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Abstract: Pneumonia disease is a lung infection caused by Streptococcus pneumoniae. 
Meningitis is an infection of the meninges and cerebrospinal fluid caused by Streptococcus 
pneumoniae. Both diseases may occur at the same time. A mathematical model is needed 
to represent the spread of pneumonia and meningitis co-infection. This study aims to 
build the stochastic model of pneumonia and meningitis co-infection with CTMC, 
determine the transition and outbreak probability, and conduct simulations to assess the 
effect of increasing the contact rate on pneumonia (𝑎) and meningitis (𝑏). Based on the 
computer simulation undertaken, it can be concluded that if 𝑎 was decreased while 𝑏 was 
set to be fixed, the probability of disease outbreak decreased.  If 𝑎 was set to be fixed 
while 𝑏 was decreased, the probability of disease outbreak decreased. However, the latter 
is smaller than the previous. Similarly, if 𝑎 was increased while 𝑏 was set to be fixed, the 
probability of disease outbreak increased.  If 𝑎 was set to be fixed while 𝑏 was increased, 
the probability of disease outbreak increased. However, the latter is smaller than the 
previous. Moreover, if both 𝑎 and 𝑏 were decreased, the probability of disease outbreak 
was equal to zero. 
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Introduction  
 

Pneumonia is an infection in the lungs that affects 
the alveolar space explicitly (Lim, 2022). The infection 
can be transmitted by breathing in pathogenic 
microorganisms or inhalin (Cilloniz et al., 2016). The 
disease can claim the lives of millions of people through 
inhalation of pathogenic organisms. In 2015, as many as 
920,000 children under the age of five died from 
pneumonia worldwide, or two children every minute 
and approximately 99% of these child deaths took place 
in developing countries (Watkins et al., 2017). Bacteria, 
fungi, and viruses can cause pneumonia, but the most 
common cause is Streptococcus pneumoniae (Leach & 
McLuckie, 2009). Pneumonia is particularly dangerous 
in people with weakened immune systems, such as 
infants and the elderly, or when infected with other 
diseases, such as meningitis (Feldman & Anderson, 
2019; Kotola & Mekonnen, 2022). 

Meningitis is an infection of the meninges and 
cerebrospinal fluid surrounding the brain and the spinal 
cord (Howlett, 2012). The disease affects all age groups, 
and children under the age of 5 are particularly at risk. 
In 2017, 290 thousand meningitis-related deaths and 5 
million new cases of meningitis were reported globally. 
(W.H.O., 2021). Bacteria or viruses can cause meningitis. 
One of the bacteria that commonly causes meningitis is 
Streptococcus pneumoniae (Tambunan, 2019). 

The same bacteria can cause pneumonia and 
meningitis, so a person can get both diseases 
simultaneously (Zhang et al., 2018). Approximately 4% 
to 20% of patients infected with meningitis may develop 
pneumonia. In other words, both disorders occur at the 
same time. Based on age, 20% are elderly, while younger 
patients vary between 4% and 10%. When grouped by 
the pathogen causing the infection, patients infected 
with meningitis due to S. pneumoniae have the highest 
pneumonia infection rate, which is about 18% - 22% 
(Brueggemann et al., 2021; Figueiredo et al., 2020).  

https://doi.org/10.29303/jppipa.v9i12.6108
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Mathematical modelling is essential in representing 
the dynamics of infectious disease co-infection and its 
control. Mathematical models for infectious diseases are 
divided into two types, namely deterministic models 
and stochastic models (Dadlani et al., 2020;  & Li, 2018). 
Research on the spread of disease co-infection using 
deterministic models has been widely conducted. 
However, there are still relatively few studies of 
infectious disease co-infection using stochastic models. 
Stochastic models are needed to account for variation 
and uncertainty in an epidemic (Nurlazuardini et al., 
2016). In their study, Allen & Lahodny (2012) found that 
outbreak opportunity information is very useful in 
epidemic models, and the value of the disease-free 
opportunity obtained by the branching process is almost 
the same as in numerical studies. The disease-free 
probability can be used to determine the persistence or 
extinction of a disease (Maliyoni, 2021). 

Therefore, a Continuous Time Markov Chain 
(CTMC) stochastic model is developed in this study, 
referencing the model introduced by (Tilahun, 2019a). 
This approach was chosen because infection can occur at 
any time. In addition, this study also modified the 
recovery compartment in the co-infection of pneumonia 
and meningitis. 
 

Method  
 

This research is a literature study with a 
mathematical approach regarding the co-infection of 
pneumonia and meningitis. The steps of this study are 
as follows: Modify (Nigmatulina, 2009; Tilahun (2019) 
deterministic model of pneumonia and meningitis co-
infection into a stochastic model using the CTMC 
approach and change the pneumonia-cured and 
meningitis-cured compartments into pneumonia-cured 
but still infected with meningitis and meningitis-cured 
but still infected with pneumonia compartments; 
Determine the transition probability and the outbreak 
probability; Perform numerical simulations using 
𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 11.3 and 𝑅 − 𝑆𝑡𝑢𝑑𝑖𝑜 software to 
determine the following: (a). The effect of changing the 
pneumonia contact rate (𝑎) when the meningitis contact 
rate (𝑏) is fixed; (b). The impact of changing the 
meningitis transition rate (𝑏) when the pneumonia 
transition rate (𝑎) is fixed (Asamoah et al., 2020). 
  
Deterministic Model of Co-infection in Pneumonia and 
Meningitis  

Tilahun (2019) introduced the SIRS model of co-
infection in pneumonia and meningitis by dividing the 
population into seven compartments, namely 𝑆 
(susceptible), 𝐼𝑝 (pneumonia only infectious), 𝐼𝑀 

(meningitis only infectious), 𝐼𝑝𝑀 (pneumonia and 

meningitis co-infectious), 𝑅𝑝 (pneumonia recovered), 𝑅𝑀 

(meningitis recovered), 𝑅𝑝𝑀 (pneumonia and meningitis 

co-infectious recovered). 

