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Abstract: This research is theoretical research with a literature study that examines 
methods to maintain characteristics of electrons when moving in a quantum system at 
the potential barrier. Attempts to maintain the characteristics of electrons in quantum 
systems are known as adiabatic. The method used in this research is the fast-forward 
method. This method was first introduced by Masuda and Nakamura in 2010. The fast-
forward method is applied to barrier potential in case of electron energy larger and 
smaller than the potential barrier. This research focuses on preserving the characteristics 
of electrons by determining the regularization phase and additional potential of the 
quantum system at the barrier potential. The wave function solution of the system at the 
potential barrier is approximated by the Schrödinger equation into three regions for each 
case. The wave function of each region is regularized to be an adiabatic wave function 
and an additional term in the form of regularization phase (θ) is obtained. Given the 
regularized Hamiltonian, the additional potential (Ṽ) is obtained. The obtained 
regularization phase and additional potential ensure the quantum system at the potential 
barrier is in the same state from the initial state to the final state. 
  
Keywords: Additional Potential; Adiabatic; Fast Forward; Phase Regularization; 
Potential Barrier 

  

Introduction  
 

Since the discovery of the quantum world in the last 
century, the development of quantum technology has 
progressed rapidly. Several quantum technologies being 
developed require speed manipulation to overcome 
decoherence effects such as quantum computing 
(Masuda & Nakamura, 2022; Steckmann et al., 2023). 
However, to control the speed of quantum systems is 
often very difficult because the properties and 
characteristics of the particles in the system will change. 
Therefore, the ability to control quickly and accurately 
without changing the properties of the system is 
important for the further development of quantum 
technology (Kiely et al., 2015; Yu et al., 2018). The 
development of a method to maintain quantum 
dynamics without changing the characteristics of the 
system is known as quantum adiabatic (Hutagalung et 
al., 2023). According to the adiabatic theorem (Born & 

Fock, 1928), an adiabatic process occurs when the 
external parameters of the Hamiltonian are slowly 
changed (Santos & Sarandy, 2018; Setiawan, Sugihakim, 
et al., 2023). However, this process takes a long time for 
the wave function to remain in the same eigenstate as the 
Hamiltonian slowly changes (Taras et al., 2021).  

Adiabatic quantum evolution is a method that has 
attracted the interest of researchers recently (Setiawan, 
Ekawita, et al., 2023). In previous research, Masuda and 
Nakamura have proposed a method that can accelerate 
the adiabatic quantum dynamics of wave functions in 
quantum mechanics to obtain the final adiabatic state in 
a shorter time (Khujakulov & Nakamura, 2016). This 
method is called the fast-forward method (Setiawan, 
Gunara, & Nakamura, 2019), and can be defined as 
creating and rearranging an event on an accelerated 
timescale like the rapid projection of a film on a screen 
(Babajanova et al., 2018; Nakamura et al., 2017). Fast 
forward theory was first introduced by Masuda and 
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Nakamura in 2010. This method applies the additional 
phase and driving potential determined by the 
regularized terms (Setiawan et al., 2021) of the wave 
function to the quantum system (Setiawan, Gunara, 
Avazbaev, et al., 2019).  

The fast-forward method is often related to the 
shortcuts to adiabaticity (STA) method (Patra & 
Jarzynski, 2021). Both of these methods are alternatives 
to adiabatic systems to control the dynamics of classical 
and quantum systems without having to move for a long 
time (Chung et al., 2019; Guéry-Odelin et al., 2019; Liu & 
Kong, 2023).  In the quantum context, STA has been 
applied to several systems (Villazon et al., 2019) 
including heat engine (Hartmann et al., 2020), quantum 
harmonic oscillator (Abah & Lutz, 2018; Campo et al., 
2014; Dupays et al., 2020), and single spin (Çakmak & 
Müstecaplıoğlu, 2019). However, the fast-forward 
method is different from the STA method (Setiawan et 
al., 2017), which is represented by the regularized 
Schrödinger equation (Sugihakim et al., 2021). 

Quantum systems are concepts used to study the 
behavior of material and energy at the microscopic level, 
such as protons, atoms, electrons, and other small 
particles that cannot be seen directly (Aini et al., 2020). 
In this case, the concept of adiabatic becomes an 
important factor, because in controlling microscopic 
quantum systems, the properties and characteristics of 
the system need to be maintained (Ainayah et al., 2022). 
The adiabatic concept in fast forward can be an effective 
method to accelerate adiabatic dynamics in quantum 
systems (Setiawan, 2019).  

