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Abstract: Indonesia controls 75%-80% of the world's carbon stocks, so the
amount of carbon stocks must be utilized optimally. This study aims to
determine carbon stocks, potential emissions, and economic value of
carbon stocks in each land use. The method used is secondary data
analysis and field checking. The data collected were Sentinel 2A
acquisitions in 2020 and 2022, Digital Elevation Model (DEM), and land
use land cover in 2020-2023. Data analysis used SNAP and ArcGIS 10.8.
The tool used for data analysis is spatial analysis map algebra. The results
showed mixed dryland agriculture has the most extensive carbon stock, at
2,614,178 tons/ha, with potential emissions of 9,585,320 tons/ha. The most
minor carbon stock is in mining land use, which is 0 tons/ha with potential
emissions of 0 tons/ha. The highest C02 value in USD is the forest land use
group. In the Secondary Dryland Forest, Secondary Swamp Forest, and
Plantation Forest groups, it is 17,517,400.50 USD, while the lowest is
mining land use, which is 0 USD. Overall, the CO2 value of land use in the
study area is 34,246,314.45 USD. Integrating remote sensing data analysis
and field surveys in geospatial technology is one of the new approaches to
studying carbon stocks and CO2 emissions in topsoil from various land
uses. By utilizing geospatial technology, efforts to estimate carbon stocks
on the surface are easier and faster.
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Introduction

Although peatlands cover only 3% of the earth's
surface, they account for about one-third of all soil
carbon storage on a global scale (Carless et al.,, 2021; Yu
et al., 2011). With Indonesia accounting for 75%-80% of
the world's carbon stocks, these stocks must be utilized
to the fullest extent possible, such as through carbon
trading. Emissions from degraded peatlands are of
global significance. Drained or burned peatland
landscapes are estimated to release 1.3 Gt CO2 annually,
accounting for 10% of greenhouse gas emissions from
the land use sector (Carless et al., 2021; IUCN, 2017) and
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a major share of national greenhouse gas emissions in
many countries (Joosten et al., 2012).

Climate change and global warming have been the
cause of significant threats to global ecosystems
(Trapero et al., 2023; Frimawaty et al., 2023; Hassan &
Nile, 2021). The recent increase in greenhouse gas
emissions resulting from massive human social
development and industrialization is one of the primary
emissions causing climate change. Temperatures in
places inhabited by more than one-fifth of humanity
have increased by 1.5 degrees Celsius (C) above pre-
industrial levels by at least one season (Javaherian et al.,
2021). Without mitigation efforts to reduce greenhouse
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gases, global temperatures will continue rising in the
21st century, with an average increase of 3.7°C to 4.8°C
(IPCC, 2014).

Global warming is one of the issues in the world
today, as seen by the high temperature of the earth,
which is directly related to greenhouse gases. Peatlands
on land store a massive carbon (C) source and are
located a few meters from the atmosphere. Small
amounts of carbon dioxide (CO2) and other greenhouse
gases (GHGs) in the atmosphere are now widely
recognized as the leading cause of global warming
(Hussein, 2022; Suardana et al., 2023). Most of them are
caused by the burning of fossil fuels and the conversion
of tropical forests into regional agricultural land
(Hussein, 2022; Paustian et al.,, 2016). Carbon stock
estimation is a critical component to combat global
warming. Biomass assessments can give an idea of the
amount of CO2 that can be removed from the
atmosphere by forests and other plantations (Dahy et al.,
2020; Issa et al., 2020).

Therefore, the exchange of C in peatlands and the
atmosphere should be a primary concern for scientists in
global climate change. It is a question of whether the
amount of C stored below the soil surface will be
released in a warmer climate, causing it to warm further.
Alternatively, more C is absorbed due to increased plant
growth in warmer climates.

How land use change, fires, and ice sheet melt affect
the magnitude and direction of carbon dioxide (COZ2)
and methane (CH4) exchange with the atmosphere
(Pratiwi et al., 2022; Yu et al., 2011). As a result, climate
change has brought significant impacts to the micro and
macro sectors of the climate world, including loss of
biodiversity, destruction of natural vegetation, and loss
of important natural ecosystems and their services, as
well as local wisdom (Birhane et al., 2020). These
questions remain challenging and require possible
answers that can be obtained from various research
studies that have recently made significant progress.