 

Figure 1. Flow diagram of Tilahun's model (Tilahun (2019) 

The following differential system is obtained based 
on the assumptions and diagram: 

 
𝑑𝑆

𝑑𝑡
= 𝜋 + 𝛿1𝑅𝑝 + 𝛿2𝑅𝑀 + 𝛿3𝑅𝑝𝑀 − (𝑓1 + 𝑓2 + 𝜇0)𝑆, 

𝑑𝐼𝑝

𝑑𝑡
= 𝑓1𝑆 − (𝑓2 + 𝜎1 + 𝛼1 + 𝜇0)𝐼𝑝, 

𝑑𝐼𝑀

𝑑𝑡
= 𝑓2𝑆 − (𝑓1 + 𝜎2 + 𝛼2 + 𝜇0)𝐼𝑀, 

𝑑𝐼𝑝𝑀

𝑑𝑡
= 𝑓2𝐼𝑝 + 𝑓1𝐼𝑀 − (𝜎 + 𝛼1 + 𝛼2 + 𝜇0)𝐼𝑝𝑀,  

𝑑𝑅𝑝

𝑑𝑡
= 𝜎1𝐼𝑝 + 𝜎𝑒𝐼𝑝𝑀 − (𝛿1 + 𝜇0)𝑅𝑝, 

𝑑𝑅𝑀

𝑑𝑡
= 𝜎2𝐼𝑀 + 𝜎𝐴𝐼𝑝𝑀 − (𝛿2 + 𝜇0)𝑅𝑀, 

𝑑𝑅𝑝𝑀

𝑑𝑡
= 𝜎𝐵𝐼𝑝𝑀 − (𝛿3 + 𝜇0)𝑅𝑝𝑀,  (1) 

 
with 𝐴 = 𝑔(1 − 𝑒), 𝐵 = (1 − 𝑔)(1 − 𝑒). 
 

Result and Discussion 
 
Mathematical Modification Model 

The modification of the pneumonia and meningitis 
co-infection model is done by changing the variables 𝑅𝑀 

and 𝑅𝑝 to 𝑅𝑀
𝑝

 and 𝑅𝑝
𝑀 as the subpopulation cured of 

meningitis and still infected with pneumonia and the 
subpopulation cured of pneumonia and still infected 
with meningitis, respectively (Tilahun, 2018). Therefore, 
this model has seven variables, namely 𝑆(𝑡), 𝐼𝑝(𝑡),

𝐼𝑀(𝑡), 𝐼𝑝𝑀(𝑡), 𝑅𝑝
𝑀(𝑡), 𝑅𝑀

𝑝 (𝑡), and 𝑅(𝑡). 

The assumptions used in this study are as follows: 
Birth and death rates are equal in each subpopulation; 
there is no migration within each subpopulation; 
Individuals in the susceptible (𝑆) subpopulation have 
two possibilities to become infected with the disease, 
namely to become infected with pneumonia with an 
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infection rate of 𝑘1 (𝐼𝑝) and to become infected with 

meningitis with an infection rate of 𝑘2 (𝐼𝑀), where 𝑘1 =
𝑎(𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀

𝑝
)

𝑁
 and 𝑘2 =

𝑏(𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝
𝑀)

𝑁
; individuals in 

subpopulation 𝐼𝑝 or 𝐼𝑀 are still likely to be infected with 

both diseases (co-infection of pneumonia and meningitis 
(𝐼𝑝𝑀)); individuals with co-infection of pneumonia and 

meningitis (𝐼𝑝𝑀) may recover from one of the infections, 

but there is still another infection to become 𝑅𝑝
𝑀 or 𝑅𝑀

𝑝
; 

individuals in the 𝑅𝑀
𝑝

 subpopulation can still infect the 𝑆 
and 𝐼𝑀 subpopulations because there is still a pneumonia 
infection; individuals in the 𝑅𝑝

𝑀 subpopulation can still 

infect the 𝑆 and 𝐼𝑝 subpopulations because there is still a 

meningitis infection; and the parameter value 𝜎1
∗ = 𝑑1𝜎1 

and 𝜎2
∗ = 𝑑2𝜎2. In this study, the value of 𝑑1 = 𝑑2 = 1. 

Schematically, the following compartment diagram 
can illustrate the pneumonia and meningitis co-infection 
model. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. The modified model diagram (the red arrows were 
added to improve the original model) 

The differential equation obtained from the above 
diagram is as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝜇0𝑁 + 𝛿𝑅 − (𝑘1 + 𝑘2 + 𝜇0)𝑆, 

𝑑𝐼𝑝

𝑑𝑡
= 𝑘1𝑆 − (𝑘2 + 𝜎1 + 𝛼1 + 𝜇0)𝐼𝑝,  

𝑑𝐼𝑀

𝑑𝑡
= 𝑘2𝑆 − (𝑘1 + 𝜎2 + 𝛼2 + 𝜇0)𝐼𝑀, 

𝑑𝐼𝑝𝑀

𝑑𝑡
= 𝑘2𝐼𝑝 + 𝑘1𝐼𝑀 − [𝜎1 + 𝜎2 + 𝛼1 + 𝛼2 + 𝜇0]𝐼𝑝𝑀,  

𝑑𝑅𝑝
𝑀

𝑑𝑡
= 𝜎1𝐼𝑝𝑀 − (𝜎2 + 𝜇0 )𝑅𝑝

𝑀, 

𝑑𝑅𝑀
𝑝

𝑑𝑡
= 𝜎2𝐼𝑝𝑀 − (𝜎1 + 𝜇0)𝑅𝑀

𝑝
, 

𝑑𝑅

𝑑𝑡
= 𝜎2𝑅𝑝

𝑀 + 𝜎1𝑅𝑀
𝑝
+ 𝜎1𝐼𝑝 + 𝜎2𝐼𝑀 − (𝛿 + 𝜇0)𝑅,  (2) 

 
The description of the parameters is as follows 

𝜇
0
 : Birth and natural death rate  

𝑎  : Pneumonia contact rate 

𝑏 : Meningitis contact rate 

𝛼1 : Mortality rate due to pneumonia infection 

𝛼2 : Mortality rate due to meningitis infection 

𝜎1, 𝜎1
∗  : Treatment rate of pneumonia 

𝜎2, 𝜎2
∗  : Treatment rate of meningitis 

𝛿 : Transition rate of recovered individuals to re-
susceptibility 

The overall pneumonia and meningitis co-infection 
model was separated into several sub-models, namely 
the pneumonia-only model and the meningitis-only 
model. This is useful to gain a deeper understanding of 
the dynamics and interactions of pneumonia and 
meningitis (Tilahun, 2019b) & (Kotola et al., 2022). 