The fast-forward method has been extended to 
various systems (Elisa et al., 2023). In previous research, 
the application of the fast-forward method has been 
carried out to accelerate the adiabatic quantum 
dynamics of single spin (Benggadinda & Setiawan, 
2021). Previous research by (Hutagalung et al., 2023) has 
also applied fast-forward theory to study adiabatic 
quantum dynamics by reviewing the case of quantum 
harmonic oscillators. In another research, fast forward 
theory is also used to accelerate Dirac particle dynamics 
(Deffner, 2016), classical adiabatic invariant dynamic 
construction (Jarzynski et al., 2017), and stochastic heat 
engine (Nakamura et al., 2020).  

In this research, fast forward theory will be applied 
to quantum systems in the potential barrier. The 
potential barrier is a potential that restricts the 
movement of particles in a system (Agustin et al., 2019). 
In the potential barrier system, there are two cases 
analyzed, including when the electron energy is larger 
than the potential barrier and the electron energy is 
smaller than the potential barrier (Romadani & Rani, 
2020; Wardani et al., 2020). The use of the fast-forward 
method focuses on maintaining the characteristics of 
electrons in quantum systems at a potential barrier 
which is carried out by determining the regularization 

phase and additional potential. Therefore, this research 
aims to determine the regularization phase and 
additional potential in quantum systems at a potential 
barrier. 
 
Method 
 

The type of research used in this research is a 
literature study. The literature study was conducted to 
review physical theories related to quantum adiabatic 
and the application of the fast-forward method in 
previous research. This research was conducted with the 
procedure in Figure 1. 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

The first step in this research is a literature review 
which is carried out by collecting various reference 
sources related to fast forward theory, then theoretical 
studies are carried out by reading and examining fast 
forward theory and applications of this theory in 
previous research. The second step is to determine the 
wave function solution for the barrier potential using the 
Schrödinger equation. At this step, the wave function 
solution for the potential barrier was determined based 
on the literature, but modified to obtain a more 
comprehensive solution. The wave function solutions 
are carried out for the case of electron energy larger than 
the potential barrier and then for the case of electron 
energy smaller than the potential barrier 

In the third step, the wave function obtained at the 
barrier potential is regularized using the fast-forward 
method so that it becomes an adiabatic wave function. 

Literature review 

Determine the solution of the 
Schrödinger equation at the potential 

barrier 

Regularization of the wave function 
with the fast forward method 

Determine the regularization phase and 
additional potential 

Validation of calculation results with 
Wolfram Mathematica software and 

make graphs. 

Figure 1. The research procedures 
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In the next step, the regularization phase (θ) and 
additional potential (Ṽ) of the modified wave function 
are determined. The regularization phase and additional 
potential will be determined for each case at the 
potential barrier. The last step is to validate the 
calculation results using Wolfram Mathematica software 
while visualizing the wave function through graphs. 
 
Result and Discussion 
 

The potential barrier is one type of potential in 
quantum systems that restricts the movement of 
particles in the system.  
 

 
Figure 2. The potential barrier 

Each case of the potential barrier is divided into three 
solution areas (Figure 2) with the following potential 
functions (Zettili, 2009); 
 

𝑉(𝑥) = &	
0,								𝑥 < 0,												
𝑉!,							0	 ≤ 𝑥 ≤ 	𝑎,			
0,								𝑥	 > 𝑎,											

                                  (1) 

 
where 	𝑉!	is the potential barrier. 
 

Particle dynamics in quantum systems are 
represented by the Schrödinger equation. The 
Schrödinger equation is a second-order differential 
equation that describes the properties of a particle 
through wave functions and energy levels (Elviyanti et 
al., 2023). The general form of the Schrödinger equation 
can be written as follows: 

𝑖ℏ "#(%,')
"'

= −	 ℏ
!

*+
"!#(%,')
"%!

	+ 𝑉𝛹(𝑥, 𝑡)                                 (2) 

where 𝛹(𝑥, 𝑡) is the wave function that determines the 
position (x) relative to time (t), V is the potential, m is the 
mass of the particle, and 𝑖 is the square root of -1, and ℏ 
is reduced Planck's constant. To obtain the solution of 
the barrier potential system, the time-independent 
Schrödinger equation is used which is written as 
follows: 

−	 ℏ
!

*+
,!-(%)
,%!

	+ 𝑉𝜓(𝑥) = 𝐸𝜓(𝑥)                                          (3) 
 

where 𝜓(𝑥) is the time-independent wave function and 
E is the total energy of the particle. 
 
Solution for the Case 𝐸	 > 	𝑉! 
 In the case of electron energy is larger than the 
potential barrier, the electrons have enough energy to 
pass through the potential barrier. By using equation (3) 
and the regional boundaries in equation (1), the wave 
function for each region is obtained as follows: 
 
Region 1 (V = 0)  

−	 ℏ
!

