

JPPIPA 9(Special Issue) (2023)

Jurnal Penelitian Pendidikan IPA

Journal of Research in Science Education

http://jppipa.unram.ac.id/index.php/jppipa/index

The Impact of Regular Physical Activity on Lipid Profile and Cardiovaskular Health in Adolescents : A Literature Review

Muhammad Al Zaki¹, Umar^{1*}, Ronni Yenes¹, Willadi Rasyid¹, Yovhandra Ockta¹, Adri Budiwanto¹

¹ Faculty of Sports Sciences, Universitas Negeri Padang, Padang, Indonesia

Received: October 17, 2023 Revised: December 19, 2023 Accepted: December 25, 2023 Published: December 31, 2023

Corresponding Author: Umar umarkepel@fik.unp.ac.id

DOI: 10.29303/jppipa.v9iSpecialIssue.7811

© 2023 The Authors. This open access article is distributed under a (CC-BY License) Abstract: This literature review delves into the impact of regular physical activity on lipid profiles and cardiovascular health in adolescents, addressing the growing concern of sedentary lifestyles and unhealthy habits contributing to increased cardiovascular disease risks among teenagers. By systematically searching academic databases and scientific journals using relevant keywords, a selection of 8 articles was chosen for review after rigorous screening and eligibility assessment. The findings of the review underscore the significant relationship between physical activity, metabolic parameters, and cardiovascular risk factors in adolescents. Studies consistently highlight the benefits of regular physical activity in improving lipid profiles, insulin sensitivity, and overall cardiovascular parameters in this population. For instance, adolescents engaging in moderate to high-intensity physical activity demonstrated reduced risks of metabolic syndrome and improved insulin sensitivity. Lifestyle modifications encompassing increased physical activity and dietary changes were associated with positive alterations in lipid and glycemic profiles, particularly in highrisk pediatric individuals. Notably, regular vigorous-intensity physical activity was found to yield favorable cardiometabolic outcomes in adolescents with type 2 diabetes. In conclusion, the review emphasizes the critical role of regular physical activity in maintaining cardiovascular health and managing metabolic risk factors among adolescents. Participation in physical activity, particularly at moderate to high intensity, holds promise for significant improvements in lipid profiles and cardiovascular parameters. These findings underscore the importance of promoting active lifestyles among teenagers to prevent cardiovascular disease and enhance overall health outcomes.

Keywords: Adolescents; Cardiovaskular; Lipid Profile; Regular Physical Activity

Introduction

In the modern era filled with technological advancements and comfort, lifestyle tends to lead to lack of physical activity and a tendency to spend time in an excessive sitting position(Akulwar-tajane et al., 2020; Aziz et al., 2021; Ramalho & Petrica, 2023). This phenomenon contributes significantly to the increasing prevalence of cardiovascular disease and metabolic health problems, even among adolescents (Grabia et al., 2021; Negrea et al., 2021; Petek et al., 2022). Today's teenagers are facing increasingly complex health challenges, they are not only confronted with academic and social pressures, but also with health risks associated with unhealthy lifestyles (Choudhury et al., 2020; Horta & Tang, 2023). Unbalanced diets, lack of physical activity, and excessive use of technology are increasingly becoming a hallmark of the daily lives of modern adolescents (Gantenbein & Kanaka-Gantenbein, 2021; Jasbi et al., 2022; Poteko, 2024). The impact of this lifestyle is not only seen in the increased prevalence of obesity in adolescents, but also in the increased risk of cardiovascular disease and metabolic health problems (Caprio et al., 2020; Drozdz et al., 2021; Nicolucci & Maffeis, 2022).

Then, one factor that has been extensively researched in relation to cardiovascular health is physical activity. Doing regular physical activity is very

How to Cite:

Al Zaki, M., Umar, U., Yenes, R., Rasyid, W., Ockta, Y., & Budiwanto, A. (2023). The Impact of Regular Physical Activity on Lipid Profile and Cardiovaskular Health in Adolescents: A Literature Review. *Jurnal Penelitian Pendidikan IPA*, 9(SpecialIssue), 213–221. https://doi.org/10.29303/jppipa.v9iSpecialIssue.7811

important for teenagers because it can help improve their physical and mental health significantly (Andermo et al., 2020; Okuyama et al., 2021). By doing at least 60 minutes of moderately intense physical activity every day, they can improve heart, lung, muscle and bone strength, as well as weight control (Harrington & Henson, 2021; Ito et al., 2021; Xu et al., 2022). This routine can also improve mood, reduce stress, and improve the quality of their sleep (Briguglio et al., 2020; Johnston et al., 2021). By making exercise a regular part of daily life, adolescents can maintain optimal physical health, improve physical fitness, and reduce the risk of chronic diseases such as heart disease and diabetes.