 
Pneumonia Disease Model  

Based on the system of differential equations in the 

modified model, the pneumonia model with 𝑰𝑴 = 𝑰𝒑𝑴 =

𝑹𝑴
𝒑
= 𝑹𝒑

𝑴 = 𝟎 and 𝝈𝟐 = 𝒌𝟐 = 𝟎 as follows: 
𝑑𝑆

𝑑𝑡
= 𝜇

0
𝑁 + 𝛿𝑅 − (

𝑎𝐼𝑝

𝑁
+ 𝜇

0
) 𝑆, 

𝑑𝐼𝑝

𝑑𝑡
=

𝑎𝐼𝑝

𝑁
𝑆 − (𝜎1 +𝛼1 + 𝜇0)𝐼𝑝,     

𝑑𝑅

𝑑𝑡
= 𝜎1𝐼𝑝 − (𝛿 + 𝜇0)𝑅,  (3) 

 
Disease-Free Fixed Point  

The disease-free fixed point is obtained by solving 

the equation in the pneumonia-only model with  
𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑝

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 and 𝐼𝑝 = 0, thus obtained as follows: 

𝐸0𝑝 = (𝑁, 0,0)  
  

Basic Reproduction Number 
The basic reproduction number (ℜ0) is necessary to 

determine the potential spread of disease in the 
population. The calculation of the basic reproduction 
number from the equation is obtained by using the next-
generation matrix, which is based on the subpopulations 

that cause infection only. ℜ0 is defined as the largest 
eigenvalue of the matrix 𝐾. The matrix 𝐾 is the product 
of two matrices written 𝑲 = 𝑭𝐕−𝟏, where 𝐹 is the 
infection rate increase matrix, while 𝑉 is the rate at which 
infection moves evaluated at a fixed point (Diekmann et 
al., 2010) & (Delamater et al., 2019). The basic 

reproduction number for pneumonia (ℜ0𝑝) to determine 

the potential spread of pneumonia in the population is 
obtained as follows (Adeniyi & Oluyo, 2018). 

 

ℜ0𝑝 =
𝑎

𝜎1+𝛼1+𝜇0

    (4) 

 
Expected value of many infected individuals (𝑚𝑝) 

Stochastically, an outbreak occurs when the 
expected value of the number of infected individuals 



Jurnal Peneliatian Pendidikan IPA (JPPIPA) Desember 2023, Volume 9 Issue 12, 1415-1425 

 

1418 

(𝑚) is greater than 1. The determination of the outbreak 
probability and disease-free probability can be obtained 
by using a branching process with a probability-

generating function (pgf). Pgf for 𝐼𝑝 with initial value 

𝐼𝑝(0) = 1 is  

 

𝑓(𝑢) =
𝛼1+𝜎1+𝜇0

𝑎+𝛼1+𝜎1+𝜇0
+

𝑎

𝑎+𝛼1+𝜎1+𝜇0
𝑢2  (5) 

 
Furthermore, the expected value of the number of 

pneumonia-infected individuals is obtained 

𝑀 = 𝑓′(1) =
2𝑎

𝑎+𝛼1+𝜎1+𝜇0
  

𝑚𝑝 = 𝜌(𝑀)𝑝 =
2𝑎

𝑎+𝛼1+𝜎1+𝜇0

   (6) 

 
Meningitis Only Model  

Based on the system of equations, the meningitis 

model is obtained by assuming 𝐼𝑝 = 𝐼𝑝𝑀 = 𝑅𝑝
𝑀 = 𝑅𝑀

𝑝
=

0 and 𝜎1 = 𝑘1 = 0 as follows: 
𝑑𝑆

𝑑𝑡
= 𝜇

0
𝑁 + 𝛿𝑅 − (

𝑏𝐼𝑀

𝑁
+ 𝜇

0
) 𝑆, 

𝑑𝐼𝑚
𝑑𝑡
=

𝑏𝐼𝑀
𝑁
𝑆− (𝜎2 + 𝛼2 +𝜇0)𝐼𝑀,    

𝑑𝑅

𝑑𝑡
= 𝜎2𝐼𝑀 − (𝛿 + 𝜇0)𝑅,  (7) 

 
Disease-Free Fixed Point  

The disease-free fixed point is obtained by solving 

the equation in the meningitis only model with   
𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑀

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 and 𝐼𝑀 = 0, thus obtained as follows: 

𝐸0𝑀 = (𝑁, 0,0)   
 
Basic Reproduction Number 

After obtaining the disease-free fixed point, the next 
step is to find the basic reproduction number of 

meningitis (ℜ0𝑀) to determine the potential spread of 
meningitis in the population. The calculation of the basic 
reproduction number is obtained by using the next-

generation matrix, so the value of ℜ0𝑀 is obtained as 
follows: 

ℜ0M =
b

σ2+α2+μ0

          (8) 

Expected value of many infected individuals (𝑚𝑀) 

Pgf for 𝐼𝑝 with initial value 𝐼𝑀(0) = 1 is  

𝑓(𝑢) =
𝛼2+𝜎2+𝜇0

𝑏+𝛼2+𝜎2+𝜇0
+

𝑏

𝑏+𝛼2+𝜎2+𝜇0
𝑢2  (9) 

 
Furthermore, the expected value of the number of 

meningitis-infected individuals is obtained 

𝑀 = 𝑓′(1) =
2𝑏

𝑏+𝛼2+𝜎2+𝜇0
  

𝑚𝑀 = 𝜌(𝑀)𝑀 =
2𝑏

𝑏+𝛼2+𝜎2+𝜇0

   (10) 

 
 

Pneumonia and Meningitis Co-infection Model  
Disease-Free Fixed Point  

The disease-free fixed point is obtained by solving 
the system of equations of the overall co-infection model 

with 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑝

𝑑𝑡
=

𝑑𝐼𝑀

𝑑𝑡
=

𝑑𝐼𝑝𝑀

𝑑𝑡
=

𝑑𝑅𝑝
𝑀

𝑑𝑡
=

𝑑𝑅𝑀
𝑝

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 and 

satisfying 𝐼𝑝(𝑡) = 0,  𝐼𝑀(𝑡) = 0,  𝐼𝑝𝑀 = 0, so the 

following disease-free fixed point is obtained: 

𝐸0 = (𝑁, 0,0,0,0,0,0,0)    (11) 
 

Basic Reproduction Number 

The basic reproduction number (ℜ0) is obtained 

using the next generation matrix based on the 

subpopulations that cause infection only, namely 𝐼𝑝, 𝐼𝑀 , 

𝐼𝑝𝑀, 𝑅𝑝
𝑀, dan 𝑅𝑀

𝑝
. Therefore, the differential equation 

system used is as follows. 