*+
,!-"(%)
,%!

	= 𝐸𝜓.(𝑥)                                (4) 

by using 𝑘. =	
√*+0
ℏ

 so that the wave function of region 1 
can be written as follows: 

𝜓.(𝑥) = 𝐴𝑒12"% + 	𝐵𝑒312"%                (5) 
 
Region 2 (V = V!)  

−	 ℏ
!

*+
,!-!(%)	
,%!

+ 𝑉!𝜓*(𝑥) 	= 𝐸𝜓*(𝑥)	                       (6) 

by using 𝑘* =	
5*+(036#)

ℏ
 so that the wave function of 

region 2 can be written as follows: 

𝜓*(𝑥) = 𝐶𝑒12!% + 	𝐷𝑒312!%                                  (7) 
 
Region 3 (V = 0)  

−	 ℏ
!

*+
,!-$(%)
,%!

	= 𝐸𝜓7(𝑥)                                (8) 

by using 𝑘. =	
√*+0
ℏ

 so that the wave function of region 3 
can be written as follows: 

𝜓7(𝑥) = 𝐹𝑒12"% + 𝐺𝑒312"%                                     (9) 
 

Solution in region 1, the function ψ. consists of two 
wave functions moving in +x direction (𝑒12"%) and -x 
direction (𝑒312"%). In this case, the electron initially 
moves in the +x direction and then experiences reflection 
and transmission. Similarly, in region 2, while in region 
3 there is only a transmission wave function, so the 
coefficient G = 0. So, the wave function for each region 
can be written in the following equation; 

𝜓(𝑥) = B	
𝜓.(𝑥) = 𝐴𝑒12"% + 	𝐵𝑒312"%		𝑥 < 0,												
𝜓*(𝑥) = 𝐶𝑒12!% + 	𝐷𝑒312!%		0 ≤ 𝑥 ≤ 𝑎,			
𝜓7(𝑥) = 𝐹𝑒12"%																							𝑥 > 𝑎,											

       (10) 

(Sudiarta, 2019).  
 
The constants A, B, C, D, and F can be determined with 
the following boundary conditions: 
 
𝜓.(0) = 	𝜓*(0),     

,-"(!)
,%

=	 ,-!(!)
,%

,                      (11) 

𝜓*(𝑎) = 	𝜓7(𝑎),    
,-!(!)
,%

=	 ,-$(8)
,%

,                                  (12) 
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The above equation yields the following equation: 
 
𝐴 + 𝐵 = 𝐶 + 𝐷                                            (13) 

𝑖𝑘.(𝐴 − 𝐵) = 𝑖𝑘*(𝐶 − 𝐷)                                                 (14)    

𝐶𝑒12!8 +𝐷𝑒312!8 = 𝐹𝑒12"8                                    (15)   

𝑖𝑘*(𝐶𝑒12!8 −𝐷𝑒312!8) = 𝑖𝑘.𝐹𝑒12"8                                (16)  
 
From the four equations above, the constants A, B, C, 
and D can be obtained, each containing the constant F; 
 

𝐴 =	 (2!92")
!3(2!32")!:!%&!'

;2"2!:(%&"':%&!'
𝐹         (17) 

𝐵 =	 <2!
!32"!=(:!%&!'3.)

;2"2!:(%&"':%&!'
𝐹          (18) 

𝐶 = (2!92")
*2!:(%&"':%&!'

𝐹          (19) 

𝐷 = (2!32"):!%&!'

*2!:(%&"':%&!'
𝐹          (20) 

 
Substituting of equations  (17), (18), (19), and (20) into 
equation (10), for simplify used variables 𝑝 = [𝑘* + 𝑘.], 
𝑞 = [𝑘* − 𝑘.], 𝛼 = 𝑒*12!8 and 𝛽 = 𝑒3*12!8, so that the 
wave function for each region can be written as follows: 
 

𝜓.(𝑥) =
<>!3?!@=:%&")9>?(@3.):(%&")

;2"2!:%'*
𝐹                              (21) 

𝜓*(𝑥) =
>:%&!)9	?@:(%&!)

*2!:%'*
𝐹                                                (22) 

𝜓7(𝑥) = 𝐹𝑒12"%	                (23) 
 
Solution for the Case 𝐸 <	𝑉! 

Classically, when the particle has a smaller energy 
than the barrier then the particle will be reflected all and 
can’t penetrate the barrier wall. However, in quantum 
systems electrons can break through the barrier because 
the wave function outside the barrier is not zero. This is 
known as the tunnelling phenomenon (Wen & Wu, 
2020). The solution of the Schrödinger equation for the 
case E <	V! is almost the same as equation (10), except 
for the region 2 wave function. 
 