Through a consistent physical activity routine, such as brisk walking, jogging, or other cardiovascular exercises, it can increase High-Density Lipoprotein (HDL) cholesterol or (good cholesterol) levels in the body (Ahn & Kim, 2020; Franczyk et al., 2023). HDL cholesterol helps transport bad cholesterol or Low-Density Lipoprotein (LDL) from artery walls to the liver for removal from the body, which can help prevent arterial plaque buildup and reduce the risk of heart disease (Cho, 2022; Poznyak et al., 2022; Rais et al., 2024). In addition, physical activity can also help control weight and reduce triglyceride levels, which is another type of blood fat that can increase the risk of cardiovascular disease (Poznyak et al., 2022). Thus, doing regular physical activity can contribute to a healthier lipid profile and reduce the risk of heart disease. A lipid profile is a set of measurements that describe the levels of fats and lipids in a person's blood, including total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides (Hossain et al., 2021). Then, low HDL cholesterol is often associated with an increased risk of heart disease (Duran et al., 2020; Hedayatnia et al., 2020).

So the importance of lipid profiles in adolescents should not be overlooked, although cardiovascular disease usually develops in old age. The development of atherosclerotic plaques can begin in adolescence, especially if risk factors such as poor eating habits, lack of physical activity, or obesity are present (Daniels et al., 2011; Oliveira et al., 2010). Given the prevalence of obesity and unhealthy lifestyles in today's adolescents, it is important to pay attention to their lipid profile and take the necessary preventive measures to maintain their heart health in the future. Educating adolescents about the importance of maintaining a healthy lipid profile and encouraging them to adopt a healthy lifestyle is an important step in the prevention of cardiovascular disease in this population. By understanding the importance of physical activity in influencing the lipid profile and cardiovascular health of adolescents, we can take concrete steps to promote more active and healthy lifestyles among the adolescent population. Thus,

further research in this field is not only relevant but also urgent to support efforts to prevent cardiovascular disease and improve the health of future generations. Therefore, we would like to relate and discuss in depth the effect of regular physical activity and vascular health through literature review.

Method

Research methods for a literature review on the impact of regular physical activity on lipid profiles and cardiovascular health in adolescents began with the identification of relevant sources of information. The initial step is to conduct a systematic search through academic databases and scientific journals using keywords that correspond to the research topic. Article selection is based on predefined inclusion and exclusion criteria, such as relevance to the topic, year of publication, and trustworthiness of the source. After that, articles are selected based on topic suitability and some keywords used in journal searches in the Science Direct, Proquest, and Google Scholar databases. Some of the keywords used are "Physical Activity", "Lipid Profile", "Cardiovascular Health", and "Adolescents. The analysis is carried out by taking into account the research methodology, results, and conclusions drawn by the author of the article. After getting several journals/articles, they were selected according to the research theme. There were 210 journal articles found and 10 articles that met the inclusion criteria for review. Articles with the same title were thus issued. At the eligibility stage, 121 articles were found with titles and abstracts that were not in accordance with the research topic, were not available in full text form, and were not in accordance with the scope of research, so they were excluded. At the determination stage, 10 journal articles were determined for review.

In addition, this literature review research will also look for consistency and differences between findings from various relevant studies (Firmansyah & Dede, 2022). With this approach, it is expected to provide a comprehensive understanding of the relationship between physical activity, lipid profiles, and cardiovascular health in adolescents based on the evidence available in the scientific literature. For more details can be seen in the Prisma Diagram below.

Result and Discussion

There are 8 journal articles that will be further analyzed in this literature review. Journal articles are grouped based on the scope of discussion so that articles are obtained that discuss impact of physical activity on lipid profile and cardiovascular health in adolescents:

