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Abstract: Indonesia controls 75%-80% of the world's carbon stocks, so the 
amount of carbon stocks must be utilized optimally. This study aims to 
determine carbon stocks, potential emissions, and economic value of 
carbon stocks in each land use. The method used is secondary data 
analysis and field checking. The data collected were Sentinel 2A 
acquisitions in 2020 and 2022, Digital Elevation Model (DEM), and land 
use land cover in 2020-2023. Data analysis used SNAP and ArcGIS 10.8. 
The tool used for data analysis is spatial analysis map algebra. The results 
showed mixed dryland agriculture has the most extensive carbon stock, at 
2,614,178 tons/ha, with potential emissions of 9,585,320 tons/ha. The most 
minor carbon stock is in mining land use, which is 0 tons/ha with potential 
emissions of 0 tons/ha. The highest C02 value in USD is the forest land use 
group. In the Secondary Dryland Forest, Secondary Swamp Forest, and 
Plantation Forest groups, it is 17,517,400.50 USD, while the lowest is 
mining land use, which is 0 USD. Overall, the CO2 value of land use in the 
study area is 34,246,314.45 USD. Integrating remote sensing data analysis 
and field surveys in geospatial technology is one of the new approaches to 
studying carbon stocks and CO2 emissions in topsoil from various land 
uses. By utilizing geospatial technology, efforts to estimate carbon stocks 
on the surface are easier and faster. 
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Introduction  
 
Although peatlands cover only 3% of the earth's 

surface, they account for about one-third of all soil 
carbon storage on a global scale (Carless et al., 2021; Yu 
et al., 2011). With Indonesia accounting for 75%-80% of 
the world's carbon stocks, these stocks must be utilized 
to the fullest extent possible, such as through carbon 
trading. Emissions from degraded peatlands are of 

global significance. Drained or burned peatland 
landscapes are estimated to release 1.3 Gt CO2 annually, 
accounting for 10% of greenhouse gas emissions from 
the land use sector (Carless et al., 2021; IUCN, 2017) and 

a major share of national greenhouse gas emissions in 
many countries (Joosten et al., 2012). 

Climate change and global warming have been the 
cause of significant threats to global ecosystems 
(Trapero et al., 2023; Frimawaty et al., 2023; Hassan & 
Nile, 2021). The recent increase in greenhouse gas 
emissions resulting from massive human social 
development and industrialization is one of the primary 
emissions causing climate change. Temperatures in 
places inhabited by more than one-fifth of humanity 
have increased by 1.5 degrees Celsius (C) above pre-
industrial levels by at least one season (Javaherian et al., 
2021). Without mitigation efforts to reduce greenhouse 
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gases, global temperatures will continue rising in the 
21st century, with an average increase of 3.7°C to 4.8°C 
(IPCC, 2014). 

Global warming is one of the issues in the world 
today, as seen by the high temperature of the earth, 
which is directly related to greenhouse gases. Peatlands 
on land store a massive carbon (C) source and are 
located a few meters from the atmosphere. Small 
amounts of carbon dioxide (CO2) and other greenhouse 
gases (GHGs) in the atmosphere are now widely 
recognized as the leading cause of global warming 
(Hussein, 2022; Suardana et al., 2023). Most of them are 
caused by the burning of fossil fuels and the conversion 
of tropical forests into regional agricultural land 
(Hussein, 2022; Paustian et al., 2016). Carbon stock 

estimation is a critical component to combat global 
warming. Biomass assessments can give an idea of the 
amount of CO2 that can be removed from the 
atmosphere by forests and other plantations (Dahy et al., 
2020; Issa et al., 2020). 

Therefore, the exchange of C in peatlands and the 
atmosphere should be a primary concern for scientists in 
global climate change. It is a question of whether the 

amount of C stored below the soil surface will be 
released in a warmer climate, causing it to warm further. 
Alternatively, more C is absorbed due to increased plant 
growth in warmer climates. 

How land use change, fires, and ice sheet melt affect 
the magnitude and direction of carbon dioxide (CO2) 
and methane (CH4) exchange with the atmosphere 
(Pratiwi et al., 2022; Yu et al., 2011). As a result, climate 
change has brought significant impacts to the micro and 
macro sectors of the climate world, including loss of 
biodiversity, destruction of natural vegetation, and loss 
of important natural ecosystems and their services, as 
well as local wisdom (Birhane et al., 2020). These 
questions remain challenging and require possible 
answers that can be obtained from various research 
studies that have recently made significant progress. 