𝑑𝐼𝑝

𝑑𝑡
= 𝑘1𝑆 − (𝑘2 + 𝜎1 + 𝛼1 + 𝜇0)𝐼𝑝,  

𝑑𝐼𝑚

𝑑𝑡
= 𝑘2𝑆 − (𝑘1 + 𝜎2 + 𝛼2 + 𝜇0)𝐼𝑀, 

𝑑𝐼𝑝𝑚

𝑑𝑡
= 𝑘2𝐼𝑝 + 𝑘1𝐼𝑀− [𝜎1 + 𝜎2 + 𝛼1 +𝛼2 + 𝜇0]𝐼𝑝𝑀, 

𝑑𝑅𝑝
𝑚

𝑑𝑡
= 𝜎1𝐼𝑝𝑀 − (𝜎2 +𝜇0 )𝑅𝑝

𝑀,  

𝑑𝑅𝑚
𝑝

𝑑𝑡
= 𝜎2𝐼𝑝𝑀 − (𝜎1 + 𝜇0)𝑅𝑀

𝑝
, 

 

The matrices 𝐹𝑖 and 𝑉𝑖 are defined as follows: 

𝑭𝒊 =

[
 
 
 
 

𝑘1𝑆

𝑘2𝑆

𝑘2𝐼𝑝 + 𝑘1𝐼𝑀
𝜎1𝐼𝑝𝑀
𝜎2𝐼𝑝𝑀 ]

 
 
 
 

  

=

[
 
 
 
 
 
 
 

𝑎(𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀
𝑝
)

𝑁
𝑆

𝑏(𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝
𝑀)

𝑁
𝑆

𝑏(𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝
𝑀)

𝑁
𝐼𝑝 +

𝑎(𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀
𝑝
)

𝑁
𝐼𝑀

𝜎1𝐼𝑝𝑀
𝜎2𝐼𝑝𝑀 ]

 
 
 
 
 
 
 

   

𝑽𝒊 =

[
 
 
 
 
 
 

(𝑘2 + 𝜎1 + 𝛼1 + 𝜇0)𝐼𝑝

(𝑘1 + 𝜎2 + 𝛼2 + 𝜇0)𝐼𝑀

[𝜎1 + 𝜎2 + 𝛼1 + 𝛼2 + 𝜇0]𝐼𝑝𝑀

(𝜎2 + 𝜇0)𝑅𝑝
𝑀

(𝜎1 + 𝜇0)𝑅𝑀
𝑝

]
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=

[
 
 
 
 
 
 
 (
𝑏(𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝

𝑀)

𝑁
+ 𝜎1 + 𝛼1 + 𝜇0) 𝐼𝑝

(
𝑎(𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀

𝑝
)

𝑁
+ 𝜎2 + 𝛼2 + 𝜇0) 𝐼𝑀

[𝜎1 + 𝜎2 + 𝛼1 + 𝛼2 + 𝜇0]𝐼𝑝𝑀
(𝜎2 + 𝜇0 )𝑅𝑝

𝑀

(𝜎1 + 𝜇0)𝑅𝑀
𝑝

]
 
 
 
 
 
 
 

  

 

Next, the matrices 𝐹𝑖 and 𝑉𝑖 are derived concerning 

𝐼𝑝, 𝐼𝑀, 𝐼𝑝𝑀, 𝑅𝑝
𝑀, and 𝑅𝑀

𝑝
 into matrices 𝐹 and 𝑉 and then 

evaluated against the fixed point so that 

𝑭 =

[
 
 
 
 
𝑎 0 𝑎 0 0
0 𝑏 𝑏 0 0
0 0 0 0 0
0 0 𝜎1 0 0
0 0 𝜎2 0 0]

 
 
 
 

  

  

𝑽−𝟏 =

[
 
 
 
 
 
 
 
 

1

𝜎1+𝛼1+𝜇0
0 0 0 0

0
1

𝜎2+𝛼2+𝜇0
0 0 0

0 0
1

𝜎1+𝜎2+𝛼1+𝛼2+𝜇0
0 0

0 0 0
1

𝜎2+𝜇0
0

0 0 0 0
1

𝜎1+𝜇0]
 
 
 
 
 
 
 
 

  

 
The next generation matrix 𝑲 is 
𝑲 = 𝑭𝐕−𝟏  

 =

[
 
 
 
 
 

𝑎

𝜎1+𝛼1+𝜇0
0 0 0 0

0
𝑏

𝜎2+𝛼2+𝜇0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 

 

Based on the K matrix above, the eigenvalues are 

obtained as follows: 

𝜆1
∗ =

𝑎

𝜎1+𝛼1+𝜇0
= ℜ0𝑝 , 𝜆2

∗ =
𝑏

𝜎2+𝛼2+𝜇0
= ℜ0𝑀 , 𝜆3

∗ = 𝜆4
∗ = 

𝜆5
∗ = 0  

The basic reproduction number is determined from the 
dominant eigenvalue, thus obtained 

ℜ0 = 𝑚𝑎𝑥(ℜ0𝑝 , ℜ0𝑀). 

 
Determination of Transition Probability 

The modified model (equation 2) is assumed to 
fulfil Markov properties. 

𝑃{𝑆(𝑡 + ∆𝑡), 𝐼𝑝(𝑡 + ∆𝑡), 𝐼𝑀(𝑡 + ∆𝑡), 𝐼𝑝𝑀(𝑡 + ∆𝑡), 𝑅𝑝
𝑀(𝑡 +

∆𝑡) , 𝑅𝑀
𝑝 (𝑡 + ∆𝑡) , 𝑅(𝑡 + ∆𝑡) |   

(𝑆(0), 𝐼𝑝(0), 𝐼𝑀(0), 𝐼𝑝𝑀(0), 𝑅𝑝
𝑀(0), 𝑅𝑀

𝑝 (0), 𝑅(0)),… , (𝑆(𝑡), 

 𝐼𝑝(𝑡), 𝐼𝑀(𝑡), 𝐼𝑝𝑀(𝑡), 𝑅𝑝
𝑀(𝑡), 𝑅𝑀

𝑝 (𝑡), 𝑅(𝑡))}  

= 𝑃{𝑆(𝑡 + ∆𝑡), 𝐼𝑝(𝑡 + ∆𝑡), 𝐼𝑀(𝑡 + ∆𝑡), 𝐼𝑝𝑀(𝑡 + ∆𝑡), 𝑅𝑝
𝑀(𝑡 +

∆𝑡), 𝑅𝑀
𝑝 (𝑡 + ∆𝑡), 𝑅(𝑡 + ∆𝑡) | 𝑆(𝑡), 𝐼𝑝(𝑡), 𝐼𝑀(𝑡), 𝐼𝑝𝑀(𝑡),   

𝑅𝑝
𝑀(𝑡), 𝑅𝑀

𝑝 (𝑡), 𝑅(𝑡)}  

The transition probability at time(𝑡 + ∆𝑡) depends 
only on the process one-time step earlier, i.e. at time t. If 
suppose an ordered pair  