Conclusion	Results	Method	Objective	Topic	Author
Despite regular	High systolic blood	One hundred and	The study aimed to	Cardiovascul ar health and	(Grabitz et
physical exercise, high levels of	pressure, increased pulse wave velocity, and higher	five athletes were	investigate early markers and driving		al., 2023)
cardiovascular risk	left ventricular mass are	characterized through a variety of	factors of	potential cardiovascula	
factors are found in	found in some athletes.	measurements	cardiovascular disease	r risk factors	
young athletes,	Higher pulse wave	including body	in young athletes	in young	
indicating the need	velocity is associated with	impedance, blood	pursuing careers in	athletes.	
for thorough	higher systolic blood	pressure, pulse wave		uunoteot	
medical	pressure, which correlates	velocity,	competitive operior		
examinations in	with hemoglobin levels.	echocardiography,			
this population	Increased left ventricular	and blood tests.			
1 1	mass is linked to a lower	Athletes come from			
	resting heart rate, higher	a variety of			
	metabolic equivalent	competitive sports			
	clocks, certain exercise	disciplines and are			
	disciplines, and higher	grouped by dynamic			
	systolic blood pressure.	or static			
		components.			
The study	The sample comprised 448	The study used a	The study analyzed PA	Association of	(T. O.
emphasizes PA and	adolescents, with 57	cross-sectional	and sitting time effects	physical	Silva et al.,
sedentary	undergoing	design within	on MetS and metabolic	activity and	2023)
behavior's impact	hyperglycemic clamp.	BRAMS-P to	parameters in 448	sitting with	
on MetS in	MetS was more frequent	examine physical	Brazilian adolescents.	metabolic	
adolescents.	in males, smokers, and	activity and sitting	Those sitting over 8	syndrome	
Increased sitting	medication users, showing		hours had higher MetS	and	
time raises MetS	worse parameters. In the	with MetS in	odds, while active	hyperglycemi	
risk, while PA	hyperglycemic clamp	adolescents, using	individuals didn't.	c clamp	
improves insulin sensitivity.	subsample, MetS adolescents had lower ISI	questionnaires, anthropometric	Insulin sensitivity correlated positively	parameters in adolescents –	
Promoting PA and	and DI. Odds for MetS	measures, blood	with moderate-to-high	BRAMS	
reducing sedentary	were higher with >8 hours	samples, and	PA, suggesting a link	pediatric	
time are crucial for	sitting, affecting BMI,	statistical analyses		study	
managing MetS.	waist circumference, body	like Mann-Whitney			
	fat percentage, and lipid	and chi-squared			
	profile. ISI correlated	tests.			
	positively with moderate-				
	to-high PA, suggesting				
	PA's potential benefit on				
	insulin sensitivity.				
The intervention	A trial assessed KaziKidz	A trial assessed	The study evaluated	Intervention	(Arnaiz et
boosted high-	intervention's impact on	KaziKidz	cardiometabolic risk	effects and	al., 2023)
intensity activity,	cardiometabolic risk in	intervention's impact	0	long-term	
aiding less active	South African children.	on cardiometabolic	program children,	changes in	
kids, yet long-term	Data from low-income	risk in South African	comparing at-risk to	physical	
effects on at-risk	schools included baseline,	children. Data from	healthy peers and	activity and	
children declined,	20-week intervention, and	low-income schools	intervention effects on	cardiometabo	
signaling tailored	post-intervention	included baseline,	movement and health	lic outcomes	
interventions	measurements. The study	intervention, and	parameters. It aimed to	0	
necessity. COVID-	followed at-risk children	post-intervention	fill evidence gaps on	children at	
19 disruptions	for two years, ending Oct	measurements, with	school-based	risk of	
emphasized resilient	2021.	follow-up	interventions' effectiveness and	noncommuni cable diseases	
frameworks		concluding in Oct 2021.	sustained impact on	in South	
importance,		2021.	high-risk children's	Africa: a	
highlighting			health in South Africa.	cluster-	
essential school			ncului in Jouul Allica.	randomized	
structural changes.				controlled	
				controlicu	