The Kyoto Protocol 2008, an agreement within the 
United Nations (UN) Framework Convention on 
Climate Change and the 2012 Doha Amendment, 
committed its parties to internationally binding 
greenhouse gas emission reduction targets (Agricul & 
Series, 2012). Therefore, updated international carbon 
accounting regulations mean that peatland soils, and in 
particular changes in carbon stocks as a result of 
activities related to drainage and rewetting of wetlands, 
can be voluntarily considered for CO2 emissions 
reporting (Hiraishi et al., 2014; Hussein, 2022). 

In addition to emissions, carbon loss in peatlands 
can also occur in the form of dissolved organic carbon 
and particulate organic carbon. Therefore, accurate 
assessments, including improved measurement, 
reporting, and verification of global peat carbon stocks, 

are needed to support the governance of mental 
inventories and also to inform global climate change 
models, including predicting potential positive climate 
feedback from degraded peatlands (Gallego-Sala et al., 
2018).  

Between 2005 and 2010, the carbon in the world's 
forest biomass will decline by 0.5 Gt annually. This 
reduction was mainly due to a reduction in forest area 
worldwide (Forestry Economics and Policy Division, 
2010). Also, between 2015 and 2016, it is estimated that 
forests in Indonesia experienced 0.63 million hectares of 
deforestation (KLHK, 2018; Malik et al., 2023). Carbon 
emissions originate from the coal energy sector and this 
figure is expected to continue to rise until it reaches 
434.96 parts per million (ppm) by 2050, where the 

increase in carbon could exceed 400 ppm is categorized 
as a global phenomenon (Cahyono et al., 2022). 
Investigating the potential loss of valuable ecosystem 
components due to LULC changes is critical (Lahiji et al., 
2020). Several studies in Indonesia have analyzed the 
potential of various ecosystems to sequester carbon, for 
example in state forests (Darawan et al., 2022), 
production forests (Situmorang & Sugianto, 2016), urban 

green spaces (Dewantoro & Jatmiko, 2021), mangroves 
(Kusumaningtyas et al., 2022), and agroforestry systems 
(Latifah et al., 2018).  

In recent years, various studies related to biomass 
estimation have been conducted. Some standard 
methods, such as making and counting standard cells 
directly from the field, are used (Batsaikhan et al., 2020; 
Nguyen & Nguyen, 2016). This method has high 
accuracy but is time-consuming, costly, labor-intensive, 
and difficult to apply in distant places and complicated 
terrain conditions. The recent rapid development of 
Geographic Information Systems and Remote Sensing 
combined with field investigation is applied to 
determine forest carbon stocks, which is considered a 
new approach. Geographic Information Systems (GIS) 
provide an opportunity to identify LULC changes over 
time and comprehensively detect specific disturbances 
of ecosystem services (Zhao et al., 2018). In addition, 
spatial models provide a more precise explanation of 
how disturbances impact ecosystem services (Jiang et al., 
2021). 

Studies on LULC change and aboveground carbon 
stock measurements can vary using remote sensing and 
GIS. Several previous studies focused on uncovering the 
significant impacts of LULC change on carbon stocks 
using GIS and remote sensing approaches. A general 
simulation model for carbon stock dynamics 
incorporating annual maps was conducted to analyze 
the effect of LULC changes on vegetation biomass and 
carbon stocks (Liu et al., 2016; Malik et al., 2023). 
Assessment of LULC changes and aboveground 
vegetation carbon stocks using multispectral data in a 
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remote sensing-based methodology showed a relevant 
decrease in vegetated areas (Ahmad et al., 2023; Massetti 
& Gil, 2020; Samuel, 2020). 

Geospatial technologies, including Remote Sensing 
(RS) and Geographic Information Systems (GIS), offer 
the means to enable rapid assessment of terrestrial 
biomass over large areas in a timely and cost-effective 
manner, making above- and below-ground estimates 
possible (Dahy et al., 2020; Katkani et al., 2022; Trivedi et 

al., 2022). Therefore, applying an integrated RS-GIS 
approach for precise carbon management is essential. 
The use of RS and GIS in large-scale aboveground 
biomass estimation provides good alternatives, insights, 
challenges, opportunities, and future trends compared 
to conventional approaches (Dahy et al., 2020; Issa et al., 
2020). 

