

JPPIPA 9(Special Issue) (2023)

Jurnal Penelitian Pendidikan IPA

Journal of Research in Science Education

JPP IPA

http://jppipa.unram.ac.id/index.php/jppipa/index

Sudden Cardiac Death in Adolescent Athletes and the Role of Genetic Screening : A Literature Review

Ami Febby Triani¹, Gusril^{1*}, Arsil¹, Ronni Yenes¹, Adri Budiwanto¹, Yovhandra Ockta¹

¹Faculty of Sports Sciences, Universitas Negeri Padang, Padang, Indonesia

Received: October 17, 2023 Revised: December 19, 2023 Accepted: December 25, 2023 Published: December 31, 2023

Corresponding Author: Gusril gusril@fik.unp.ac.id

DOI: 10.29303/jppipa.v9iSpecialIssue.7810

© 2023 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Sudden death, particularly among seemingly healthy individuals, presents a critical challenge in both medical and athletic communities. This literature review investigates sudden cardiac death (SCD) in adolescent athletes, emphasizing the role of genetic screening. Utilizing various studies from 2019 to 2024, the review highlights that SCD, while rare, often stems from cardiovascular issues such as cardiomyopathy and coronary artery anomalies. Pre-participation screening, including ECGs, is crucial in identifying at-risk individuals, yet raises ethical debates regarding athlete disqualification. Genetic factors play a significant role, with inherited heart conditions frequently implicated in SCD cases. Comprehensive genetic screening and family evaluations are vital, although widespread implementation is hindered by limited positive outcomes and potential psychosocial effects. Epidemiological studies reveal a higher incidence of SCD during competitive sports, underscoring the need for tailored prevention strategies. Findings emphasize the importance of multidisciplinary collaboration in enhancing screening methods, risk assessment, and preventive interventions to mitigate sudden mortality in young athletes. The study concludes that lifestyle modifications, promoted by health organizations, and advancements in genetic diagnosis are essential in improving the health and safety of athletes. Efforts to integrate cardiovascular and genetic screening into clinical and athletic practice are paramount, aiming to reduce the incidence of SCD and enhance the well-being of young athletes globally.

Keywords: Adolescent Athletes; Genetic Screening; Sudden cardiac death

Introduction

Life in this world cannot be far from death, death is the state of nature in human life (Nel, 2021). A person is declared dead if the function of the heart, circulatory and respiratory systems is proven to have stopped permanently, or if brain stem death can be proven (Gardiner et al., 2020; Joffe et al., 2021; Meier, 2022). Death can occur slowly according to the nature of the disease, but it can also occur suddenly (Abdin et al., 2021; López & Rodó, 2020; Yan et al., 2020). Sudden death is one of the most common cases and can be found in all kinds of conditions (Sadowska et al., 2020). An often unexpected and sudden death can happen to someone who previously appeared healthy (John, 2004; Sessa et al., 2021). These deaths can occur within 24 hours after symptoms appear, but in forensic cases, most deaths occur within minutes or even seconds of the first symptoms appearing (Simão et al., 2022; Tabian et al., 2021). Sudden death, also known as "unexpected natural death," refers to death that is not preceded by significant symptoms. This can be caused by illness or something else. In recent years, there have been many news stories that provide information about sudden death without prior diagnosis (Baigent et al., 2022; Kumar et al., 2021; Tomasoni et al., 2020). Sudden death can be caused by several things, one of the causes of sudden death is a heart attack (Chahal et al., 2020). Although the causes vary, today the cause of sudden death is mostly due to cardiovascular diseases (Franklin et al., 2020). Coronary heart disease causes 80% of sudden cardiac deaths, followed by cardiomyopathy (Lucena, 2019). The heart

How to Cite:

Triani, A. F., Gusril, G., Asril, A., Yenes, R., Budiwanto, A., & Ockta, Y. (2023). Sudden Cardiac Death in Adolescent Athletes and the Role ofGeneticScreening:ALiteratureReview.JurnalPenelitianPendidikanIPA,9(SpecialIssue),222-230.https://doi.org/10.29303/jppipa.v9iSpecialIssue.7810

is a vital organ in the human body, located in the chest cavity and divided into four chambers: two atria (right and left) at the top, and two ventricles (right and left) at the bottom (Buijtendijk et al., 2020; Christoffels & Jensen, 2020) . Despite the importance of the heart, this organ is prone to various diseases that can attack it. Death from heart disease is the leading cause of all sudden death from the disease throughout the world (Roth et al., 2020; Zimmerman et al., 2020).