	follow-up analysis				
(Giussani et al., 2022)	Impact of Lifestyle Modifications on Alterations in Lipid and Glycemic Profiles and Uric Acid Values in a Pediatric Population	The study aimed to assess lifestyle modifications, particularly dietary- behavioral treatment, on lipid, glycemic profiles, and uric acid in high-risk pediatric individuals. Focused on children referred to a cardiovascular risk clinic, it examined lifestyle's impact on cardiometabolic risk factors.	lifestyle modifications' effect on lipid, glycemic profiles, and uric	Pediatric lifestyle changes led to notable enhancements in lipid, glycemic profiles, and uric acid levels over 14.7 months. Reduced BMI z- score correlated with improved LDL cholesterol, triglycerides, HOMA index, and uric acid. Post- intervention, normal weight children rose, while obesity declined. Lower initial metabolic values predicted superior improvement	Pediatric lifestyle changes over 14.7 months improved lipid, glycemic profiles, and uric acid. Reduced BMI z-score correlated with better LDL cholesterol, triglycerides, HOMA index, and uric acid. Increased normal weight, decreased obesity. Lower baseline values predicted better
(Lin et al., 2022)	Multilevel Understandin g of the Impact of Individual- and School- Level Determinants on Lipid Profiles in Adolescents: The Cross- Level Interaction of Food Environment and Body Mass Index	The study examined individual and school determinants on adolescent lipid profiles. It assessed how personal dietary patterns, physical parameters, and school context influence lipid levels. It aimed to explore the contributions of school context and individual factors on adolescent lipid levels.	periodic visits. The study used a multilevel approach to analyze adolescent lipid profiles, considering individual and school determinants. Data on diet, physical parameters, and lipids were collected from 36 schools across three economic areas in Taiwan. Lipid levels were enzymatically quantified, and multilevel linear regression models assessed individual and school contributions to lipid profiles.	Individual factors like low physical activity, high BMI, and SSB intake correlated with elevated TG, LDL-C, and TC in adolescents. School factors such as health programs and nearby food outlets also influenced lipid profiles. BMI positively correlated with TG, LDL- C, and TC, and negatively with HDL-C. The study underscores the multilevel impact on adolescent lipid profiles.	improvement. The study stressed the multilevel impact of individual diet, physical activity, BMI, school health programs, and nearby food outlets on adolescent lipid profiles. School context had a stronger effect on TG levels in high- BMI adolescents. Preventive strategies should address both individual and school levels to promote adolescent lipid health, especially for high- BMI students in areas with dense
(Slaght et al., 2021)	Physical activity and cardiometabo lic health in adolescents with type 2 diabetes: a cross- sectional study	The study investigated how vigorous- intensity physical activity (PA) impacts cardiovascular risk factors in adolescents with type 2 diabetes. Results showed lower HbA1c, diastolic blood pressure, and odds of albuminuria in active adolescents. The study supports guidelines promoting vigorous	The cross-sectional study compared CVD risk factors in adolescents with type 2 diabetes based on vigorous- intensity PA participation. Participants aged 10- 18 were recruited from the iCARE cohort study. Data collection followed guidelines, including	Adolescents with type 2 diabetes engaging in regular vigorous-intensity physical activity exhibited favorable outcomes: nearly double weekly activity dose, lower diastolic blood pressure, load, and mean arterial pressure. They had lower odds of albuminuria and hemoglobin A1c levels. Despite blood pressure differences, hypertension	food outlets. Regular vigorous- intensity physical activity benefits cardiometabolic health in adolescents with type 2 diabetes, unlike lower- intensity or organized sports. Confirmation through randomized trials or robust cohort

