  

 

Conclusion  
 

Based on the results of research that has been done, 
the anguler wave function of Helium ions ( 𝐻2

4 𝑒+) in 
momentum space is the same as the wave function of 
Hydrogen atoms and deuterium atoms in position space 
and is also in the same shape as the anguler wave 
function of Tritium atoms in momentum space. So the 
angulatory wave function of a hydrogenic atom and has 
the same angulatory function both in position space and 
in momentum space. 
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