 

Method  
 
Study Area 

The administrative research area is located in the 
Kulan sub-watershed of Ketapang Regency. 
Astronomically it is located between 109o5'0"-110o37'30" 
East and 0o21'33"-0o30'0" LS. The research area is 
traversed by the Kualan River. Kualan Sub Watershed 
has an area of 1534.93 km2 and covers nine villages 
including Kualan Hulu, Merawan, Semandang Kiri, 
Balai Pinang Hulu, Balai Pinang, Butuh Bosi, Kualan 
Hilir, Sekucing Kualan, Lebak Hilir. 

 

 
Figure 1. Study area 

 
Data Collection 

Data collection includes among others Sentinel 2A 
acquired in 2020 and 2022, and Digital Elevation Model 
(DEM) land use land cover in 2020-2023. Land use land 
cover data in this study was obtained from two sources, 
namely Sentinel 2A images in 2020, 2021, and 2022 with 
land use land cover maps of the research area in 2020, 
2021, and 2022.  

In remote sensing, biomass is strongly influenced 
by the fAPAR index on satellite images with a linear 
regression function, where fAPAR is the solar radiation 
absorbed by plants through photosynthesis through 
chlorophyll. The fAPAR index is determined based on 
the relationship between vegetation indices called 
Normalized Difference Vegetation Index (NDVI) which 
is expressed by the formula: 

 
          fAPAR = c+d * NDVI    (1) 

 
Where: c and d are empirical coefficients commonly 
used in Southeast Asia (c=0.08 and d=1.075). 

 
Normalized Difference Vegetation Index  

NDVI is calculated based on the reflectance 
difference of the near-infrared band and the Sentinel 2A 
red band with the following formula: 

 

NDVI =   
𝐵𝑎𝑛𝑑 8−𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8+𝐵𝑎𝑛𝑑 4
     (2) 

                  
Where: 
Band 8 = Near Infrared (Near Infrared) 
Band 4 = Reflectance of the Red (Red) 
NDVI  = Normalized Difference Vegetation Index 

NDVI values range from +1.0 to -1.0, but values less 
than zero usually have no ecological significance, so the 
range of the index was cut from 0.0 to +1.0. 

 
Leaf Area Index (LAI) 

According to Nguyen et al. (2016), the leaf area 
index (LAI) is the ratio of upper leaf surface area to 
ground surface area (for broadleaf canopies) or the 
projection of conifer needle surface area to ground 
surface area (for coniferous trees) for a given unit area. 
Nguyen et al. (2016) said, LAI can be used to estimate 
biomass, vegetation dynamics, or harvest estimation. 
The range of LAI values is 0 to 6 or higher. A value of 
less than one indicates the presence of bare soil between 
vegetated patches, while an LAI value of one indicates 
that there is one layer of leaves completely covering one 
unit of ground surface area. A layered canopy with 
multiple leaf layers per unit of soil surface area is 
indicated by LAI values greater than 1. 

A linear regression technique that aims to 
connect sensor reflectance data to field measurements 
of LAI can be used to generate LAI from satellite 
pictures. According to the following formula, such an 
approach can connect the fractional cover detected on 
the ground to the reflectance band of the sensor or a 
vegetation index like the NDVI (Nguyen & Nguyen, 
2016). 

 
LAI = e + f * DVI   (3) 
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Where: e and f are the coefficients to be calculated 
by analyzing the relationship between NDVI and LAI. 
 
Carbon Stock Identification 

Carbon stock identification is done by calculating 
the land use area multiplied by the carbon emission 
factor for each land use. As discussed in the scope of the 

study, this research only focuses on above-ground 
biomass. Therefore, the amount of carbon and CO2 will 
be calculated using the formula: 

 
Carbon Stock= Lulc area (ha)*emission factor         (4) 
CO2 = 3.67* Carbon Stock          (5) 

 
Satellite Image Interpretation 

The satellite imagery used in this study is Sentinel 
2A downloaded for free from the website 
https://www.sentinel-hub.com/ acquired in 2020-2022. 
After review, L2A imagery with 30m x 30m resolution 
and 30% cloud cover was selected. To process and 
interpret the Sentinel 2A imagery using SNAP as well as 
ArcGIS 10.8. SNAP was used for image processing, 
while ArcGis10.8 software was used to map land use 
land cover as well as to calculate biomass and carbon 
stock in the study area at different land use variations. 