studies is vital	odds didn't vary. Vigorous	-	PA to manage		
understan	PA linked to better	and outcomes like	cardiometabolic risks		
physical activity	cardiometabolic health.	HbA1c and blood	in this population.		
impact on th		pressure. Statistical			
population's healt		analysis adjusted for			
		variables such as			
		diabetes duration,			
		BMI Z-score, sex,			
		and smoking.			
Early spor	Participants reporting	The study employed	The study aimed to	Association of	(G. C. R. da
practice inverse	early sports practice in	a retrospective	analyze early sports	Early Sports	Silva et al.,
linked to adu	childhood and	epidemiological	practice's association	Practice with	2023)
hypertension, eve	adolescence had lower	design with 265	with cardiovascular	Cardiovascul	
after adjusting fo	prevalence and significant	adults from a	risk factors in adults. It	ar Risk	
sex, ag	odds ratios for	municipality. It	focused on childhood	Factors in	
socioeconom	dyslipidemia, diabetes,	analyzed	and adolescent sports	Community-	
status, an	and hypertension in	cardiovascular risk	participation's	Dwelling	
moderate-te	adulthood. Even after	factors and early	relationship with	Adults: A	
vigorous physic	adjusting for confounders,	sports practice, self-	obesity, diabetes,	Retrospective	
activit	the association with	reported. Total	dyslipidemia, and	Epidemiologi	
Encouraging spor	dyslipidemia remained	physical activity	hypertension in	cal Study	
practice from	significant for childhood	levels were	adulthood. The		
young age	sports. Associations had	objectively	research explored if		
crucial fo	small effect sizes,	measured. Logistic	early sports		
combatin	indicating modest but	regression, adjusting	engagement could		
cardiovascular ris	meaningful impact on	for variables	independently protect		
factors effectively	hypertension risk.	including sex, age,	against hypertension,		
		socioeconomic	considering sex, age,		
		status, and MVPA,	socioeconomic status,		
		assessed	and habitual physical		
		associations.	activity.		
Elite athletes fac	Dyslipidemia (32%) was	A cross-sectional	The study aimed to	Cardiovascul	(D'Ascenzi et
CV risk factors lik	the most common CV risk	analysis on 1058	assess CV risk factors	ar risk profile	al., 2019)
dyslipidemia an	among Olympic athletes,	Olympic athletes	prevalence in Olympic	in Olympic	
increased wai	followed by increased	(656 males, 402	athletes, exploring	athletes: an	
	waist circumference (25%),	females) between	associations with age,	unexpected	
and 25%). Lifesty	positive family history	2014-2016 assessed	body size, and sport	and	
choices influence	(18%), smoking habit (8%),	CV risk factors.	type. It aimed to	underestimat	
CV ris	hypertension (3.8%), and	Medical evaluations	identify lifestyle	ed risk	
Monitoring BM	hyperglycemia (0.3%). A	included history,	factors and risk	scenario	
body fat, wai	large subset (40%) had	physical exams,	profiles, highlighting		
circumference, an	none or one risk factor,	blood tests, and	modifiable risks like		
lipids is crucia	with endurance athletes	cardiac assessments.	dyslipidemia and		
Addressin	(34%) most represented.	Parameters like BMI,	hypertension.		
modifiable factor	Age correlated with lipid	body fat, and blood	Promoting healthy		
optimizes athle	levels. Various sports	pressure identified	habits, including		
healt	disciplines showed	CV risks. SPSS	exercise and smoking		
Comprehensive C	differences in physical	software and logistic	cessation, among		
risk assessment	characteristics. Age, BMI,	regression were used			
essentia	and body fat predicted	for analysis,	emphasized.		
coorna	increased CV risk.	revealing age, BMI,			
		and body fat as			
		significant			
		predictors.			

This literature review provides a comprehensive overview of the importance of regular physical activity to lipid profiles and cardiovascular health in adolescents. From ten journal articles analyzed, important findings were revealed regarding the relationship between physical activity, metabolic parameters, and cardiovascular risk factors. One of the main findings is from Silva et al (2023), who found that adolescents with more than 8 hours of sitting time have a higher chance of MetS, while those who engage in moderate-high physical activity show improved insulin sensitivity. This highlights the importance of physical activity in reducing metabolic health risks in adolescents. Another finding comes from Arnaiz et al (2023), who observed that interventions such as the KaziKidz program increase high-intensity physical activity in at-risk children, but their long-term effects on cardiometabolic risk worsen, suggesting the need for tailored interventions and structural changes in the school environment. This suggests that to reduce the risk of cardiovascular disease in the future, it is important to understand the impact of physical activity on lipid profiles and cardiovascular health in adolescents.

The studies also highlight the important role of physical activity in shaping adolescent health. For example, Giussani et al., (2022) found that lifestyle modification over nearly 15 months resulted in significant improvements in lipid and glycemic profiles in high-risk pediatric individuals. It emphasizes the importance of behavioral interventions in managing cardiovascular risk factors in the adolescent population. In addition, Slaght et al., (2021) showed that regular high-intensity physical activity is associated with favorable outcomes in adolescents with type 2 diabetes, highlighting the importance of promoting high-intensity physical activity to manage cardiometabolic risk in this population. Therefore, understanding the impact of physical activity on adolescent cardiovascular health is crucial in efforts to prevent heart disease and improve public health. However, these studies also have limitations and challenges. Some studies rely on selfmeasurements of physical activity and lifestyle behaviors, which can introduce biases and inaccuracies. In addition, the generalizability of findings may be limited by the specific population and context studied in each study. Therefore, future research should use longitudinal designs to better understand the long-term effects of physical activity interventions on cardiovascular health outcomes in adolescents. As such, the study provides valuable insight into the importance of physical activity in maintaining adolescent cardiovascular health. By leveraging these findings to inform targeted interventions and policy initiatives, stakeholders can make significant progress in improving next-generation health outcomes. However, more research is needed to address existing limitations and improve our understanding of the complex relationship between physical activity, lipid profiles, and cardiovascular health in adolescents.