The Kyoto Protocol 2008, an agreement within the
United Nations (UN) Framework Convention on
Climate Change and the 2012 Doha Amendment,
committed its parties to internationally binding
greenhouse gas emission reduction targets (Agricul &
Series, 2012). Therefore, updated international carbon
accounting regulations mean that peatland soils, and in
particular changes in carbon stocks as a result of
activities related to drainage and rewetting of wetlands,
can be voluntarily considered for CO2 emissions
reporting (Hiraishi et al., 2014; Hussein, 2022).

In addition to emissions, carbon loss in peatlands
can also occur in the form of dissolved organic carbon
and particulate organic carbon. Therefore, accurate
assessments, including improved measurement,
reporting, and verification of global peat carbon stocks,
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are needed to support the governance of mental
inventories and also to inform global climate change
models, including predicting potential positive climate
feedback from degraded peatlands (Gallego-Sala et al.,
2018).

Between 2005 and 2010, the carbon in the world's
forest biomass will decline by 0.5 Gt annually. This
reduction was mainly due to a reduction in forest area
worldwide (Forestry Economics and Policy Division,
2010). Also, between 2015 and 2016, it is estimated that
forests in Indonesia experienced 0.63 million hectares of
deforestation (KLHK, 2018; Malik et al., 2023). Carbon
emissions originate from the coal energy sector and this
figure is expected to continue to rise until it reaches
43496 parts per million (ppm) by 2050, where the
increase in carbon could exceed 400 ppm is categorized
as a global phenomenon (Cahyono et al., 2022).
Investigating the potential loss of valuable ecosystem
components due to LULC changes is critical (Lahiji et al.,
2020). Several studies in Indonesia have analyzed the
potential of various ecosystems to sequester carbon, for
example in state forests (Darawan et al., 2022),
production forests (Situmorang & Sugianto, 2016), urban
green spaces (Dewantoro & Jatmiko, 2021), mangroves
(Kusumaningtyas et al., 2022), and agroforestry systems
(Latifah et al., 2018).

In recent years, various studies related to biomass
estimation have been conducted. Some standard
methods, such as making and counting standard cells
directly from the field, are used (Batsaikhan et al., 2020;
Nguyen & Nguyen, 2016). This method has high
accuracy but is time-consuming, costly, labor-intensive,
and difficult to apply in distant places and complicated
terrain conditions. The recent rapid development of
Geographic Information Systems and Remote Sensing
combined with field investigation is applied to
determine forest carbon stocks, which is considered a
new approach. Geographic Information Systems (GIS)
provide an opportunity to identify LULC changes over
time and comprehensively detect specific disturbances
of ecosystem services (Zhao et al., 2018). In addition,
spatial models provide a more precise explanation of
how disturbances impact ecosystem services (Jiang et al.,
2021).

Studies on LULC change and aboveground carbon
stock measurements can vary using remote sensing and
GIS. Several previous studies focused on uncovering the
significant impacts of LULC change on carbon stocks
using GIS and remote sensing approaches. A general
simulation model for carbon stock dynamics
incorporating annual maps was conducted to analyze
the effect of LULC changes on vegetation biomass and
carbon stocks (Liu et al., 2016; Malik et al., 2023).
Assessment of LULC changes and aboveground

vegetation carbon stocks using multispectral data in a
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remote sensing-based methodology showed a relevant
decrease in vegetated areas (Ahmad et al., 2023; Massetti
& Gil, 2020; Samuel, 2020).

Geospatial technologies, including Remote Sensing
(RS) and Geographic Information Systems (GIS), offer
the means to enable rapid assessment of terrestrial
biomass over large areas in a timely and cost-effective
manner, making above- and below-ground estimates
possible (Dahy et al., 2020; Katkani et al., 2022; Trivedi et
al., 2022). Therefore, applying an integrated RS-GIS
approach for precise carbon management is essential.
The use of RS and GIS in large-scale aboveground
biomass estimation provides good alternatives, insights,
challenges, opportunities, and future trends compared
to conventional approaches (Dahy et al., 2020; Issa et al.,
2020).