Heart disease topped the list of diseases that cause death, followed by infectious diseases and cancer (Murray & Lopez, 1997; Smith et al., 2012). Every year, about 41 million people die from Non-Communicable Diseases (NCD), which accounts for about 74% of the total death cases (Bhattacharya et al., 2023; Mohebi et al., 2018). The majority, about 77%, of NCD deaths occur in countries with low and middle economies (Wang & Wang, 2020). Of these, cardiovascular disease is the highest cause of death, with an estimated 17.9 million cases annually, followed by cancer with an estimated 9.3 million cases, chronic respiratory diseases with 4.1 million cases, and diabetes with 2 million cases of death each year (Ling et al., 2020; Mukasheva et al., 2022; Zhou et al., 2022).

Research shows significant fluctuations in sudden cardiac death rates in young people due to the inclusion of different age groups in the study population (Couper et al., 2020; Ha et al., 2020). The overall risk of sudden cardiac death in individuals under 30 years of age is estimated to be about 1-2.8 per 100,000 (Salzillo et al., 2024). Heart disease sufferers in Indonesia in 2014 amounted to 61,682 people and is expected to continue to grow (Zuraidah et al., 2023). Sudden death often raises questions, showing the importance of paying attention to the condition of the victim before dying, whether he was doing activities or resting after activities, and the environment where the incident occurred. Several factors, such as age, race, personal medical history, and family history, are believed to contribute to the increase in sudden deaths. Common causes of sudden death include disorders of the cardiovascular. respiratory, central nervous, digestive, and genitourinary systems, with cardiovascular disorders as the main cause (Anurupa et al., 2021). Sudden death can also occur in all age groups, including in young people, such as adolescent athletes (Angelini et al., 2020). Increased physical activity in children and adolescents, especially in competitive sports (Chaeroni et al., 2023; Gusril et al., 2022, 2024; Haris et al., 2023).

Based on the above data, primary and secondary prevention strategies are needed. Aims to reduce the incidence of morbidity, mortality and reduce the incidence rate. Recurrence of heart disease. Where this heart attack is an urgent emergency so it requires proper and fast treatment that is useful so that heart damage is not too severe. Therefore, it is necessary to make lifestyle modifications that are widely promoted by the government, health organizations and a number of elements of society whose function is to improve the health status and quality of life of people with cardiovascular disease. Based on this background, researchers need to examine sudden death from heart disease in adolescent athletes and the role of genetic screening, where the purpose of this literature review is to examine sudden death in adolescent athletes caused by heart disease and how genetic screening plays a role in these events.

Method

This research uses literature studies. Namely related to the study of theories and other references related to values, cultures and norms that develop in the social situation under study (Sugiyono, 2018). The search for data sources is limited, where the search restrictions for reviewed articles are not only limited through themes, but also limit the publication year of the article. The inclusion criteria in this study include the year of publication between 2019 and 2024, the languages used are English and Indonesian, and the subjects of the study are adolescent athletes. Based on searches that have been done on Google Scholar and other sources with the type of free fulltext research articles - open access or original articles / research using keywords applied in writing this article, researchers found 209 articles that have alignment with the keywords given, from the articles found so that the next stage of screening is applied, 102 journal articles were executed because there were no full text articles available, Then 97 of them were executed and did not fit the inclusion criteria, the result was 10 full text journal articles which were then reviewed in this article.

Result and Discussion

Several studies have shown lower rates of death and incidence due to all-cause cardiovascular disease, cancer and metabolic conditions in individuals who engage in regular exercise. Nonetheless, sudden cardiac death (SCD) can occur in seemingly healthy individuals, including athletes. Sudden cardiac death is defined as unexpected death from heart disease that occurs within an hour (or within 24 hours). There are 8 articles that will be further analyzed in this literature review. Journal articles are grouped based on the scope of discussion so that articles are obtained that discuss sudden cardiac death in adolescent athletes and the role of genetic screening. For more details can be seen in the Table 1.