 

 
Figure 2. Framework for carbon stock calculating from 

various land use systems 
 

The analysis in the study used ArcGIS 10.8, a spatial 
analyst tool using Map Algebra, a spatial statistical tool 
in the form of correlation and modeling spatial 
relationship, namely Regression Weighted Regression 

(GWR). Correlation analysis is used to measure the 
relationship between variables, where in this study the 
variables used are the value of the vegetation index 
(NDVI) used and the value of carbon content in each 
land use and leaf area index (LAI). Regression analysis 
measures how much the independent variable can 
explain the dependent variable, from the value of the 

vegetation index used and the value of carbon content in 
each land use.  

 

Result and Discussion 
 
fAPAR 

In remote sensing, biomass is strongly influenced 
by the fAPAR index on satellite images with a linear 
regression function, where fAPAR is the solar radiation 
absorbed by plants through photosynthesis through 
chlorophyll. The maximum fAPAR value is 1.15 and the 
minimum is 0.09 and the average fAPAR value is 0.89.  
Based on the fAPAR value, it can be concluded that the 
greater the fAPAR value, the greater the solar radiation 
absorbed by plants. This will certainly have a major 
effect on the amount of chlorophyll and or green leaves. 
The results of the fAPAR analysis implemented in the 
form of a map can be seen in Figure 3. 

 

 
Figure 3. fAPAR distribution in the Kualan Subwatershed 

 
The results of research Nguyen et al. (2016) 

conducted in Bach Ma National Park, Thua Thien Hue 
Province are much different from the results of the 
research conducted by the authors. The results of the 
analysis obtained a maximum fAPAR value was 0.7 and 
a minimum was -0.2, while the results of the research 
conducted by the authors were the maximum fAPAR 
value of 1.15 and a minimum of 0.09. This difference is 
likely due to the dense plant conditions in the Kualan 
sub-watershed, as also indicated by the larger leaf area 
index (LAI) when compared to the study (Nguyen & 
Nguyen, 2016) 
 
Land Use Lan Cover 

The first interpretation and analysis carried out is 
by using guided analysis. Based on that method the land 
use land cover of the study area is forest plantation, 
secondary swamp forest, secondary dryland forest, 
plantation, mixed dryland farming, swamp shrubs, 
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shrubs, rice fields, mining, settlement, and cleared land. 
The area of each land use land cover can be seen in Table 
1. 

 
Table 1. Land Use Land Cover Kualan Watershed 
Land Use Land Cover Area Percentage 

Shrubs 1466.20 0.97 
Swamp Shrubs 3481.54 2.29 
Secondary Dryland Forest 15644 10.30 
Secondary Swamp Forest 20545.36 13.52 
Forest Plantation 6853.1 4.51 
Settlements 153.87 0.10 
Plantation 9046.58 5.95 
Mining 2807.58 1.85 
Mixed Dryland Farming 87139.27 57.36 
Rice Fields 68.75 0.05 
Cleared Land 4712.43 3.10 
Sum 151918.68 100.00 

 
Based on the data in Table 1, it is known that the 

most extensive land use land cover is mixed dryland 
farming, with an area of 87139.27 ha (57.36%), while the 
smallest is rice fields with an area of 68.75 ha (0.05%). For 
more details of the Kualan sub-watershed land use land 

cover can be seen in Figure 4. 
 

 
Figure 4. Land use land cover in the Kualan Watershed 

 

Normalized Difference Vegetation Index (NDVI) 
The NDVI vegetation index was processed and 

calculated using SNAP and ArcGIS 10.8. Based on the 
results of the Normalized Difference Vegetation Index 
(NDVI) analysis, it is known that the NDVI value ranges 
from 0.41-1. When viewed from the results of the 
analysis, most of the NDVI of the study area has values 
ranging from 0.62-0.78 and 0.78-1. The average NDVI 
obtained is 0.72. This is reasonable because the study 
area is 41.36% forest plantations, swamps, plantations, 
and mixed agriculture. Therefore, trees can grow well, 
resulting in high NDVI values. The results of NDVI 
interpretation and analysis of the study area can be seen 
in Figure 5, farming, with an area of 87139.27 ha 
(57.36%), while the smallest is rice fields with an area of 

68.75 ha (0.05%). For more details of the Kualan sub-
watershed land use land cover can be seen in Figure 4. 