(𝑆(𝑡), 𝐼𝑝(𝑡), 𝐼𝑀(𝑡), 𝐼𝑝𝑀(𝑡), 𝑅𝑝
𝑀(𝑡), 𝑅𝑀

𝑝 (𝑡), 𝑅(𝑡)) =

(𝑠, 𝑖𝑝, 𝑖𝑀, 𝑖𝑝𝑀, 𝑟𝑝
𝑀 , 𝑟𝑀

𝑝
, 𝑟) and (𝑆(𝑡 + ∆𝑡), 𝐼𝑝(𝑡 + ∆𝑡), 𝐼𝑀(𝑡 +

∆𝑡), 𝐼𝑝𝑀(𝑡 + ∆𝑡), 𝑅𝑝
𝑀(𝑡 + ∆𝑡), 𝑅𝑀

𝑝 (𝑡 + ∆𝑡), 𝑅(𝑡 + ∆𝑡)) =

(𝑛, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧)  
with 𝑠, 𝑖𝑝, 𝑖𝑀 , 𝑖𝑝𝑀 , 𝑟𝑝

𝑀 , 𝑟𝑀
𝑝
, 𝑟, 𝑛, 𝑢, 𝑣,𝑤, 𝑥, 𝑦, 𝑧 = 0,1,2,…, then 

the displacement from state (𝑠, 𝑖𝑝, 𝑖𝑀 , 𝑖𝑝𝑀 , 𝑟𝑝
𝑀 , 𝑟𝑀

𝑝
, 𝑟) to 

state (𝑛, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧) can be expressed as follows: 

𝑃(𝑛,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟)
(𝑡, 𝑡 + ∆𝑡) = 𝑃{𝑆(𝑡 + ∆𝑡) =

𝑛, 𝐼𝑝(𝑡 + ∆𝑡) = 𝑢, 𝐼𝑀(𝑡 + ∆𝑡) = 𝑣  𝐼𝑝𝑀(𝑡 + ∆𝑡) =

𝑤, 𝑅𝑝
𝑀(𝑡 + ∆𝑡) = 𝑥,   𝑅𝑀

𝑝 (𝑡 + ∆𝑡) = 𝑦, 𝑅(𝑡 + ∆𝑡) =

𝑧 |(𝑆(𝑡) = 𝑠, 𝐼𝑝(𝑡) = 𝑖𝑝, 𝐼𝑀(𝑡) = 𝑖𝑀, 𝐼𝑝𝑀(𝑡) =

𝑖𝑝𝑀, 𝑅𝑝
𝑀(𝑡) = 𝑟𝑝

𝑀, 𝑅𝑀
𝑝 (𝑡) = 𝑟𝑀

𝑝
, 𝑟(𝑡) = 𝑟)}  

 
The following are the transition probabilities 

occurred for each component, for ∆𝑡 period of time.  
The probability of adding one susceptible 

individual (𝑆): 

𝑃(𝑠+1,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝
𝑀,𝑟𝑀

𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) = (𝜇𝑁)∆𝑡 +

𝑜(∆𝑡)  
The probability of reducing one recovered 

individual (𝑅), resulting in the addition of one 
susceptible individual (𝑆): 

𝑃(𝑠+1,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟−1),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

(𝛿𝑅)∆𝑡 + 𝑜(∆𝑡)  
The probability of reducing one susceptible 

individual (𝑆), resulting in the addition of one 

pneumonia-infected individual (𝐼𝑝): 

𝑃(𝑠−1,𝑖𝑝+1,𝑖𝑚,𝑖𝑝𝑚,𝑟𝑝𝑚,𝑟𝑚
𝑝
),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝑎 (
𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀

𝑝

𝑁
) 𝑆∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one susceptible 
individual (𝑆), resulting in the addition of one 

meningitis-infected individual (𝐼𝑀):  

𝑃(𝑠−1,𝑖𝑝 ,𝑖𝑀+1,𝑖𝑝𝑀 ,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝑏 (
𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝

𝑀

𝑁
) 𝑆∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one pneumonia-

infected individual (𝐼𝑝), resulting in the addition of one 

pneumonia and meningitis co-infected individual (𝐼𝑝𝑀): 

𝑃(𝑠,𝑖𝑝−1,𝑖𝑀 ,𝑖𝑝𝑀+1,𝑟𝑝𝑀 ,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝑏 (
𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝

𝑀

𝑁
) 𝐼𝑝∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one meningitis-infected 
individual (𝐼𝑀), resulting in the addition of one 

pneumonia and meningitis co-infected individual (𝐼𝑝𝑀): 
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𝑃(𝑠,𝑖𝑝 ,𝑖𝑚−1,𝑖𝑝𝑚+1,𝑟𝑝
𝑚,𝑟𝑚

𝑝
),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝑎 (
𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀

𝑝

𝑁
) 𝐼𝑀∆𝑡 + 𝑜(∆𝑡)  

 
The probability of reducing one pneumonia and 

meningitis co-infected individual (𝐼𝑝𝑀), resulting in the 

addition of one recovered individual of pneumonia but 
still infected with meningitis (𝑅𝑝

𝑀): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀−1,𝑟𝑝𝑀+1,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝜎1𝐼𝑝𝑀∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one pneumonia and 

meningitis co-infected individual (𝐼𝑝𝑀), resulting in the 

addition of one recovered individual of meningitis but 

still infected with pneumonia (𝑅𝑀
𝑝
): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀−1,𝑟𝑝𝑀,𝑟𝑀
𝑝
+1,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

𝜎2𝐼𝑝𝑀∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one susceptible 
individual (𝑆):  

𝑃(𝑠−1,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀 ,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) = 𝜇

0
𝑆∆𝑡 + 𝑜(∆𝑡) 

 
The probability of reducing one pneumonia-

infected individual (𝐼𝑝): 

𝑃(𝑠,𝑖𝑝−1,𝑖𝑀 ,𝑖𝑝𝑀 ,𝑟𝑝
𝑀,𝑟𝑀

𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) = (𝛼1 +

𝜇
0
)𝐼𝑝∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one pneumonia-

infected individual (𝐼𝑝), resulting in the addition of one 

recovered individual (𝑅): 

𝑃(𝑠,𝑖𝑝−1,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟+1),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

(𝜎1)𝐼𝑝∆𝑡 + 𝑜(∆𝑡)  
The probability of reducing one meningitis-infected 

individual (𝐼𝑀): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀−1,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) = (𝛼2 +

𝜇
0
)𝐼𝑀∆𝑡 + 𝑜(∆𝑡)  