 Table 1. Summary of data descriptions

Conclusion	Results	Method	Objective	Topic	Author
Teenage SCD victim	Some athletes exhibit	7,675 instances of	Using a sizable	Sudden Cardiac	(Finocchiaro
most often show	high systolic blood	SCD were	cohort of	Death Among	et al., 2023)
myocardial disorder	pressure, increased	consecutively	teenagers, the	Adolescents in the	
and sudden arrhythmi	pulse wave velocity,	referred to our	authors aimed to	United Kingdom	
death syndrome a	and higher left	national cardiac	look into the		
autopsy. Young athlete	ventricular mass.	pathology center	causes of SCD		
are more prone to	Higher pulse wave	between 1994 and	and how physical		
arrhythmogeni	velocity relates to	June 2022; of them,	activity relates to		
cardiomyopathy	higher systolic blood	756 (10%) were cases	them.		
coronary arter	pressure and	involving	SCD among		
abnormalities, and	hemoglobin. Increased	adolescents. A	athletes is		
commotio cordi	left ventricular mass	comprehensive	uncommon,		
compared to sedentary	links to lower resting	autopsy examination	however it can be		
peers	heart rate, higher metabolic equivalents,	was performed on each subject by	identified at any stage of life.		
	certain exercise	skilled cardiac	stage of me.		
	disciplines, and high	pathologists.			
	blood pressure.	Coroners who were			
	biobu pressure.	referred provided			
		clinical data.			
Quality investigations of	This serious	The SCVP members	The committee	Sudden cardiac	(Kelly, 2023)
SCD in the young ar	international public	were asked to join	members	leath in the young:	
hampered by a numbe	health issue causes	the consensus	conducted a	A consensus	
of issues, such as th	around 15-20% of all	committee.	literature study	statement on	
absence of uniform	deaths. SCD is more	Individual requests	and developed	recommended	
autopsy procedure	frequent in elderly	were sent to SCVP	consensus	practices for	
across jurisdictions and	adults with acquired	members who	guidelines for	cardiac	
insufficient funding fo	cardiac disease,	worked as forensic	optimal	examination by	
ME/C offices, which	although it can also	pathologists or	procedures in the	pathologists from	
causes limited resource	develop in young	medical examiners.	areas of	the Society for	
to be directed toward	people, where the	This multi-	medicolegal,	Cardiovascular	
cases more likely t	etiology is more likely	institutional group	autopsy, and	Pathology	
result in crimina	to be a genetically	determined the	cardiovascular		
prosecutior	transmitted process.	critical significance	investigations		
		autopsy examination	pertaining to		
		plays in pediatric	sudden death in		
		SCD patients.	young		
Man tul structure		Detter te france	individuals.	T 1	/11
Men with structura heart disease who wer	Of the 3,189 SCD (7%) had a	Patients from	The purpose of	Toxicology	(Hansen et al., 2024)
younger were mor	cases, 219 (7%) had a	Denmark, Spain, and Australia who had	this study was to characterize	Screening in Sports-Related	2024)
likely to have sports	sporting connection. Patients with SrSCD	experienced sudden	postmortem	Sudden Cardiac	
related SCD. Compared	were younger (36 vs.	cardiac death (SCD)	toxicological	Death	
with non-SrSCI	41 years; P < 0.001),	and had a full post	results in a global	Death	
patients, they had	predominantly male	mortem were	population of		
much lower rate o	(96% vs. 75%; P <	included. They	young SrSCD		
positive toxicolog	0.001), and had a	ranged in age from	patients.		
screening results, and	higher incidence of	12 to 49. The	putterner		
there were rarely any	structural cardiac	postmortem results			
medicines linked to SCI		for SrSCD and non-			
found in their system	P = 0.038). SrSCD cases				
	were less likely to	compared, and the			
	have positive	toxicological results			
	toxicology screens	for SrSCD were			
	(12% vs. 43%; P <	evaluated.			
	0.001).				

December 2023, Volume 9 Special Issue, 222-230

Jurnal Penelitian Pendidikan IPA (JPPIPA)