 

 
Figure 5. Index NDVI in the Kualan Watershed 

 

In studies conducted (Goswami et al., 2015; 
Nguyen & Nguyen, 2016), the NDVI of natural forests 
or perennial plants fluctuated from 0.5 to 0.8. When 
compared with NDVI values determined from remote 
sensing imagery in the index, the values are quite similar 
(Nguyen & Nguyen, 2016). 
 
Leaf Area Index (LAI) 

The next step was to determine the actual LAI of 
each standard plot in the field. The LAI map was 
interpreted from satellite images by reconnecting NDVI 
and LAI as formula (2) with linear regression analysis: 
LAI = 0.65 + 36.7059 * NDVI with R2 = 0.025.  The results 
of the statistical analysis showed that the average value 
of the LAI index on the image was 32. The maximum 
value of the LAI index obtained on the image was 41.8 
and the minimum value was -35.8. The smallest LAI 
values are represented as mine sites, settlements, and 
vacant land, while land covered by dense vegetation 
with large biomass has high LAI index values. The 
results of the LAI index analysis of the study area can be 

seen in Figure 6. 
  

 
Figure 6. Index LAI in the Kualan Watershed 
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The LAI values of land use land cover ranged from 
-35.8 to 41.7. More details about the relationship between 
NDVI and LAI index in the sample plots can be seen in 
Figure 6. As can be seen, the NDVI and LAI index have 
a positive correlation with R2 0.0255. This means that the 
more trees there are, the more bio-mass there is. 

 

 
Figure 7. Correlation Between LAI and NDVI 

 
The standard plotting in determining LAI in the 

land use land cover of the Kualan sub-watershed can be 
seen in Figure 8. 

 

 
Figure 8. Plot location in land use land cover 

 
The relationship between NDVI and LAI in the field 

plots based on linear regression analysis can be seen in 
the table 2. Based on some of the above conditions 
ranging from NDVI, LAI, and fAPAR, the carbon 
biomass and CO2 reserves can be estimated. With the 
capabilities of GIS technology and Remote Sensing 
systems, this process will be easier to do and save costs 
and energy. The following is the estimation of carbon 
stock in the Kualan watershed. 

 

Table 2. LAI and NDVI Values of the Field Plots 
Point LAI NDVI No LAI NDVI 

1 0.10539 0.884024 23 37.1539 0.794383 
2 36.7059 0.659888 24 24.0907 0.739531 
3 27.6036 0.752151 25 10.293 0.867562 
4 36.7986 0.436964 26 36.9338 0.877866 
5 10.1228 0.885714 27 37.5623 0.826456 
6 37.4913 0.751142 28 35.7394 0.86293 
7 36.734 0.91224 29 13.0878 0.699465 
8 27.8639 0.886188 30 26.4436 0.196937 
9 36.7327 0.864364 31 17.0741 0.370886 
10 35.0571 0.824112 32 37.0881 0.896647 
11 34.0919 0.605286 33 37.0175 0.8802 
12 32.2511 0.715736 34 37.1315 0.875244 
13 33.4323 0.658411 35 11.5987 0.315484 
14 36.2758 0.897422 36 36.2595 0.582109 
15 34.7484 0.843125 37 36.6152 0.827016 
16 35.9267 0.87002 38 36.6283 0.525251 
17 12.0598 0.816393 39 17.9409 0.67756 
18 37.0454 0.629682 40 36.5613 0.651498 
19 15.351 0.512797 41 37.487 0.781736 
20 36.9473 0.883629 42 35.4677 0.671742 
21 36.8143 0.868509 43 37.2825 0.90226 
22 36.4007 0.88087 44 37.0992 0.33072 

 

 
Figure 9. Carbon stock and emission potential of Kualan 

Watershed 
 
Based on the results of the calculation, the carbon 

stock is broadly divided into three, namely carbon stock 
in forest land use, which includes Secondary Dryland 
Forest, Secondary Dryland Forest, Forest Plantation, 
cultivated land use including plantation, mixed dryland 
farming, rice fields, scrub swamp land, and non-
cultivated land includes settlement, mining and cleared 
land. Carbon stock analysis of different land uses 
averaged 3,424,631.5 to/ha. The largest carbon stock is 
mixed dryland farming, which is 2,614,178 tons/ha, with 
potential emissions of 9,585,320 tons/ha. The least 
carbon stock is in mining land use at 0 to/ha with 
potential emissions of 0 tons/ha. 
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Table 3. Carbon Stock and Emission Potential CO2 
LULC Area 