Conclusion

In conclusion, this literature review underscores the importance of regular physical activity in maintaining

cardiovascular health and managing metabolic risk factors in adolescents. The studies analyzed suggest that participation in moderate to high-intensity physical activity can result in significant improvements in lipid sensitivity, and cardiovascular profiles, insulin parameters in the adolescent population. These findings illustrate the great potential of behavioral interventions in preventing heart disease and improving adolescent general health. However, there are also limitations to be aware of. Some studies rely on self-measurements regarding physical activity, which can introduce biases and inaccuracies. In addition, the generalizability of findings may be limited by the specific population and context studied in each study. Therefore, future research should use longitudinal design and more sophisticated methodologies to overcome these limitations and deepen understanding of the relationship between physical activity, lipid profiles, and cardiovascular health in adolescents.

With a better understanding of the importance of physical activity in preventing heart disease and improving adolescent health, health stakeholders can develop more effective interventions and strengthen public health policies focused on promoting healthy lifestyles. Thus, this literature review provides a solid foundation for efforts to prevent heart disease and improve the health of future generations through the promotion of sustained and purposeful physical activity.

Acknowledgements

In the course of this research, I would like to express my highest appreciation to my beloved family who always provide endless support, love, and encouragement. Thank you to the leading lecturers at the Faculty of Sports Science who have provided extraordinary guidance, knowledge, and inspiration. Also, do not forget to thank my comrades in arms in the Master of Sports Education Study Program who have always been a source of inspiration and motivation.

Author Contributions

This article was written by six contributors, Muhammad Al Zaki contributed to the writing of the introduction, methodology, literature review, results, and conclusions. Umar, Ronni Yenes, Willadi Rasyid contributed to the process of conceptualization, methodology, review, and finalization of articles. Yovhandra Ockta contributed to the finalization and improvement of the content of the article. Adri Budiwanto contributed to reviews in different thought sections.

Funding

This research was not funded by any party. The funding comes from the author of this article.

Conflict of Interest

The content of this article does not create a conflict of interest

References

- Ahn, N., & Kim, K. (2020). Can active aerobic exercise reduce the risk of cardiovascular disease in prehypertensive elderly women by improving hdl cholesterol and inflammatory markers? *International Journal of Environmental Research and Public Health*, 17(16), 1–16. https://doi.org/10.3390/ijerph17165910
- Akulwar-tajane, I., Ayurvihar, S., & Ghule, M. (2020).
 Effects of COVID -19 Pandemic Lock Down on Posture in Physiotherapy Students: A CrossSectional Study. *Medical & Clinical Research*, 5(January). https://doi.org/10.33140/mcr.06.018
- Andermo, S., Hallgren, M., Nguyen, T. T. D., Jonsson, S., Petersen, S., Friberg, M., Romqvist, A., Stubbs, B., & Elinder, L. S. (2020). School-related physical activity interventions and mental health among children: a systematic review and meta-analysis. *Sports Medicine* - *Open*, 6(1). https://doi.org/10.1186/s40798-020-00254-x
- Arnaiz, P., Seelig, H., Gerber, M., Adams, L., Degen, J., Dolley, D., Joubert, N., Nienaber, M., Nqweniso, S., Steinmann, P., Utzinger, J., du Randt, R., Walter, C., Pühse, U., & Müller, I. (2023). Intervention effects and long-term changes in physical activity and cardiometabolic outcomes among children at risk of noncommunicable diseases in South Africa: a cluster-randomized controlled trial and follow-up analysis. *Frontiers in Public Health*, *11*(May), 1–11. https://doi.org/10.3389/fpubh.2023.1199381
- Aziz, N., Nordin, M. J., Abdulkadir, S. J., & Salih, M. M. M. (2021). Digital addiction: Systematic review of computer game addiction impact on adolescent physical health. *Electronics (Switzerland)*, 10(9), 1–18. https://doi.org/10.3390/electronics10090996
- Briguglio, M., Vitale, J. A., Galentino, R., Banfi, G., Dina, C. Z., Bona, A., Panzica, G., Porta, M., Dell'osso, B., & Glick, I. D. (2020). Healthy eating, physical activity, and sleep hygiene (HEPAS) as the winning triad for sustaining physical and mental health in patients at risk for or with neuropsychiatric disorders: Considerations for clinical practice. *Neuropsychiatric Disease and Treatment*, *16*, 55–70. https://doi.org/10.2147/NDT.S229206
- Caprio, S., Santoro, N., & Weiss, R. (2020). Childhood obesity and the associated rise in cardiometabolic complications. *Nature Metabolism*, 2(3), 223–232. https://doi.org/10.1038/s42255-020-0183-z
- Cho, K. H. (2022). The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. *International Journal of Molecular Sciences*, 23(7). https://doi.org/10.3390/ijms23073967