Author	Topic	Objective	Method	Results	Conclusion
Hansen et al.,	Value of screening	The purpose of	In a large group of	During an 11-year	Through the PPS
2024)	for the risk of	this study was to	Italian children (age	study, 22,324 children	
	sudden cardiac	present the long-	range: 7–18 years),	(62% males; mean age	diseases at risk of sickle
	death in young		the study evaluated	12) underwent 65,397	cell disease (SCD) were
	competitive	cardiovascular	the long-term effects	annual screenings.	identified in children
	athletes	preparticipation	of PPS, the costs of		over the entire age range
		screening (PPS)	serial examinations,	disorders at risk of	of the research, and
		program in	and the diagnostic	SCD were found in 69	more frequently during
		young,	yield for disorders at	children (0.3%).	follow-up evaluations.
		competitive	risk of sudden	Disorders included	During long-term
		athletes conducted in	cardiac death (SCD).	congenital heart	follow-up, there was
		Italy.		disease, channelopathies,	little incidence of sport- related cardiac arrest
		Italy.		cardiomyopathies, and	among children who
				ventricular	had been screened.
				arrhythmias. The cost	flad been screened.
				per diagnostic was	
				73,312 euros.	
Sarto et al.,	Sudden Cardiac	to learn about the	To find every	Exercise benefits	A growing number of
2023)	Death in Athletes:	prevalence,	research that met the	cardiovascular and	young athletes die
,	Facts and Fallacies	contributing	qualifying	general health, but	unexpectedly with
		factors, and	requirements, a	even healthy athletes	structurally normal
		causes of athlete	thorough search was	can die from sudden	hearts, suggesting
		sudden cardiac	carried out using the	cardiac death (SCD).	primary arrhythmia
		death or athlete	online search engine	Atherosclerotic	syndromes. Cardiac
		aborted sudden	PubMed.	coronary artery	screening for athletes is
		death.		disease is common in	debated, with concerns
				athletes, while primary	about its long-term
				cardiomyopathies and	viability, cost-
				ion channelopathies	effectiveness, and the
				affect younger	ethical implications of
				individuals. Health	disqualification.
				policies, including	
				cardiac screening and	
				public CPR education,	
				are needed to prevent	
(Or ((1				SCD in athletes.	D 1.1.111.11
Stafford,	The role of genetic	5	A retrospective audit	Of 888 probands	Research initiatives
2022)	testing in diagnosis	genomics is used	of 1697 probands	meeting criteria,	0,
	And care of inherited cardiac	to diagnose and	between 2002 and	genetic testing found	by 5%. Clinically useful
	conditions	treat patients in a	2020 determined	LP/P alterations in 37%, VUS in 8%, and	variants are found in
	In a specialised	series of patients who visit a	clinical-genetic concordance. Cases	research initiatives	13% of cases, aiding family screening.
	multidisciplinary	specialized clinic,	with young onset,	uncovered overlooked	Genetics crucial for
	clinic	and determine	severe phenotype,	variants in 5%. Variant	comprehensive
	ennie	which patients are	and family history	discovery improved	diagnosis, highlighting
		most likely to	were likely	diagnosis in 13%,	ancestry-based
		have a monogenic	monogenic; others	enhancing quality of	differences.
		condition.	had probable	life. VUS yield varied	Methodology ranks
			complex causes.	among tribes, highest	probable monogenic
			Impact of genetic	in features of	cases, considering
			diagnosis was	monogenic illness.	phenotype knowledge
			evaluated.	0	limitations.
(Damayanti	The characteristic	to characterize the	The research method	Results from 8 journals	Based on the results of
et al., 2024)	of sudden death at	incidence of	used in this research	reveal sudden death's	10 journals, it shows that
,		sudden death at a	is literature review.	age variability. In the	sudden death can occur
		young age.		25-35 age range, men	at any age. However, at
				experience higher	a young age, the most
				incidence than women.	common incidence is

Author	Topic	Objective	Method	Results	Conclusion
				Cardiovascular issues	found in the productive
				predominate as the	age category, namely 25-
				main cause across	35 years.
				studies.	
(Reza et al.,	The expansion of	Pathogenic DNA	The literature review	Precision diagnosis	In this review, we
2024)	genetic testing in	variations	strategy was	allows for effective	highlight the specific
	cardiovascular	contribute to	employed in this	treatment, proper use	cardiovascular disease
	medicine:	various	study.	0 0	phenotypes for which
	Preparing the	cardiovascular		and risk-monitoring of	genetic testing should be
	cardiology	disease		family members.	investigated, as well as
	community for the	phenotypes,			the possible benefits of
	changing	including family			genetic testing and how
	landscape.	dyslipidemias,			physicians might
		cardiomyopathies			incorporate guideline-
		, arrhythmias, and			directed genetic testing
		aortopathies.			into their practice.
		Genetic testing is			
		vital for precise			
		diagnosis,			
		distinguishing			
		monogenic forms			
		from diseases			
		with complex			
		etiologies.			

An in-depth analysis of a number of scientific studies on sudden death in young athletes illustrates the complexity and diversity of factors involved in this phenomenon. Although these occurrences are rare, the impact on individuals, families, and the sports community is significant. Through a multidisciplinary approach to clinical research, genetics, and public policy, efforts to prevent and treat sudden death are growing. In this discussion, we will explore the main findings of these studies as well as their implications in a practical and ethical context. Epidemiological studies such as those conducted by (Han et al., 2023) highlight that although sudden death in young athletes is a rare event, the risk remains significant. The study showed that the incidence of sudden death in athletes ranged from 1:40,000 to 1:250,000, with variability depending on factors such as research method and type of sport. Although sudden death is rare outside the context of sport, particularly in young athletes, these events can have far-reaching impacts on the athlete population and the sports community as a whole. Research related to the etiology of sudden death in young athletes, such as that conducted by (Fan et al., 2022), highlights that most cases of sudden death in young athletes are caused by cardiovascular problems, with cardiomyopathy and coronary artery anomalies being the main causes. The cause of sudden death is often related to genetic and hereditary factors, which underscores the importance of clinical and genetic evaluation in the treatment of this condition. However, research also shows that there is variation in the causes of sudden death between countries and athlete populations, emphasizing the need for locally-tailored approaches in the prevention and treatment of sudden death.