𝜓(𝑥) = B	
𝜓.(𝑥) = 𝐴𝑒12"% + 	𝐵𝑒312"%		𝑥 < 0,												
𝜓*(𝑥) = 𝐶𝑒2!% + 	𝐷𝑒32!%				0 ≤ 𝑥 ≤ 𝑎,			
𝜓7(𝑥) = 𝐹𝑒12"%																							𝑥 > 𝑎,											

       (24) 

(Sudiarta, 2019).  
 

where 𝑘. =	
√*+0
ℏ

 dan 𝑘* =	
5*+(6#30)

ℏ
. Through the same 

steps as done in the previous case, the following 
constants A, B, C, and D are obtained, each containing 
the constant F; 
 

𝐴 =	 (2!912")
!3(2!312")!:!&!'

;12"2!:(%&"':&!'
𝐹         (25) 

𝐵 =	 <2!
!92"!=(:!&!'3.)

;12"2!:(%&"':&!'
𝐹          (26) 

𝐶 = (2!912")
*2!:(%&"':&!'

𝐹          (27) 

𝐷 = (2!312"):!&!'

*2!:(%&"':&!'
𝐹          (28) 

 
Substituting of equations  (25), (26), (27), and (28) into 
equation (24), for simplify used variables 𝑝′ = [𝑘* + 𝑖𝑘.], 
𝑞′ = [𝑘* − 𝑖𝑘.], 𝛼′ = 𝑒*2!8 and 𝛽′ = 𝑒3*2!8 into constants 
A, B, C, and D so that the wave function for each region 
can be written as follows: 
 

𝜓.(𝑥) =
<>A!3?A!@A=:%&")9>A?A(@A3.):(%&")

;12"2!:*+'
𝐹            (29) 

𝜓*(𝑥) =
>A:&!)9	?A@A:(&!)

*2!:*+'
𝐹                             (30) 

𝜓7(𝑥) = 𝐹𝑒12"%											              (31) 
 
After obtaining the wave functions in all three regions at 
the potential barrier for the case of electron energy larger 
(E	 > 	V!) and smaller (E < 	V!) than the potential 
barrier, then through the fast forward method the wave 
functions will be regularized to become adiabatic wave 
functions that will be used to obtain the regularization 
phase θ and the additional potential 𝑉K .  

In general, the wave function solution of the 
Schrödinger equation at the potential barrier can be 
written as follows: 
                               
Ψ(𝑥, 𝑡) = 𝜓B𝑒31C'                                                             (32) 
 
where 𝑛 = 1,2, 3 which is the region of the wave function 
solution at the potential barrier, and 𝜔 is angular 
frequency of the wave. By modifying (𝜔 = 0

ℏ
), equation 

(32) can be rewritten into the following equation: 
 

Ψ(𝑥, 𝑡) = 𝜓B𝑒
3%ℏ∫ 0-

.
# ,'                        (33) 

 
In order for the wave function in equation (33) to be an 
adiabatic wave function, the parameter t is modified to 
R(t), with: 
 
𝑅(𝑡) = 	𝑅! + 𝜀𝑡 ; 	

,E(')
,'

= 𝜀		           (34) 
 
where ε→0 is an adiabatic parameter that is very small 
and causes the system to move slowly. If the system is 
initially in an eigenstate at the nth energy, then the 
adiabatic theorem guarantees that in the limit ε→0 the 
wave function will remain in the same eigenstate. By 
adding the adiabatic parameter ε and the regularization 
phase θ, the regularized wave function can be written as 
follows: 
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Ψ(F:G)U𝑥, 𝑅(𝑡)V =  

𝜓B(𝑥, 𝑅(𝑡))𝑒
3(1∕ℏ) I 0-<E(')=,'

.
# 𝑒1JK(%,')                              (35) 

 
The Schrödinger equation for Ψ(LMN) is represented as 
follows: 
 

𝑖ℏ "#(012)(%,E('))
"'

= − ħ!

*+#

"!#(012)(%,E('))
"%!

+

𝑉!
(F:G)(𝑥, 𝑅(𝑡))𝛹(F:G)(𝑥, 𝑅(𝑡))          (36) 

 
where 𝑉!

(F:G) is the regularized potential obtained from 
the regularized Hamiltonian when regularizing the 
wave function. 𝑉!

(F:G) can be written as follows: 
 
𝑉!