Method

Study Area

The administrative research area is located in the
Kulan  sub-watershed of Ketapang Regency.
Astronomically it is located between 109°5'0"-110°37'30"
East and 0°21'33"-0°30'0" LS. The research area is
traversed by the Kualan River. Kualan Sub Watershed
has an area of 1534.93 km? and covers nine villages
including Kualan Hulu, Merawan, Semandang Kiri,
Balai Pinang Hulu, Balai Pinang, Butuh Bosi, Kualan
Hilir, Sekucing Kualan, Lebak Hilir.
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Figure 1. Study area

Data Collection

Data collection includes among others Sentinel 2A
acquired in 2020 and 2022, and Digital Elevation Model
(DEM) land use land cover in 2020-2023. Land use land
cover data in this study was obtained from two sources,
namely Sentinel 2A images in 2020, 2021, and 2022 with
land use land cover maps of the research area in 2020,
2021, and 2022.

November 2024, Volume 10, Issue 11, 8602-8611

In remote sensing, biomass is strongly influenced
by the fAPAR index on satellite images with a linear
regression function, where fAPAR is the solar radiation
absorbed by plants through photosynthesis through
chlorophyll. The fAPAR index is determined based on
the relationship between vegetation indices called
Normalized Difference Vegetation Index (NDVI) which
is expressed by the formula:

fAPAR = ct+d * NDVI (1)

Where: ¢ and d are empirical coefficients commonly
used in Southeast Asia (c=0.08 and d=1.075).

Normalized Difference Vegetation Index

NDVI is calculated based on the reflectance
difference of the near-infrared band and the Sentinel 2A
red band with the following formula:

NDVI = Band 8—Band 4 (2)
Band 8+Band 4
Where:
Band 8 = Near Infrared (Near Infrared)
Band 4 = Reflectance of the Red (Red)
NDVI = Normalized Difference Vegetation Index

NDVI values range from +1.0 to -1.0, but values less
than zero usually have no ecological significance, so the
range of the index was cut from 0.0 to +1.0.

Leaf Area Index (LAI)

According to Nguyen et al. (2016), the leaf area
index (LAI) is the ratio of upper leaf surface area to
ground surface area (for broadleaf canopies) or the
projection of conifer needle surface area to ground
surface area (for coniferous trees) for a given unit area.
Nguyen et al. (2016) said, LAI can be used to estimate
biomass, vegetation dynamics, or harvest estimation.
The range of LAI values is 0 to 6 or higher. A value of
less than one indicates the presence of bare soil between
vegetated patches, while an LAI value of one indicates
that there is one layer of leaves completely covering one
unit of ground surface area. A layered canopy with
multiple leaf layers per unit of soil surface area is
indicated by LAI values greater than 1.

A linear regression technique that aims to
connect sensor reflectance data to field measurements
of LAI can be used to generate LAI from satellite
pictures. According to the following formula, such an
approach can connect the fractional cover detected on
the ground to the reflectance band of the sensor or a
vegetation index like the NDVI (Nguyen & Nguyen,
2016).

LAl =e +f*DVI 3)
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Where: e and f are the coefficients to be calculated
by analyzing the relationship between NDVI and LAL

Carbon Stock Identification

Carbon stock identification is done by calculating
the land use area multiplied by the carbon emission
factor for each land use. As discussed in the scope of the
study, this research only focuses on above-ground
biomass. Therefore, the amount of carbon and CO2 will
be calculated using the formula:

Carbon Stock= Lulc area (ha)*emission factor 4)
COz = 3.67* Carbon Stock (5)

Satellite Image Interpretation

The satellite imagery used in this study is Sentinel
2A  downloaded for free from the website
https:/ /www.sentinel-hub.com/ acquired in 2020-2022.
After review, L2A imagery with 30m x 30m resolution
and 30% cloud cover was selected. To process and
interpret the Sentinel 2A imagery using SNAP as well as
ArcGIS 10.8. SNAP was used for image processing,
while ArcGis10.8 software was used to map land use
land cover as well as to calculate biomass and carbon
stock in the study area at different land use variations.