The importance of pre-participation screening in detecting potentially dangerous heart conditions in young athletes is highlighted in studies such as those conducted by (Pelliccia, 2021). Screening using an electrocardiogram (ECG) has been recommended by several organizations, including the European Society of Cardiology (ESC), with the aim of detecting heart disease that might increase the risk of sudden death. However, there is an ethical debate surrounding the disqualification of athletes found to have potentially dangerous conditions, with risks of medical discrimination and psychological repercussions to consider. Research on the role of genetics in heart disease, such as that conducted by (Stafford et al., 2022), highlights the importance of family evaluation in efforts to prevent sudden death. Proper post-mortem examination and identification of risk factors can help determine appropriate preventive measures for surviving family members. However, widespread implementation of genetic screening is still constrained by the low number of significant positive outcomes and potential psychosocial consequences for the individuals tested. These findings emphasize the importance of a holistic approach in the prevention and treatment of sudden death in young athletes. Cardiovascular and genetic screening, as well as family evaluation, should be integrated into clinical practice and exercise policy. However, challenges such as ethical debates around athlete disqualification and limitations in screening results remain issues that need to be addressed. In pursuit of a better understanding of sudden death in young athletes, cross-disciplinary collaboration between researchers, health practitioners, and policymakers is needed. Only through concerted efforts to improve appropriate screening, risk assessment, and preventive interventions can we reduce sudden mortality and improve the safety and well-beingof young athletes around the world.

Conclusion

Athletes in the youth age category are an effective and important age period at the sports coaching level. Both non-competitive and competitive sports have an increased incidence of sports-related SCD with increasing age compared to recreational training; intensive training of competitive athletes appears to increase the risk of sickle cell disease (SCD). Young people who do not participate in rigorous exercise have a prevalence of SCD three times greater than competitive athletes. Sudden cardiac death (SCD) in an athlete is a rare but highly visible tragedy and a source of media attention and discussion among medical personnel, the sports community, and lay people. Heart attack is an urgent emergency so it requires proper and fast treatment that is useful so that heart damage is not too severe. Therefore, it is necessary to make lifestyle modifications that are widely promoted by the government, health organizations and a number of elements of society whose function is to improve the health status and quality of life of people with cardiovascular disease.

A genetic diagnosis can be given by a family member. Recent studies have shown that up to 50% of families of SADS victims are affected by an inherited heart condition (usually channelopathy) that can be associated with SCD in the proband. The condition is usually inherited in an autosomal dominant manner, meaning that the closest relative has a 50% chance of inheriting the same condition. Screening for athletes currently recommended by the European Society of Cardiology and professional sports organizations worldwide, genetic diagnosis results in changes in risk management and stratification for the proband and/or their families. Both non-competitive and competitive sports have an increased incidence of sports-related SCD with increasing age. More than 80% of SCDs occur during competitive or intense exercise. These causes can be further categorized into structural and non-structural pathologies. However, sudden death at a young age, although rare, is a tragic and often unexpected event, especially if it is a life-threatening condition that can have a major impact on the family.

Acknowledgements

In the course of this research, I would like to express my highest appreciation to my beloved family who always provide endless support, love, and encouragement. Thank you to the leading lecturers at the Faculty of Sports Science who have provided extraordinary guidance, knowledge, and inspiration. Also, do not forget to thank my comrades in arms in the Master of Sports Education Study Program who have always been a source of inspiration and motivation.

Author Contributions

This article was written by six contributors, Ami Febby Triani contributed to the writing of the introduction, methodology, literature review, results, and conclusions. Gusril, Arsil, Ronni Yenes contributed to the process of conceptualization, methodology, review, and finalization of articles. Adri Budiwaanto contributed to the finalization and improvement of the content of the article. Yovhandra Ockta contributed to reviews in different thought sections.

Funding

This research was not funded by any party. The funding comes from the author of this article.

Conflict of Interest

The content of this article does not create a conflict of interest

References

- Abdin, A., Anker, S. D., Butler, J., Coats, A. J. S., Kindermann, I., Lainscak, M., Lund, L. H., Metra, M., Mullens, W., Rosano, G., Slawik, J., Wintrich, J., & Böhm, M. (2021). 'Time is prognosis' in heart failure: time-to-treatment initiation as a modifiable risk factor. *ESC Heart Failure*, 8(6), 4444–4453. https://doi.org/10.1002/ehf2.13646
- Angelini, P., Muthupillai, R., Cheong, B., & Paisley, R. (2020). We have plenty of reasons to propose new, updated policies for preventing sudden cardiac death in young athletes. *Journal of the American Heart* Association, 9(8). https://doi.org/10.1161/JAHA.119.014368
- Anurupa, C., Aditya Madhab, B., & Himangshu, D. (2021). Burden and commonest cause of sudden natural death among medicolegal autopsies in a tertiary care centre: a retrospective study. *International Journal of Health Research and Medico-Legal Practice*, 7(2), 38–42. https://doi.org/10.31741/ijhrmlp.v7.i2.2021.7
- Baigent, C., Windecker, S., Andreini, D., Arbelo, E., Barbato, E., Bartorelli, A. L., Baumbach, A., Behr, E. R., Berti, S., Bueno, H., Capodanno, D., Cappato, R., Chieffo, A., Collet, J. P., Cuisset, T., De Simone, G., Delgado, V., Dendale, P., Dudek, D., ... Williams, B.