- Choudhury, R., Kolstad, A., Prajapati, V., Samuel, G., & Yeates, K. O. (2020). Loss and recovery after concussion: Adolescent patients give voice to their concussion experience. *Health Expectations*, 23(6), 1533–1542. https://doi.org/10.1111/hex.13138
- D'Ascenzi, F., Caselli, S., Alvino, F., Digiacinto, B., Lemme, E., Piepoli, M., & Pelliccia, A. (2019).
 Cardiovascular risk profile in Olympic athletes: An unexpected and underestimated risk scenario. *British Journal of Sports Medicine*, 53(1), 37–42. https://doi.org/10.1136/bjsports-2018-099530
- da Silva, G. C. R., Tebar, W. R., Saraiva, B. T. C., Farah, B. Q., Vanderlei, L. C. M., Ferrari, G., & Christofaro, D. G. D. (2023). Association of Early Sports Practice with Cardiovascular Risk Factors in Community-Dwelling Adults: A Retrospective Epidemiological Study. *Sports Medicine - Open, 9*(1). https://doi.org/10.1186/s40798-023-00562-y
- Daniels, S. R., Pratt, C. A., & Hayman, L. L. (2011). Reduction of risk for cardiovascular disease in children and adolescents. *Circulation*, 124(15), 1673– 1686. https://doi.org/10.1161/CIRCULATIONAHA.11

https://doi.org/10.1161/CIRCULATIONAHA.11 0.016170

- Drozdz, D., Alvarez-Pitti, J., Wójcik, M., Borghi, C., Gabbianelli, R., Mazur, A., Herceg-čavrak, V., Lopez-Valcarcel, B. G., Brzeziński, M., Lurbe, E., & Wühl, E. (2021). Obesity and cardiometabolic risk factors: From childhood to adulthood. *Nutrients*, *13*(11), 1–20. https://doi.org/10.3390/nu13114176
- Duran, E. K., Aday, A. W., Cook, N. R., Buring, J. E., Ridker, P. M., & Pradhan, A. D. (2020). Triglyceride-Rich Lipoprotein Cholesterol, Small Dense LDL Cholesterol, and Incident Cardiovascular Disease. *Journal of the American College of Cardiology*, 75(17), 2122–2135.

https://doi.org/10.1016/j.jacc.2020.02.059

- Firmansyah, D., & Dede. (2022). Teknik Pengambilan Sampel Umum dalam Metodologi Penelitian: Literature Review. Jurnal Ilmiah Pendidikan Holistik (JIPH), 1(2), 85–114. https://doi.org/10.55927/jiph.v1i2.937
- Franczyk, B., Gluba-Brzózka, A., Ciałkowska-Rysz, A., Ławiński, J., & Rysz, J. (2023). The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. International Journal of Molecular Sciences, 24(5). https://doi.org/10.3390/ijms24054653
- Gantenbein, K. V., & Kanaka-Gantenbein, C. (2021). Mediterranean diet as an antioxidant: The impact on metabolic health and overall wellbeing. *Nutrients*, 13(6).

https://doi.org/10.3390/nu13061951

Giussani, M., Orlando, A., Tassistro, E., Lieti, G., Patti, I., Antolini, L., Parati, G., & Genovesi, S. (2022). 219 Impact of Lifestyle Modifications on Alterations in Lipid and Glycemic Profiles and Uric Acid Values in a Pediatric Population. *Nutrients*, 14(5), 1–16. https://doi.org/10.3390/nu14051034

- Grabia, M., Markiewicz-Żukowska, R., & Socha, K. (2021). Prevalence of metabolic syndrome in children and adolescents with type 1 diabetes mellitus and possibilities of prevention and treatment: A systematic review. *Nutrients*, *13*(6), 1– 15. https://doi.org/10.3390/nu13061782
- Grabitz, C., Sprung, K. M., Amagliani, L., Memaran, N., Schmidt, B. M. W., Tegtbur, U., von der Born, J., Kerling, A., & Melk, A. (2023). Cardiovascular health and potential cardiovascular risk factors in young athletes. *Frontiers in Cardiovascular Medicine*, 10(June), 1–8.