(F:G)(𝑥, 𝑡) = 𝑉!U𝑥, 𝑅(𝑡)V + 𝜀𝑉K(𝑥, 𝑡)        (37) 
 
𝑉K  is the additional potential of the Hamiltonian 
regularisation condition by (Masuda & Nakamura, 
2010). Then substitute equations (35) and (37) into 
equation (36), yields: 
 

𝑖ℏ𝜀 "--
"E

+ 𝐸B𝜓B − ℏ𝜀
"K
"'
𝜓B = − ℏ!

*+#
W"

!--
"%!

+ 2𝑖𝜀 "--
	

"%
"K	

"%

	
+

𝜓B𝑖𝜀
"!K
"%!

−𝜓B𝜀* X
"K	

"%
Y
*
Z + 𝑉!𝜓B + 𝜀𝑉K(𝑥, 𝑡)𝜓B	                (38) 

 
Substituting of the time-independent Schrödinger 
equation in equation (3) into equation (38), yields: 
 

𝑖ℏ𝜀 "--
"E

− ℏ𝜀 "K
"'
𝜓B = − ℏ!

*+#
W2𝑖𝜀 "--

	

"%
"K	

"%
+𝜓B𝑖𝜀

"!K
"%!

−

𝜀* X"K
	

"%
Y
*
𝜓BZ + 𝜀𝑉K(𝑥, 𝑡)𝜓B                 (39) 

 
Eliminate ε in both sides and eliminate the equation 
containing 𝜀* because ε is very small, so equation (39) 
can be rewritten as: 
 
𝑖ℏ "--

"E
− ℏ𝜀 "K

"'
𝜓B = − ℏ!

*+#
[2𝑖 "--

	

"%
,K	

,%
+𝜓B𝑖

"!K
"%!
\  

+𝑉K(𝑥, 𝑡)𝜓B                                  (40) 
 
Then multiply both sides of equation (40) by (𝑖 	ℏ⁄ )𝜓B∗  , 
then separate the real and imaginary parts as follows; 
 
|𝜓B|*

"!K
"%!

+ 2𝑅𝑒 [𝜓B	
"--∗

"%
\ "K

	

"%
+ *+#

	

ℏ
𝑅𝑒 [𝜓B	

"--∗

"E
\ = 0     (41) 

and 
ℏ	

+#
ImX𝜓B∗

"--
	

"%

	
Y "K

	

"%
+ 6Q

ℏ
|𝜓B|* + Im [𝜓B∗

"--
"E
\ +  

"K
"'
|𝜓B|* = 0           (42) 

(Masuda & Nakamura, 2010). 
 
Use the equation (41) to determine the regularization 
phase 𝜃	. Since 𝜓B is independent of R, equation (41) 
becomes: 

|𝜓B|*
"!K
"%!

+ 2𝑅𝑒 [𝜓B	
"--∗

"%
\ "K

	

"%
= 0              (43) 

 
The wave function at the potential barrier is not 
composed of real functions, so equation (51) can be 
written as: 
  
|𝜓B|*

"!K
"%!

= 0	                    (44) 

𝜃 = R#	%
|--|!

                  (45) 
 
where 𝐶! is a constant of the integral to obtain 
regularization phase 𝜃.	 Furthermore, equation (42) is 
used to obtain the additional potential; 
 

𝑉K = −ℏ	Im ["--
	

"E
.
--
\ − ħ	!

+#
𝐼𝑚 [ .

--

"--
	

"%
\ "K

	

"%
        (46) 

𝑉K = − ℏ	!

+#
Im [ .

--

"--
	

"%
\ "K

	

"%
               (47) 

 
For the case E >	V!, use the equation (45) and the wave 
functions in the equation (21), (22), and (23) to obtain the 
regularization phase and additional potential for each 
region;  
 
Regularization Phase for the Case 𝐸 >	𝑉! 

𝜃. =
.T2"!2!!R#	%

	U!V(>!3?!W):(!%&")9>?(W3.)XV(>!3?!@):!%&")9>?(@3.)X
  (48) 

𝜃* =
;2!!R#	%

U!	V>!9?!9>?<@:(!%&!)9	W:!%&!)=X
                  (49) 

𝜃7 =
R#%
U!

                             (50) 
 
Using the equation (47), additional potential for each 
region is obtained as follows: 
 
 
Additional Potential for the Case 𝐸 >	𝑉! 

𝑉K. = −
.T1ℏ!2"$2!!R#Y<>!3?!@=:!%&")3	>?(@3.)Z	

U!+#Y(>!3?!W):(!%&")9>?(W3.)Z
! 	   