The probability of reducing one meningitis-infected 

individual (𝐼𝑀), resulting in the addition of one 
recovered individual (𝑅):  

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀−1,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟+1),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡) =

(𝜎2)𝐼𝑀∆𝑡 + 𝑜(∆𝑡)  
The probability of reducing pneumonia and 

meningitis co-infected individual (𝐼𝑝𝑀):  

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀−1,𝑟𝑝𝑀 ,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀 ,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝛼1 + 𝛼2 + 𝜇0)𝐼𝑝𝑀∆𝑡 + 𝑜(∆𝑡) 

The probability of reducing one pneumonia 
recovered individual but still infected with meningitis 

(𝑅𝑝
𝑀): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀 ,𝑟𝑝𝑀−1,𝑟𝑀
𝑝
,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝜇
0
)𝑅

𝑝
𝑀∆𝑡 + 𝑜(∆𝑡) 

The probability of reducing one pneumonia 
recovered individual but still infected with meningitis 

(𝑅𝑝
𝑀) resulting in the addition of one recovered 

individual (𝑅):  

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀−1,𝑟𝑀
𝑝
,𝑟+1),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝜎2)𝑅𝑝
𝑀∆𝑡 + 𝑜(∆𝑡) 

The probability of reducing one meningitis 
recovered individual but still infected with pneumonia 

(𝑅𝑀
𝑝

):  

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
−1,𝑟),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀 ,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝜇
0
)𝑅

𝑀
𝑝 ∆𝑡 + 𝑜(∆𝑡) 

The probability of reducing one meningitis 
recovered individual but still infected with pneumonia 

(𝑅𝑀
𝑝

), resulting in the addition of one recovered 
individual (R): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀 ,𝑟𝑝𝑀,𝑟𝑀
𝑝
−1,𝑟+1),(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝

𝑀,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝜎1)𝑅𝑀
𝑝 ∆𝑡 + 𝑜(∆𝑡) 

The probability of reducing one recovered 
individual (𝑅): 

𝑃(𝑠,𝑖𝑝 ,𝑖𝑀 ,𝑖𝑝𝑀,𝑟𝑝𝑀,𝑟𝑀
𝑝
,𝑟−1),(𝑠,𝑖𝑝 ,𝑖𝑀,𝑖𝑝𝑀 ,𝑟𝑝

𝑀 ,𝑟𝑀
𝑝
,𝑟)
(∆𝑡)

= (𝜇
0
)𝑅∆𝑡 + 𝑜(∆𝑡) 

Transition probabilities other than probabilities 

number 1 to 19 are equal to (1 − 𝜑)∆𝑡 + 𝑜(∆𝑡), where 

𝜑 = 𝜇0𝑁 + 𝛿𝑅 + 𝑎 (
𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀

𝑝

𝑁
) 𝑆 + 𝑏 (

𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝
𝑀

𝑁
) 𝑆 +

𝑏 (
𝐼𝑀+𝐼𝑝𝑀+𝑅𝑝

𝑀

𝑁
) 𝐼𝑝 +  𝑎 (

𝐼𝑝+𝐼𝑝𝑀+𝑅𝑀
𝑝

𝑁
) 𝐼𝑀 + 𝜎1𝐼𝑝𝑀 +

𝜎2𝐼𝑝𝑀 + 𝜇0𝑆 + (𝛼1 + 𝜇0 + 𝜎1)𝐼𝑝 + (𝛼2 + 𝜇0 + 𝜎2)𝐼𝑀 +

(𝛼1 + 𝛼2 + 𝜇0)𝐼𝑝𝑀 + (𝜇0+𝜎2)𝑅𝑝
𝑀 + (𝜇0+𝜎1)𝑅𝑀

𝑝
+ 𝜇0𝑅  

The value of 𝑜(∆𝑡) represents a minimal 
probability value and cannot be expressed exactly, 

with lim
𝑡→∞

𝑜(∆𝑡)

∆𝑡
= 0  (Allen & Lahodny, 2012). 

 
 
Determination of Outbreak Probability 

Disease outbreak occurs when the number of 
infected individuals increases over a long period. On the 
other hand, disease-free occurs when there are no more 
infected individuals. Stochastically, the disease outbreak 
occurs when the expected value of the number of 
infected individuals greater than one  (𝑚 > 1) (Rizzo et 
al., 2014) & (Yan, 2008). The probability of disease 
outbreak and the probability of disease-free can be 
determined using a branching process with a probability 
generating function (PGF) (Maity & Mandal, 2022) & 
(Muhumuza et al., 2022). Based on the branching 
process, there is a certain fixed point for a pgf where 

𝑓
𝑖
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞
5
) = 𝑞

𝑖
, 0 < 𝑞

𝑖
< 1. This gives, 

𝑓
1
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞

5
) = 𝑞

1
=

𝛼1+𝜎1+𝜇0+𝑎𝑞1
2

𝑎+𝛼1+𝜎1+𝜇0

 ,  
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𝑓
2
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞

5
) = 𝑞

2
=

𝛼2+𝜎2+𝜇+𝑏𝑞2
2

𝑏+𝛼2+𝜎2+𝜇0

 , 

𝑓
3
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞

5
) = 𝑞

3
=

𝛼1+𝛼2+𝜇0+𝑎𝑞1𝑞3+𝑏𝑞2𝑞3+𝜎1𝑞4+𝜎2𝑞5

𝑎+𝑏+𝛼1+𝛼2+𝜎1+𝜎2+𝜇0

 

𝑓
4
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞

5
) = 𝑞

4
=

𝜎2+𝜇0+𝑏𝑞2𝑞4

𝑏+𝜎2+𝜇0

 ,  

𝑓
5
(𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞

5
) = 𝑞

5
=

𝜎1+𝜇0+𝑎𝑞1𝑞5

𝑎+𝜎1+𝜇0

.  