Satellite Image (Sentinel 2A)
\

NDVI LULC Delenition
LAI fAPAR Carbon Stock Emission potention
Index index calculate Calculate
! I T
\
Spatial Analyst
[
Map Algebra

Carbon stock, Emission potential, and economic

Figure 2. Framework for carbon stock calculating from
various land use systems

The analysis in the study used ArcGIS 10.8, a spatial
analyst tool using Map Algebra, a spatial statistical tool
in the form of correlation and modeling spatial
relationship, namely Regression Weighted Regression
(GWR). Correlation analysis is used to measure the
relationship between variables, where in this study the
variables used are the value of the vegetation index
(NDVI) used and the value of carbon content in each
land use and leaf area index (LAI). Regression analysis
measures how much the independent variable can
explain the dependent variable, from the value of the
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vegetation index used and the value of carbon content in
each land use.

Result and Discussion

fAPAR

In remote sensing, biomass is strongly influenced
by the fAPAR index on satellite images with a linear
regression function, where fAPAR is the solar radiation
absorbed by plants through photosynthesis through
chlorophyll. The maximum fAPAR value is 1.15 and the
minimum is 0.09 and the average fAPAR value is 0.89.
Based on the fAPAR value, it can be concluded that the
greater the fAPAR value, the greater the solar radiation
absorbed by plants. This will certainly have a major
effect on the amount of chlorophyll and or green leaves.
The results of the fAPAR analysis implemented in the
form of a map can be seen in Figure 3.
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Figure 3. fAPAR distribution in the Kualan Subwatershed

The results of research Nguyen et al. (2016)
conducted in Bach Ma National Park, Thua Thien Hue
Province are much different from the results of the
research conducted by the authors. The results of the
analysis obtained a maximum fAPAR value was 0.7 and
a minimum was -0.2, while the results of the research
conducted by the authors were the maximum fAPAR
value of 1.15 and a minimum of 0.09. This difference is
likely due to the dense plant conditions in the Kualan
sub-watershed, as also indicated by the larger leaf area
index (LAI) when compared to the study (Nguyen &
Nguyen, 2016)

Land Use Lan Cover

The first interpretation and analysis carried out is
by using guided analysis. Based on that method the land
use land cover of the study area is forest plantation,
secondary swamp forest, secondary dryland forest,
plantation, mixed dryland farming, swamp shrubs,

8605



Jurnal Penelitian Pendidikan IPA (JPPIPA)
shrubs, rice fields, mining, settlement, and cleared land.

The area of each land use land cover can be seen in Table
1.

Table 1. Land Use Land Cover Kualan Watershed

Land Use Land Cover Area Percentage
Shrubs 1466.20 0.97
Swamp Shrubs 3481.54 2.29
Secondary Dryland Forest 15644 10.30
Secondary Swamp Forest 20545.36 13.52
Forest Plantation 6853.1 451
Settlements 153.87 0.10
Plantation 9046.58 5.95
Mining 2807.58 1.85
Mixed Dryland Farming 87139.27 57.36
Rice Fields 68.75 0.05
Cleared Land 4712.43 3.10
Sum 151918.68 100.00

Based on the data in Table 1, it is known that the
most extensive land use land cover is mixed dryland
farming, with an area of 87139.27 ha (57.36%), while the
smallest is rice fields with an area of 68.75 ha (0.05%). For
more details of the Kualan sub-watershed land use land
cover can be seen in Figure 4.
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Figure 4. Land use land cover in the Kualan Watershed

Normalized Difference Vegetation Index(NDVI)

The NDVI vegetation index was processed and
calculated using SNAP and ArcGIS 10.8. Based on the
results of the Normalized Difference Vegetation Index
(NDVI) analysis, it is known that the NDVI value ranges
from 0.41-1. When viewed from the results of the
analysis, most of the NDVI of the study area has values
ranging from 0.62-0.78 and 0.78-1. The average NDVI
obtained is 0.72. This is reasonable because the study
area is 41.36% forest plantations, swamps, plantations,
and mixed agriculture. Therefore, trees can grow well,
resulting in high NDVI values. The results of NDVI
interpretation and analysis of the study area can be seen
in Figure 5, farming, with an area of 87139.27 ha
(57.36%), while the smallest is rice fields with an area of
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68.75 ha (0.05%). For more details of the Kualan sub-
watershed land use land cover can be seen in Figure 4.
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Figure 5. Index NDVI in the Kualan Watershed