[<>
!9?!=

!
3	*>!?!(@9W)9>?(@3.)<>!3?!W=(.9*12"%):(!%&")9

>?:!%&")(W3.)<>!3?!@=(.3*12"%)
\

Y(>!3?!@):!%&")9>?(@3.)Z
$    (51)   

 

𝑉K* = − ;1ℏ!2!$R#<>:!%&!)3	?@=

U!+#<>:(!%&!)9	?W=
!  

]>
!9?!9>?@:(!%&!)(.9*12!%)
9>?W:!%&!)(.3*12!%)

^

<>:!%&!)9	?@=
$  (52) 

   
𝑉K7 = − 1ℏ!2"R#

U!+#
                         (53)  

 
After obtaining the regularization phase and additional 
potential, the regularized wave function for each region 
can be written as follows: 
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Ψ.
(F:G) = <>!3?!@=:%&")9>?(@3.):(%&")

;2"2!:%'*
𝐹𝑒3Y

%
ℏ	Z I 0-<E(')= ,'

.
# 	  

𝑒
%6"7&"

!&!
!8#	)

	9!:;<!(*!=>1(!%&")?<*(=(")@:;<!(*!A>1!%&")?<*(A(")@
		
        (54) 

 
The electron distribution in region 1 (𝑥 < 0) can be 
represented through the probability density of the 
regulated wave function eΨ.(LMN)e

*
 on the graphs in 

Figure 3 for 2D and Figure 4 for 3D. 
 

 
Figure 3. 2D graph of probability density of wave function of 

region 1 (𝐄 > 𝐕𝟎) for 𝒙 ≤ 𝟎 using Wolfram Mathematica 
 
Figure 3 shows graph 2D of the probability density of the 
wave function in region 1 of the case E >	V! for 𝑥 = −3 
to 𝑥 = 0, 𝑘. = 4, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2. 
Probability density represents the presence of electrons 
in the system. Although the wave function is regularized 
with an additional term in the form of a regularization 
phase, it will not change its probability density. In the 
case that the energy of the electron is greater than its 
barrier potential, the wave function has a sufficiently 
large amplitude in the first region. 
 

 
Figure 4. 3D graph of probability density of wave function of 

region 1 (𝐄 > 𝐕𝟎) for 𝒙 ≤ 𝟎 using Wolfram Mathematica 
 
Figure 4 shows graph 3D of the probability density of the 
wave function in region 1 (E > V!) for 𝑥 = −3 to 𝑥 = 0, 
𝑘. = 4 to 𝑘. = 5, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 dan 𝑎 = 2. The 
graph above shows that when 𝑘. is magnified the wave 
frequency will be higher. 
 

Ψ*
(F:G) = >:%&!)9	?@:(%&!)

*2!:%'*
𝐹𝑒3Y

%
ℏ	Z I 0-<E(')= ,'

.
#     

𝑒
%6B&!

!8#	)
9!	:<!?*!?<*CA1(!%&!)?	=1!%&!)D@               (55) 

The electron distribution in region 2 (0 ≤ 𝑥 ≤ 𝑎) can be 
represented through the probability density of the 
regulated wave function eΨ*(LMN)e

*
 on the graphs in 

Figure 5 for 2D and Figure 6 for 3D. 
 

 
Figure 5. 2D graph of probability density of wave function of 
region 2 (𝐄 > 𝐕𝟎) for 𝟎 ≤ 𝒙 ≤ 𝒂 using Wolfram Mathematica 
 
Figure 5 shows graph 2D of the probability density of the 
wave function in region 2 of the case E >	V! for 𝑥 = 0 to 
𝑥 = 2, 𝑘. = 4, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2.  
 

 
Figure 6. 3D graph of probability density of wave function of 
region 2 (𝐄 > 𝐕𝟎) for 𝟎 ≤ 𝒙 ≤ 𝒂 using Wolfram Mathematica 
 

Figure 6 shows graph 3D of the probability density 
of the wave function in region 2 (E > V!) for 𝑥 = 0 to 𝑥 =
2, 𝑘. = 4 to 𝑘. = 5, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 dan 𝑎 = 2. Based 
on figure 5 and figure 6, it can be seen that after passing 
through the barrier, the wave function in region 2 has a 
lower amplitude so that the frequency of the wave 
decreases than region 1. 
 