(Ha) 
Emission 

Factor 
Carbon 

Stock 
Emission 
Potential 

Shrubs 1467 30 43986 161282 
Swamp Shrubs 3482 30 104446 382969 
Secondary 
Dryland Forest 

15644 84.788 1326423 4863552 

Secondary 
Swamp Forest 

20545 68.479 1406926 5158728 

Forest Plantation 6853 112.377 770131 2823814 
Settlements 154 5 769 2821 
Plantation 9047 63 56993406 2089760 
Mining 2808 0 0 0 
Mixed Dryland 
Farming 

87139 30 2614178 9585320 

Rice Fields 69 10 687 2521 
Cleared Land 4712 2,5 11781 43197 
Sum 151919 

 
6849263 25113964 

 
For economic purposes, the carbon value of various 

types of land use can be calculated. According to the 
Forest Inventory and Planning Institute, Natural 
Resources and Environment Policy, if the price of 1 ton 
of CO2/hectare in cash is $5, then the total amount of 
payment can be calculated as follows: 

 
Total payment= CO2 amount*unit Price (USD/ton 
CO2)              (5) 
 

Table 4. Market Value of Carbon from Different Land 
Uses 
LULC Carbon Stock 

(ton/ha) 
Unit CO2 (USD) 

value 

Shrubs 43986 5 219.930 
Swamp Shrubs 104446 5 522.231 
Secondary Dryland 
Forest 

1326423 5 
6.632.115 

Secondary Swamp 
Forest 

1406926 5 
7.034.630 

Forest Plantation 770131 5 3.850.656 
Settlements 769 5 3.847 
Plantation 56993406 5 2.849.673 
Mining 0.00 5 0,00 
Mixed Dryland 
Farming 

2614178 5 
13.070.890 

Rice Fields 687 5 3.437 
Cleared Land 11781 5 58.905 
Sum   34.246.314 

 
Based on Table 3, it can be seen that the C02 value 

in USD that has a high value is the forest land use group. 
In the Secondary Dryland Forest, Secondary Swamp 
Forest, and Forest Plantation the total is 17,517,400.50 
USD, while the lowest is land use in mining which is 0 
USD. Overall, the CO2 value of land use in the study 
area is 34,246,314.45 USD. 
 
 

Conclusion  

 
The integration of remote sensing data analysis and 

field surveys in geospatial technology is one of the new 
approaches in the study of carbon stocks and CO2 
emissions in topsoil from various land uses. By utilizing 
geospatial technology, efforts to estimate carbon stocks 
on the surface are easier and faster. The results of carbon 
stock estimation on land use land cover in the form of 
forests are on average high. This condition can be used 
as a reference to be oriented toward carbon stock 
management and is an important basis for determining 
the price of CO2 from each type of land use, especially 
forests, for the carbon commercial market domestically 
and globally.  Broadly speaking, carbon stock is divided 
into three, namely carbon stock in forest land use, which 
includes Secondary Dryland Forest, Secondary Dryland 
Forest, Forest Plantation, cultivated land use including 
plantation, mixed dryland farming, rice fields, scrub 
swamp land, and non-cultivated land includes 
settlement, mining and cleared land. Carbon stock 
analysis on different land uses averaged 3,424,631.5 
to/ha. The largest carbon stock is mixed dryland 
farming, which is 2,614,178 tons/ha, with potential 
emissions of 9,585,320 tons/ha. For least carbon stock is 
in mining land use of 0 to/ha with potential emissions 
also 0 tons/ha. C02 value in USD which has a high value 
is the forest land use group. In the Secondary Dryland 
Forest, Secondary Swamp Forest, and Forest Plantation 
the total is 17,517,400.50 USD, while the lowest is land 
use in mining which is 0 USD. Overall, the CO2 value of 
land use in the study area is 34,246,314.45 USD. So with 
these results, a geospatial approach can provide an 
effective solution for monitoring and managing carbon 
stocks and carbon emissions. 
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