In studies conducted (Goswami et al, 2015;
Nguyen & Nguyen, 2016), the NDVI of natural forests
or perennial plants fluctuated from 0.5 to 0.8. When
compared with NDVI values determined from remote
sensing imagery in the index, the values are quite similar
(Nguyen & Nguyen, 2016).

Leaf Area Index (LAI)

The next step was to determine the actual LAI of
each standard plot in the field. The LAl map was
interpreted from satellite images by reconnecting NDVI
and LAI as formula (2) with linear regression analysis:
LAI=0.65+ 36.7059 * NDVI with R2 = 0.025. The results
of the statistical analysis showed that the average value
of the LAI index on the image was 32. The maximum
value of the LAI index obtained on the image was 41.8
and the minimum value was -35.8. The smallest LAI
values are represented as mine sites, settlements, and
vacant land, while land covered by dense vegetation
with large biomass has high LAI index values. The
results of the LAl index analysis of the study area can be
seen in Figure 6.
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Figure 6. Index LAI in the Kualan Watershed
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The LAI values of land use land cover ranged from
-35.8 to 41.7. More details about the relationship between
NDVI and LAI index in the sample plots can be seen in
Figure 6. As can be seen, the NDVI and LAI index have
a positive correlation with R2 0.0255. This means that the
more trees there are, the more bio-mass there is.

R2=0,0255 y=0.65x+36.7059
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Figure 7. Correlation Between LAl and NDVI

The standard plotting in determining LAI in the
land use land cover of the Kualan sub-watershed can be
seen in Figure 8.
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Figure 8. Plot location in land use land cover

The relationship between NDVIand LAl in the field
plots based on linear regression analysis can be seen in
the table 2. Based on some of the above conditions
ranging from NDVI, LAI, and fAPAR, the carbon
biomass and CO2 reserves can be estimated. With the
capabilities of GIS technology and Remote Sensing
systems, this process will be easier to do and save costs
and energy. The following is the estimation of carbon
stock in the Kualan watershed.
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Table 2. LAI and NDVI Values of the Field Plots

Point LAI NDVI No LAI NDVI
1 0.10539  0.884024 23 37.1539 0.794383
2 36.7059  0.659888 24 24.0907 0.739531
3 27.6036  0.752151 25 10.293 0.867562
4 36.7986  0.436964 26  36.9338 0.877866
5 10.1228 0.885714 27 37.5623 0.826456
6 374913  0.751142 28  35.7394 0.86293
7 36.734 0.91224 29 13.0878 0.699465
8 27.8639 0.886188 30 26.4436 0.196937
9 36.7327  0.864364 31 17.0741 0.370886
10 35.0571 0.824112 32 37.0881 0.896647
11 34.0919 0.605286 33 37.0175 0.8802
12 32.2511 0.715736 34 37.1315 0.875244
13 33.4323  0.658411 35 11.5987 0.315484
14 36.2758  0.897422 36 36.2595 0.582109
15 34.7484  0.843125 37  36.6152 0.827016
16 35.9267 0.87002 38 36.6283 0.525251
17 12.0598 0.816393 39 17.9409 0.67756
18 37.0454  0.629682 40 36.5613 0.651498
19 15.351 0.512797 41 37.487 0.781736
20 36.9473  0.883629 42 35.4677 0.671742
21 36.8143  0.868509 43  37.2825 0.90226
22 36.4007 0.88087 44  37.0992 0.33072
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Figure 9. Carbon stock and emission potential of Kualan
Watershed