(2022). European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1 - epidemiology, pathophysiology, and diagnosis. *Cardiovascular Research*, *118*(6), 1385– 1412. https://doi.org/10.1093/cvr/cvab342

- Bhattacharya, S., Heidler, P., & Varshney, S. (2023). Incorporating neglected non-communicable diseases into the national health program – A review. *Frontiers in Public Health*, 10(1). https://doi.org/10.3389/fpubh.2022.1093170
- Buijtendijk, M. F. J., Barnett, P., & van den Hoff, M. J. B. (2020). Development of the human heart. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 184(1), 7-22. https://doi.org/10.1002/ajmg.c.31778
- Chaeroni, A., Pranoto, N. W., Tohidin, D., Gusril, & Sepriadi. (2023). Promotion of Physical Activity Programs Outside School Hours to Support the Great Design of Indonesian National Sports. *International Journal of Human Movement and Sports Sciences*, 11(1), 193–200. https://doi.org/10.13189/saj.2023.110123
- Chahal, C. A. A., Salloum, M. N., Alahdab, F., Gottwald, J. A., Tester, D. J., Anwer, L. A., So, E. L., Murad, M. H., St Louis, E. K., Ackerman, M. J., & Somers, V. K. (2020). Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. *Journal of the American Heart* Association, 9(1). https://doi.org/10.1161/JAHA.119.012264
- Christoffels, V., & Jensen, B. (2020). Cardiac morphogenesis: Specification of the fourchambered heart. *Cold Spring Harbor Perspectives in Biology*, 12(10), 1–18. https://doi.org/10.1101/cshperspect.a037143
- Couper, K., Putt, O., Field, R., Poole, K., Bradlow, W., Clarke, A., Perkins, G. D., Royle, P., Yeung, J., & Taylor-Phillips, S. (2020). Incidence of sudden cardiac death in the young: A systematic review. *BMJ* Open, 10(10), 1–10. https://doi.org/10.1136/bmjopen-2020-040815
- Damayanti, S., Suarka, I. N., Banda, M. M., & Purnawati,
 K. W. (2024). Ideology of Disaster Education
 Trauma Handling Post-Earthquake in Picture
 Stories Book: Critical Discourse Analysis.
 International Review of Humanities Studies, 9(1).
 https://doi.org/10.7454/irhs.v9i1.1274
- Finocchiaro, G., Radaelli, D., D'Errico, S., Papadakis, M., Behr, E. R., Sharma, S., Westaby, J., & Sheppard, M.
 N. (2023). Sudden Cardiac Death Among Adolescents in the United Kingdom. *Journal of the American College of Cardiology*, *81*(11), 1007–1017. https://doi.org/10.1016/j.jacc.2023.01.041

- Franklin, B. A., Thompson, P. D., Al-Zaiti, S. S., Albert, C. M., Hivert, M. F., Levine, B. D., Lobelo, F., Madan, K., Sharrief, A. Z., & Eijsvogels, T. M. H. (2020). Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks into Perspective-An Update: A Scientific Statement from the American Heart Association. In *Circulation* (Vol. 141, Issue 13). https://doi.org/10.1161/CIR.000000000000749
- Gardiner, D., McGee, A., & Bernat, J. L. (2020). Permanent brain arrest as the sole criterion of death in systemic circulatory arrest. *Anaesthesia*, 75(9), 1223–1228. https://doi.org/10.1111/anae.15050
- Gusril, Rasyid, W., Komaini, A., Chaeroni, A., & Kalsum, U. (2022). The Effect of Physical Activity-Based Physical Education Learning Model in the Form of Games. International Journal of Human Movement and Sports Sciences, 10(5), 906–912. https://doi.org/10.13189/saj.2022.100506
- Gusril, Rasyid, W., Mariati, S., Chaeroni, A., Arrasyih, F., Lopes, V. P., Talib, K., & Hong, F. (2024). Physical Activity in the Form of Children's Games and Motor Ability in a Group of Indigenous People in Indonesia. *International Journal of Human Movement and Sports Sciences*, 12(2), 345-355. https://doi.org/10.13189/saj.2024.120209
- Ha, F. J., Han, H. C., Sanders, P., Fendel, K., Teh, A. W., Kalman, J. M., O'donnell, D., Leong, T., Farouque, O., & Lim, H. S. (2020). Sudden Cardiac Death in the Young: Incidence, Trends, and Risk Factors in a Nationwide Study. *Circulation: Cardiovascular Quality and Outcomes*, 13(10), E006470. https://doi.org/10.1161/CIRCOUTCOMES.119.00 6470
- Hansen, C. J., Svane, J., Palsøe, M. K., Isbister, J. C., Paratz, E., Molina, P., Morentin, B., Winkel, B. G., La Gerche, A., Linnet, K., Banner, J., Lucena, J., Semsarian, C., & Tfelt-Hansen, J. (2024). Toxicology Screening in Sports-Related Sudden Cardiac Death: A Multinational Observational Study. *JACC: Clinical Electrophysiology*, 10(3), 515–523. https://doi.org/10.1016/j.jacep.2023.11.006
- Haris, F., Ilham, Taufan, J., Aulia, F., Gusril, Komaini, A., & Pranoto, N. W. (2023). Development of the Physical Activity Learning through QR Code Android-Based and Teaching Books for the Deaf. *International Journal of Human Movement and Sports Sciences*, 11(3), 683–690. https://doi.org/10.13189/saj.2023.110323
- Joffe, A. R., Khaira, G., & de Caen, A. R. (2021). The intractable problems with brain death and possible solutions. *Philosophy, Ethics, and Humanities in Medicine,* 16(1), 1–27. https://doi.org/10.1186/s13010-021-00107-9