Ψ7
(F:G) = 𝐹𝑒12"%𝑒3Y

%
ℏ	Z I 0-<E(')=,'

.
# 𝑒

%68#	)
9!              (56) 

 
The electron distribution in region 3 (𝑥 > 𝑎) can be 
represented through the probability density of the 
regulated wave function eΨ7(LMN)e

* on the graphs in 
Figure 7 for 2D and Figure 8 for 3D. 
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Figure 7. 2D graph of probability density of wave function of 

region 3 (𝐄 > 𝐕𝟎) for 𝒙 ≥ 𝒂 using Wolfram Mathematica 

Figure 7 shows graph 2D of the probability density of the 
wave function in region 3 of the case E >	V! for 𝑥 = 2 to 
𝑥 = 5, 𝑘. = 4, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2.  
 

 
Figure 8. 3D graph of probability density of wave function of 

region 3 (𝐄 > 𝐕𝟎) for 𝒙 ≥ 𝒂 using Wolfram Mathematica 
 
Figure 8 shows graph 3D of the probability density of the 
wave function in region 3 (E > 	V!) for 𝑥 = 2 to 𝑥 = 5, 
𝑘. = 3 to 𝑘. = 4, 𝑘* = 2, 𝑡 = 1, 𝐹 = 1 dan 𝑎 = 2. In 
region 3, the wave function experiences total 
transmission to the right because there is no barrier in 
region 3 so that the consistency of the medium through 
which the wave passes causes the wave to travel 
straight. 
 For the case E < V! use the equation (45) and wave 
functions in the equation (29), (30), and (31) to obtain the 
regularization phase and additional potential for each 
region; 
 
Regularization Phase for the Case 𝐸 <	𝑉! 

𝜃. =  
3.T@A2"!2!!R#	%	

U!V(?A!3>A!@A):(!%&")9>A?A(@A3.)XV(>A!3?A!@A):!%&")9?A>A(@A3.)X
(57) 

𝜃* =
;2!!R#	%

U!V>A!9?A!9>A?A<@:(!&!)9	W:!&!)=X
                  (58) 

𝜃7 =
R#	%
U!

                (59) 
 
Using the equation (47), additional potential for each 
region is obtained as follows: 
Additional Potential for the Case 𝐸 < 𝑉! 

𝑉K. =
.T1ℏ!2"$2!!R#Y<>A!3?A!@A=:!%&")3	>A?A(@A3.)Z	

U!+#Y(?A!3>A!@A):(!%&")9>A?A(@A3.)Z
! 	   

_
*>A!?A!(@A9WA)3<>A!9?A!=

!
9	>A?A(.3WA)

Y<?A!3>A!@A=(.9*12"%):(!%&")9<>A!3?A!@A=(.3*12"%):!%&")Z
`

Y(>A!3?A!@A):!%&")9?A>A(@A3.)Z
$      (60)   

 
𝑉K* = 0	 	 	 	 	 	 						(61)	
 
𝑉K7 = − 1ℏ!2"R#

U!+#
                         (62)  

 
After obtaining the regularization phase and 

additional potential, the regularized wave function for 
each region can be written as follows: 
 

Ψ.
(F:G) = <>A!3?A!@A=:%&")9>A?A(@A3.):(%&")

;2"2!:*+'
𝐹  

e3Y
E
ℏZ I aF<b(c)= dc

G
#   

𝑒
%6"7A+&"

!&!
!8#	)	

9!:;*+!(<+!A+>1(!%&")?<+*+(A+(")@:;<+!(*+!A+>1!%&")?*+<+(A+(")@	   (63) 
 

The electron distribution in region 1 (𝑥 < 0) can be 
represented through the probability density of the 
regulated wave function eΨ.(LMN)e

* on the graph in Figure 
9 for 2D and Figure 10 for 3D. 
 

 
Figure 9. 2D graph of probability density of wave function of 

region 1 (𝐄 < 𝐕𝟎) for 𝒙 ≤ 𝟎 using Wolfram Mathematica 
 

Figure 9 shows graph 2D of the probability density 
of the wave function in region 1 of the case E < V! for 
𝑥 = −3 to 𝑥 = 0, 𝑘. = 2, 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2.  
 

 
Figure 10. 3D graph of probability density of wave function 
of region 1 (𝐄 < 𝐕𝟎) for 𝒙 ≤ 𝟎 using Wolfram Mathematica 



Jurnal Penelitian Pendidikan IPA (JPPIPA) February 2024, Volume 10 Issue 2, 859-869 
 

866 

Figure 10 shows graph 3D of the probability density 
of the wave function in region 1 of the case E < V! for 
𝑥 = −3 to 𝑥 = 0, 𝑘. = 2 to 𝑘. = 3 , 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 
and 𝑎 = 2. In this case, if 𝑘* is increased, the potential 
barrier will be even greater. In this region the electrons 
are traveling towards the barrier potential with smaller 
energy than the potential of the barrier. Classically, 
electrons will reflect and nothing is transmitted. But in a 
quantum system, electrons will still experience 
transmission called quantum tunneling. 
 