Based on the results of the calculation, the carbon
stock is broadly divided into three, namely carbon stock
in forest land use, which includes Secondary Dryland
Forest, Secondary Dryland Forest, Forest Plantation,
cultivated land use including plantation, mixed dryland
farming, rice fields, scrub swamp land, and non-
cultivated land includes settlement, mining and cleared
land. Carbon stock analysis of different land uses
averaged 3,424,631.5 to/ha. The largest carbon stock is
mixed dryland farming, which is 2,614,178 tons/ha, with
potential emissions of 9,585,320 tons/ha. The least
carbon stock is in mining land use at 0 to/ha with
potential emissions of 0 tons/ha.
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Table 3. Carbon Stock and Emission Potential CO2

LULC Area Emission Carbon Emission
(Ha) Factor Stock Potential
Shrubs 1467 30 43986 161282
Swamp Shrubs 3482 30 104446 382969
Secondary 15644 84.788 1326423 4863552
Dryland Forest
Secondary 20545 68.479 1406926 5158728
Swamp Forest
Forest Plantation 6853 112377 770131 2823814
Settlements 154 5 769 2821
Plantation 9047 63 56993406 2089760
Mining 2808 0 0 0
Mixed Dryland 87139 30 2614178 9585320
Farming
Rice Fields 69 10 687 2521
Cleared Land 4712 2,5 11781 43197
Sum 151919 6849263 25113964

For economic purposes, the carbon value of various
types of land use can be calculated. According to the
Forest Inventory and Planning Institute, Natural
Resources and Environment Policy, if the price of 1 ton
of CO2/hectare in cash is $5, then the total amount of
payment can be calculated as follows:

Total payment= CO2 amount*unit Price (USD/ton

CO2) (%)
Table 4. Market Value of Carbon from Different Land
Uses
LULC Carbon Stock Unit  CO, (USD)
(ton/ha) value
Shrubs 43986 5 219.930
Swamp Shrubs 104446 5 522231
Secondary Dryland 1326423 5 6.632.115
Forest
Secondary Swamp 1406926 5 7 034.630
Forest
Forest Plantation 770131 5 3.850.656
Settlements 769 5 3.847
Plantation 56993406 5 2.849.673
Mining 0.00 5 0,00
Mlxe(.:l Dryland 2614178 5 13.070.890
Farming
Rice Fields 687 5 3.437
Cleared Land 11781 5 58.905
Sum 34.246.314

Based on Table 3, it can be seen that the C02 value
in USD that has a high value is the forest land use group.
In the Secondary Dryland Forest, Secondary Swamp
Forest, and Forest Plantation the total is 17,517,400.50
USD, while the lowest is land use in mining which is 0
USD. Overall, the CO2 value of land use in the study
area is 34,246,314.45 USD.
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Conclusion

The integration of remote sensing data analysis and
field surveys in geospatial technology is one of the new
approaches in the study of carbon stocks and CO2
emissions in topsoil from various land uses. By utilizing
geospatial technology, efforts to estimate carbon stocks
on the surface are easier and faster. The results of carbon
stock estimation on land use land cover in the form of
forests are on average high. This condition can be used
as a reference to be oriented toward carbon stock
management and is an important basis for determining
the price of CO2 from each type of land use, especially
forests, for the carbon commercial market domestically
and globally. Broadly speaking, carbon stock is divided
into three, namely carbon stock in forest land use, which
includes Secondary Dryland Forest, Secondary Dryland
Forest, Forest Plantation, cultivated land use including
plantation, mixed dryland farming, rice fields, scrub
swamp land, and non-cultivated land includes
settlement, mining and cleared land. Carbon stock
analysis on different land uses averaged 3,424,631.5
to/ha. The largest carbon stock is mixed dryland
farming, which is 2,614,178 tons/ha, with potential
emissions of 9,585,320 tons/ha. For least carbon stock is
in mining land use of 0 to/ha with potential emissions
also 0 tons/ha. C02 value in USD which has a high value
is the forest land use group. In the Secondary Dryland
Forest, Secondary Swamp Forest, and Forest Plantation
the total is 17,517,400.50 USD, while the lowest is land
use in mining which is 0 USD. Overall, the CO2 value of
land use in the study area is 34,246,314.45 USD. So with
these results, a geospatial approach can provide an
effective solution for monitoring and managing carbon
stocks and carbon emissions.
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