- John, R. M. (2004). Sudden cardiac death. *Current Treatment Options in Cardiovascular Medicine*, 6(5), 347–355. https://doi.org/10.1007/s11936-004-0018-3
- Kelly. (2023). Sudden cardiac death in the young: A consensus statement on recommended practices for cardiac examination by pathologists from the Society for Cardiovascular Pathology. *Cardiovascular Pathology Journal*, 63, 1–12.
- Kumar, A., Avishay, D. M., Jones, C. R., Shaikh, J. D., Kaur, R., Aljadah, M., Kichloo, A., Shiwalkar, N., & Keshavamurthy, S. (2021). Sudden cardiac death: Epidemiology, pathogenesis and management. *Reviews in Cardiovascular Medicine*, 22(1), 147–158. https://doi.org/10.31083/J.RCM.2021.01.207
- Ling, W., Huang, Y., Huang, Y. M., Fan, R. R., Sui, Y., & Zhao, H. L. (2020). Global trend of diabetes mortality attributed to vascular complications, 2000–2016. *Cardiovascular Diabetology*, 19(1), 1–12. https://doi.org/10.1186/s12933-020-01159-5
- López, L., & Rodó, X. (2020). The end of social confinement and COVID-19 re-emergence risk. *Nature Human Behaviour*, 4(7), 746–755. https://doi.org/10.1038/s41562-020-0908-8
- Lucena, J. S. (2019). Sudden cardiac death. *Forensic Sciences Research*, 4(3), 199–201. https://doi.org/10.1080/20961790.2019.1622062
- Meier, L. J. (2022). The Demise of Brain Death. British Journal for the Philosophy of Science, 73(2), 487–508. https://doi.org/10.1093/bjps/axz045
- Mohebi, S., Parham, M., Sharifirad, G., & Gharlipour, Z. (2018). Social Support and Self - Care Behavior Study. January, 1–6. https://doi.org/10.4103/jehp.jehp
- Mukasheva, G., Abenova, M., Shaltynov, A., Tsigengage, O., Mussabekova, Z., Bulegenov, T., Shalgumbaeva, G., & Semenova, Y. (2022).
 Incidence and Mortality of Cardiovascular Disease in the Republic of Kazakhstan: 2004-2017. *Iranian Journal of Public Health*, 51(4), 821–830. https://doi.org/10.18502/ijph.v51i4.9243
- Murray, C. J. L., & Lopez, A. D. (1997). Mortality by cause for eight regions of the world: Global Burden of Disease Study. *Lancet*, 349(9061), 1269–1276. https://doi.org/10.1016/S0140-6736(96)07493-4
- Nel, A. (2021). 'Why not follow our words bodily into the future tense?'': Life, death and posthuman bodies in Don DeLillo's Zero K.' *Literator*, 42(1), 1– 10. https://doi.org/10.4102/lit.v42i1.1748
- Reza, N. A., Belmont, R., Marston, J., & Nicholas. (2024). The Expansion of Genetic Testing in Cardiovascular Medicine: Preparing the Cardiology Community the for Changing Landscape. Current Cardiology Reports, 26, 135-146.
- Roth, G. A., Mensah, G. A., & Fuster, V. (2020). The Global Burden of Cardiovascular Diseases and

Risks: A Compass for Global Action. *Journal of the American College of Cardiology*, 76(25), 2980–2981. https://doi.org/10.1016/j.jacc.2020.11.021