Ψ*
(F:G) = >A:&!)9	?A@A:(&!)

*2!:*+'
𝐹𝑒3Y

E
ℏZ I 0-<E(')= ,'

.
#   

𝑒
%6B&!

!8#	)
9!:<+!?*+!?<+*+CA1(!&!)?	=1!&!)D@              (64) 

 
The electron distribution in region 2 (0 ≤ 𝑥 ≤ 𝑎) can 

be represented through the probability density of the 
regulated wave function eΨ*(LMN)e

* on the graph in Figure 
11 for 2D and Figure 12 for 3D. 
 

 
Figure 11.2D graph of probability density of wave function of 
region 2 (𝐄 < 𝐕𝟎) for 𝟎 ≤ 𝒙 ≤ 𝒂 using Wolfram Mathematica 

Figure 11 shows graph 2D of the probability density 
of the wave function in region 2 of the case E < V! for 
𝑥 = 0 to 𝑥 = 2, 𝑘. = 2, 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2.  
 

 
Figure 12.2D graph of probability density of wave function of 
region 2 (𝐄 < 𝐕𝟎) for 𝟎 ≤ 𝒙 ≤ 𝒂 using Wolfram Mathematica 

Figure 12 shows graph 3D of the probability density 
of the wave function in region 2 of the case E < V! for 
𝑥 = 0 to 𝑥 = 2, 𝑘. = 2 to 𝑘. = 3 , 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 and 
𝑎 = 2. Based on Figure 11 and Figure 12 on the graph, it 

can be seen that the electrons have passed through the 
potential barrier and experienced a decrease in energy 
so that the amplitude decreases. 
 
Ψ7

(F:G) = 𝐹𝑒12"%𝑒3Y
%
ℏZ I 0-<E(')= ,'

.
# 𝑒

8#	)
9!

	             (65) 
 

The electron distribution in region 3 (𝑥 > 𝑎) can be 
represented through the probability density of the 
regulated wave function eΨ7(LMN)e

* on the graph in Figure 
13 for 2D and Figure 14 for 3D. 
 

 
Figure 13. 2D graph of probability density of wave function 
of region 3 (𝐄 < 𝐕𝟎) for 𝒙 ≥ 𝒂 using Wolfram Mathematica 

Figure 13 shows graph 2D of the probability density 
of the wave function in region 3 of the case E < V! for 
𝑥 = 2 to 𝑥 = 5, 𝑘. = 2, 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 and 𝑎 = 2.  
 

 
Figure 14. 3D graph of probability density of wave function 
of region 3 (𝐄 > 𝐕𝟎) for 𝒙 ≥ 𝒂 using Wolfram Mathematica 

 
Figure 12 shows graph 3D of the probability density 

of the wave function in region 3 of the case E < V! for 
𝑥 = 2 to 𝑥 = 5, 𝑘. = 2 to 𝑘. = 3 , 𝑘* = 3, 𝑡 = 1, 𝐹 = 1 and 
𝑎 = 2. In region 3 there is no barrier that causes the 
electrons to reflect so the electrons will experience total 
transmission to the right as in the previous case. 

The regularization phase and additional potential 
that have been obtained in the case of electron energy 
larger and smaller than the potential barrier for each 
region can be used to maintain the adiabatic state of 
electrons in the quantum system at the potential barrier 
even though the system is driven in a shorter time. To 
accelerate the adiabatic quantum dynamics in this 
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system can be continued by determining the driving 
potential using the fast-forward method. The existence 
of the regularization phase and additional potential in 
the wave function will maintain the adiabatic state of the 
system when the control of the system is carried out, the 
characteristics of the particles in the system will not 
change. 
 
Conclusion  
 

Phase regularization and additional potential in 
quantum systems at potential barriers have been 
obtained. In the case of electron energy larger than the 
potential barrier (E > V!), the regularization phase and 
the additional potential are shown in equations (48) and 
(51) for region 1, equations (49) and (52) for region 2, and 
equations (50) and (53) for region 3, while in the case of 
electron energy smaller than the potential barrier (E >
V!) the regularization phase and the additional potential 
are shown in equations (57) and (60) for region 1, 
equations (58) and (61) for region 2, and equations (59) 
and (62) for region 3. Based on the results, the 
regularization phase in each region changes as the 
amplitude changes, as does the additional potential. The 
regularization phase and the required additional 
potential are larger to maintain electron characteristics 
in regions with smaller amplitude. The regularization 
phase and additional potential obtained will ensure the 
wave function will remain in the adiabatic state from the 
initial state to the final state. 
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