 

By substituting 𝑞
1
, 𝑞

2
,𝑞
3
, 𝑞
4
, and 𝑞

5
 the following results 

are obtained: 

{
  
 

  
 

(𝑞1 = 1, 𝑞2 = 1, 𝑞3 = 1,𝑞4 = 1, 𝑞5 = 1),

(𝑞1 = 1, 𝑞2 =
𝛼2+𝜇0+𝜎2

𝑏
, 𝑞3 = −

𝑥

𝑦
, 𝑞4 =

𝜇0+𝜎2
𝑏−𝛼2

, 𝑞5 = 1) ,

(𝑞1 =
𝛼1+𝜇0+𝜎1

𝑎
, 𝑞2 = 1, 𝑞3 =

𝑢

𝑣
, 𝑞4 = 1,𝑞5 =

𝜇0+𝜎1
𝑎−𝛼1

) ,

(𝑞1 =
𝛼1+𝜇0+𝜎1

𝑎
, 𝑞2 =

𝛼2+𝜇0+𝜎2
𝑏

, 𝑞3 =
𝑟+𝑠

𝑡
, 𝑞4 =

𝜇0+𝜎2
𝑏−𝛼2

, 𝑞5 =
𝜇0+𝜎1
𝑎−𝛼1

)}
  
 

  
 

  

where 
𝑥 = α1α2 + α2

2 + α2𝜇0 − 𝜇0σ1 + α2σ2 − σ1σ2 − 𝑏(α1 +
α2 + 𝜇0 + σ2)  
𝑦 = (𝑏 − α2)(𝑏 + α1 + σ1)  
𝑢 = (𝑎 − α1)(α1 + α2 + 𝜇0 + σ1) + (𝜇0 + σ1)σ2  
𝑣 = (𝑎 − α1)(𝑎 + α2 + σ2)  
𝑟 = (𝑎 − α1)((𝑏 − α2)(α1 + α2 + 𝜇0) + 𝜇0σ1)  
𝑠 = ((𝑎 − α1)σ1 + 𝑏(𝜇0 + σ1) − α2(𝜇0 + σ1))σ2  
𝑡 = (𝑎 − α1)(𝑏 − α2)(𝑎 + 𝑏 − 𝜇0)  
Suppose 𝑱(𝑡) = {𝐼𝑝 (𝑡), 𝐼𝑀(𝑡), 𝐼𝑝𝑀(𝑡), 𝑅𝑝

𝑀(𝑡), 𝑅𝑀
𝑝 (𝑡)}. If 

given the initial value, 𝑱(0) = (𝜙, 𝜒,𝜓, 𝜔, 𝜏), then the 
disease-free probability is 

𝑃(𝑱(𝑡) = 0) = {
1,                           𝑚 ≤ 1

𝑞1
𝜙
𝑞2
𝜒
𝑞3
𝜓
𝑞4
𝜔𝑞5

𝜏,        𝑚 > 1
 

 
So that the probability of an outbreak is obtained, 

namely 

1 − 𝑃(𝑱(𝑡) = 0) = {
0,                                    𝑚 ≤ 1

1 − 𝑞1
𝜙
𝑞2
𝜒
𝑞3
𝜓
𝑞4
𝜔𝑞5

𝜏,        𝑚 > 1
 

 
Numerical Simulation 

Simulations were conducted to see the effect of 

pneumonia contact rate (𝑎) on pneumonia and 

meningitis co-infection and meningitis contact rate (𝑏) 

on pneumonia and meningitis co-infection. The 

assumed initial values of the subpopulations 

were 𝑆(0) = 820, 𝐼𝑝 = 100, 𝐼𝑀 = 50, 𝐼𝑝𝑀 = 30,𝑅𝑝
𝑀 = 0, 

and 𝑅𝑀
𝑝
= 0. The parameter values used include 

𝜇
0
, 𝛼1, 𝛼1, 𝛿, 𝑎, and 𝑏 obtained from Tilahun's research 

(2019), while the parameters 𝜎1 and 𝜎2 use assumptions 

as presented in Table 1. 

 
Table 1. Parameter values 

Parameter Parameter Value 

𝜇0  0.01 
𝛼1  0.025 
𝛼2  0.037 
𝜎1  0.271 
𝜎2  0.2 
𝛿  0.01 
𝑎  0.6 
𝑏  0.9 

 
The value of 𝑚 by determining the dominant 

eigenvalue of matrix 𝑀 is defined as 𝜌(𝑀) = 𝑚 below: 

𝑚 = max (
2𝑎

𝑎+𝛼1+𝜎1+𝜇0
,

2𝑏

𝑏+𝛼2+𝜎2+𝜇0
 )  

  = max (𝑚𝑝, 𝑚𝑀) 

 
Stochastically, an outbreak occurs when the value 

of 𝑚 > 1 (Allen & Lahodny, 2012). 

𝜕𝑓𝑖

𝑢𝑗
=

(

 
 
 
 
 
 

𝜕𝑓1

𝑢1

𝜕𝑓2

𝑢1

𝜕𝑓3

𝑢1

𝜕𝑓4

𝑢1

𝜕𝑓5

𝑢1
𝜕𝑓1

𝑢2

𝜕𝑓2

𝑢2

𝜕𝑓3

𝑢2

𝜕𝑓4

𝑢2

𝜕𝑓5

𝑢2
𝜕𝑓1

𝑢3

𝜕𝑓2

𝑢3

𝜕𝑓3

𝑢3

𝜕𝑓4

𝑢3

𝜕𝑓5

𝑢3

𝜕𝑓1

𝑢4

𝜕𝑓2

𝑢4

𝜕𝑓3

𝑢4

𝜕𝑓4

𝑢4

𝜕𝑓5

𝑢4
𝜕𝑓1

𝑢5

𝜕𝑓2

𝑢5

𝜕𝑓3

𝑢5

𝜕𝑓4

𝑢5

𝜕𝑓5

𝑢5)

 
 
 
 
 
 

  

Furthermore, the expected number of infected 
individuals (𝑚) is defined as the dominant eigenvalue 
of the matrix 𝑴, i.e., 𝑚 = 𝜌(𝑴), where 𝑴 is a 

nonnegative matrix whose elements are 
𝜕𝑓𝑖

𝑢𝑗
|𝑢=1.  

 
Below are simulation results with changes in the 

parameters 𝑎 and 𝑏, including the value of ℜ0, 𝑚 and 
the probability of an outbreak, as indicated in Table 2. 