- Sadowska, M., Sarecka-Hujar, B., & Kopyta, I. (2020). Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. *Neuropsychiatric Disease and Treatment*, 16, 1505–1518. https://doi.org/10.2147/NDT.S235165
- Salzillo, C., Sansone, V., & Napolitano, F. (2024). Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Autopsy. *Current Issues in Molecular Biology*, 46(4), 3313–3327. https://doi.org/10.3390/cimb46040207
- Sarto, P. Z., Merlo, A., Vessella, L., Pegoraro, T., Giorgiano, C., Graziano, F., Basso, F., Drezner, C., Corrado, J., & Domenico. (2023). Value of screening for the risk of sudden cardiac death in young competitive athletes. *European Heart Journal*, 44, 1084–1092.
- Sessa, F., Esposito, M., Messina, G., Di Mizio, G., Di Nunno, N., & Salerno, M. (2021). Sudden death in adults: A practical flow chart for pathologist guidance. *Healthcare* (*Switzerland*), 9(7), 1–17. https://doi.org/10.3390/healthcare9070870
- Simão, A. Y., Antunes, M., Cabral, E., Oliveira, P., Rosendo, L. M., Brinca, A. T., Alves, E., Marques, H., Rosado, T., Passarinha, L. A., Andraus, M., Barroso, M., & Gallardo, E. (2022). An Update on the Implications of New Psychoactive Substances in Public Health. International Journal of Environmental Research and Public Health, 19(8). https://doi.org/10.3390/ijerph19084869
- Smith, S. C., Collins, A., Ferrari, R., Holmes, D. R., Logstrup, S., McGhie, D. V., Ralston, J., Sacco, R. L., Stam, H., Taubert, K., Wood, D. A., & Zoghbi, W. A. (2012). Our time: A call to save preventable death from cardiovascular disease (heart disease and stroke). *Circulation*, 126(23), 2769–2775. https://doi.org/10.1161/CIR.0b013e318267e99f
- Stafford. (2022). The role of genetic testing in diagnosis and care of inherited cardiac conditions in a specialised multidisciplinary clinic. *Genome Medicine*, 14(145).
- Sugiyono. (2018). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, kualitatif, dan R & D (27th ed.). Alfabeta.
- Tabian, D., Drochioiu, G., Damian, S. I., Girlescu, N., Toma Gradinaru, O., Toma, S. I., & Bulgaru Iliescu, D. (2021). Toxic blood hydrogen cyanide concentration as a vital sign of a deceased room fire victim-case report. *Toxics*, 9(2), 1–9. https://doi.org/10.3390/toxics9020036
- Tomasoni, D., Adamo, M., Anker, M. S., von Haehling, S., Coats, A. J. S., & Metra, M. (2020). Heart failure 229

in the last year: progress and perspective. *ESC Heart Failure*, 7(6), 3505–3530. https://doi.org/10.1002/ehf2.13124

- Wang, Y., & Wang, J. (2020). Modelling and prediction of global non-communicable diseases. *BMC Public Health*, 20(1), 1–13. https://doi.org/10.1186/s12889-020-08890-4
- Yan, L., Zhang, H. T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., Jing, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., Huang, S., Tan, X., ... Yuan, Y. (2020). An interpretable mortality prediction model for COVID-19 patients. *Nature Machine Intelligence*, 2(5), 283–288. https://doi.org/10.1038/s42256-020-0180-7
- Zhou, B., Zang, R., Zhang, M., Song, P., Liu, L., Bie, F., Peng, Y., Bai, G., & Gao, S. (2022). Worldwide burden and epidemiological trends of tracheal, bronchus, and lung cancer: A population-based study. *EBioMedicine*, 78, 103951. https://doi.org/10.1016/j.ebiom.2022.103951
- Zimmerman, M. S., Smith, A. G. C., Sable, C. A., Echko, M. M., Wilner, L. B., Olsen, H. E., Atalay, H. T., Awasthi, A., Bhutta, Z. A., Boucher, J. L. A., Castro, F., Cortesi, P. A., Dubey, M., Fischer, F., Hamidi, S., Hay, S. I., Hoang, C. L., Hugo-Hamman, C., Jenkins, K. J., ... Kassebaum, N. J. (2020). Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *The Lancet Child and Adolescent Health*, 4(3), 185–200. https://doi.org/10.1016/S2352-4642(19)30402-X
- Zuraidah, E., Kharismarini, P., Edwar, S. Q., & Handayani, S. I. (2023). The Association Between Number of Parity and Incidence of Woman Breast Cancer at Dr. Cipto Mangunkusumo National General hospital Jakarta A Cross Sectional Study. *Journal of Womens Healthcare & Midwifery Research*, 2(3), 1–6.