 

Table 2. Numerical simulation result 
𝑎 𝑏 ℜ0𝑝 ℜ0𝑀 ℜ0 𝑚𝑝 𝑚𝑀 𝑚 Chance of an outbreak  

0.2 0.2 0.654 0.810 0.810 0.791 0.895 0.895 0 
0.6 0.2 1.961 0.810 1.961 1.325 0.895 1.325 1 − 1.74 × 10−4  
1.0 0.2 3.268 0.810 3.268 1.531 0.895 1.531 1 − 2.45 × 10−7  

0.2 0.9 0.654 3.644 3.644 0.791 1.569 1.569 1 − 3.51 × 10−5  
0.6 0.9 1.961 3.644 3.644 1.325 1.569 1.569 1 − 7.34 × 10−9  
1.0 0.9 3.268 3.644 3.644 1.531 1.569 1.569 1 − 1.24 × 10−11  

0.2 1.6 0.654 6.478 6.478 0.791 1.732 1.732 1 − 3.77 × 10−7  
0.6 1.6 1.961 6.478 6.478 1.325 1.732 1.732 1 − 8.71 × 10−11  
1.0 1.6 3.268 6.478 6.478 1.531 1.732 1.732 1 − 1.66 × 10−13  
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0.2 0 0.654 0 0.654 0.791 0 0.791 0  
0.6 0 1.961 0 1.961 1.325 0 1.325 1 − 1.74 × 10−4  
1.0 0 3.268 0 3.268 1.531 0 1.531 1 − 2.45 × 10−7  

0 0.2 0 0.810 0.810 0 0.895 0.895 0  
0 0.9 0 3.644 3.644 0 1.569 1.569 1 − 3.51 × 10−5  
0 1.6 0 6.478 6.478 0 1.732 1.732 1 − 3.77 × 10−7  

 
Table 2 shows a certain probability that an outbreak 

will occur when ℜ0 > 1 and 𝑚 > 1. The higher the 
pneumonia contact rate (𝑎) or meningitis contact rate 
(𝑏), the higher the probability of an outbreak.  

When the value of 𝑎 = 0.6 and 𝑏 = 0.9 results in a 

matter of ℜ0 = 3.644, 𝑚 = 1.569, and the probability of 
an outbreak is 1 − 7.34 × 10−9. The following is a sample 
path when the values of 𝑎 = 0.6 and 𝑏 = 0.9. 

 
Figure 3. Human population dynamics with parameter values 

𝑎 = 0.6 and 𝑏 = 0.9 

Figure 3 shows that co-infection of pneumonia and 
meningitis is endemic. If the value of 𝑎 was set to be 

fixed while the value of 𝑏 was decreased, then ℜ0 = 1.96 
and 𝑚 = 1.325 were obtained. Probability of a disease 
outbreak was 1 − 1.74 × 10−4. If the value of 𝑎 was set 

to be fixed while the value of 𝑏 was increased, then ℜ0 =

6.478 and 𝑚 = 1.732 were obtained. Probability of 
disease outbreak was 1 − 8.71 × 10−11. The following is 
a sample path when the value of 𝑎 was set to be fixed, 
while the value of 𝑏 was changed. 

Figure 4 shows that when 𝑏 = 0, co-infection  (𝐼𝑝𝑀) 

will disappear from the population in about 15 months 
and the outbreak is due to the dominant pneumonia 

infection. 𝑏 = 0.2, 𝐼𝑝𝑀 will disappear in about 46 months 

and the outbreak is due to pneumonia infection. When 

𝑏 = 1.6, 𝐼𝑝𝑀 becomes endemic. 

If the value of 𝑎 was decreased while the value of 𝑏 

was set to be fixed, the value of ℜ0 = 3.644 and 𝑚 =
1.569 was obtained and the probability of a disease 
outbreak was 1 − 3.51 × 10−5. Similarly, if the value of 𝑎 
was increased while the value of 𝑏 was set to be fixed, 

the same values of ℜ0 and 𝑚 was obtained as previous. 
nevertheless, the probability of a disease outbreak was 
1 − 1.24 × 10−11. The following is a sample path when 
the value of 𝑎 was changed and the value of 𝑏 was set to 
be fixed.  

Figure 5 shows that when 𝑎 = 0, 𝐼𝑝𝑀 disappears 

from the population in approximately 13 months and the 
outbreak occurs due to the dominant meningitis 

infection. When 𝑎 = 0,2 causes 𝐼𝑝𝑀 to disappear from the 

population in approximately 28 months and the 
outbreak occurs due to meningitis infection only. When 
𝑎 = 1,0, it causes 𝐼𝑝𝑀 to be endemic. 

If both values of 𝑎 and 𝑏 were decreased to 𝑎 = 𝑏 =
0.2,  then  ℜ0 = 0.810,𝑚 = 0.895, and the probability of 
a disease outbreak was zero. In this case, pneumonia, 
meningitis and their co-infections would disappear from 
the population within a particular time. When both 
values of 𝑎 and 𝑏 were increased to 𝑎 = 1.0 and 𝑏 = 1.6, 

then ℜ0 = 6.478 and 𝑚 = 1.732, and the probability of a 
disease outbreak was 1 − 1.66 × 10−13. 

Figure 6 shows that if the values of 𝑎 and 𝑏 were 

decreased to 0.2, 𝐼𝑝𝑀 will disappear in the population in 

about 25 months and no outbreak will occur. If the 
values of 𝑎 and 𝑏 was increased to 𝑎 = 1.0 and 𝑏 = 1.6, 

then 𝐼𝑝𝑀 becomes endemic.

 
 



Jurnal Peneliatian Pendidikan IPA (JPPIPA) Desember 2023, Volume 9 Issue 12, 1415-1425 

 

1423 

  
(a) (b) 

 
(c) 

Figure 4. Human population dynamics with a fixed parameter value a and (A) b = 0; (B) b = 0.2; and (C) b = 1.6

 

  
(a) (b) 

 
(c) 

Figure 5. Human population dynamics with a fixed parameter value a and (A) b=0; (B) b=0.2; and (C) b=1.6. 
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(a) (b) 

Figure 6. Human population dynamics with (A) a=0.2,b=0 and (B) a=1.0,b=1.6 

(c) 
 

Conclusion  

 
In this study, a deterministic SIRS model of 

pneumonia and meningitis co-infection was developed 
into a stochastic CTMC model of pneumonia and 
meningitis co-infection. Based on this study, information 
on the expected value of the number of infected 
individuals and information on the probability of an 
outbreak can be obtained. Both the increasing of 
pneumonia contact rate (𝑎) or meningitis contact rate 
(𝑏), will increase the probability of disease outbreak. 
Based on the computer simulation undertaken, it can be 
concluded that if the value of 𝑎 was decreased while the 
value of 𝑏 was set to be fixed, the probability of disease 
outbreak decreased.  If the value of 𝑎 was set to be fixed 
while the value of 𝑏 was decreased, the probability of 
disease outbreak decreased. However, the disease 
outbreak probability of the latter is smaller than the 
previous. Similarly, if the value of the value 𝑎 was 
increased while 𝑏 was set to be fixed, the probability of 
disease outbreak increased.  If the value of 𝑎 was set to 
be fixed while the value of 𝑏 was increased, the 
probability of disease outbreak increased. Nevertheless, 
disease outbreak probability of the latter is smaller than 
the previous. Moreover, if both values of 𝑎 and 𝑏 were 
decreased, the probability of disease outbreak was equal 
to zero. In other words, the disease will disappear from 
the population within a certain period.  
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