https://doi.org/10.3389/fcvm.2023.1081675

- Harrington, D., & Henson, J. (2021). Physical activity and exercise in the management of type 2 diabetes: where to start? *Practical Diabetes*, *38*(5), 35-40b. https://doi.org/10.1002/pdi.2361
- Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., Sadabadi, F., Rahimi, H. R., Ghalandari, M., Ghaffari, M. S., Yousefi, A., Pouresmaeili, E., Besharatlou, M. R., Moohebati, M., Ferns, G. A., Esmaily, H., & Ghayour-Mobarhan, M. (2020). Dyslipidemia and cardiovascular disease risk among the MASHAD study population. *Lipids in Health and Disease*, 19(1), 1–11. https://doi.org/10.1186/s12944-020-01204-y
- Horta, H., & Tang, L. (2023). Male and female academics' gendered perceptions of academic work and career progression in China. *Higher Education Quarterly*, 77(3), 515–536.

https://doi.org/10.1111/hequ.12419

- Hossain, M. S., Islam, M. D., Galib, A., Malek, R., Akter, K., & Khanam, M. (2021). Lipid Profile in Relation to Body Mass Index among Medical College Students in Dhaka, Bangladesh. *Medicine Today*, 33(2), 114–119.
- https://doi.org/10.3329/medtoday.v33i2.56055 Ito, T., Sugiura, H., Ito, Y., Noritake, K., & Ochi, N. (2021). Relationship between the skeletal muscle mass index and physical activity of Japanese children: A cross-sectional, observational study. *PLoS ONE*, *16*(5 May), 1–15. https://doi.org/10.1371/journal.pone.0251025
- Jasbi, P., Mohr, A. E., Shi, X., Mahmood, T., Zhu, Q., Bruening, M., Gu, H., & Whisner, C. (2022). Microbiome and metabolome profiles of high screen time in a cohort of healthy college students. *Scientific Reports*, 12(1), 1–17. https://doi.org/10.1038/s41598-022-07381-3

Johnston, S. A., Roskowski, C., He, Z., Kong, L., & Chen, W. (2021). Effects of team sports on anxiety, depression, perceived stress, and sleep quality in college students. *Journal of American College Health*, 69(7), 791–797.

https://doi.org/10.1080/07448481.2019.1707836

- Lin, W. T., Chin, Y. T., Wu, P. W., Tsai, S., Chen, M. H., Chang, C. I., Yang, Y. C., Lee, C. Y., Seal, D. W., & Lee, C. H. (2022). Multilevel Understanding of the Impact of Individual-and School-Level Determinants on Lipid Profiles in Adolescents: The Cross-Level Interaction of Food Environment and Body Mass Index. *Nutrients*, 14(10), 1–17. https://doi.org/10.3390/nu14102068
- Negrea, M. O., Neamtu, B., Dobrotă, I., Sofariu, C. R., Crisan, R. M., Ciprian, B. I., Domnariu, C. D., & Teodoru, M. (2021). Causative mechanisms of childhood and adolescent obesity leading to adult cardiometabolic disease: A literature review. *Applied Sciences (Switzerland)*, 11(23). https://doi.org/10.3390/app112311565
- Nicolucci, A., & Maffeis, C. (2022). The adolescent with obesity: what perspectives for treatment? *Italian Journal of Pediatrics*, 48(1), 1–9. https://doi.org/10.1186/s13052-022-01205-w
- Okuyama, J., Seto, S., Fukuda, Y., Funakoshi, S., Amae, S., Onobe, J., Izumi, S., Ito, K., & Imamura, F. (2021). Mental health and physical activity among children and adolescents during the COVID-19 pandemic. *Tohoku Journal of Experimental Medicine*, 253(3), 203– 215. https://doi.org/10.1620/tjem.253.203
- Oliveira, F. L. C., Patin, R. V., & Escrivão, M. A. M. S. (2010). Atherosclerosis prevention and treatment in children and adolescents. *Expert Review of Cardiovascular Therapy*, 8(4), 513–528. https://doi.org/10.1586/erc.09.170
- Petek, T. H., Petek, T., Močnik, M., & Varda, N. M. (2022). Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. *Antioxidants*, 11(5), 1-42. https://doi.org/10.3390/antiox11050894
- Poteko, K. (2024). Reflections on modern physical activity: how can Graeber's ideas help us to reconceptualise it and increase the value of play? *Sport* in *Society*, 0(0), 1–18. https://doi.org/10.1080/17430437.2024.2344774
- Poznyak, A. V., Kashirskikh, D. A., Sukhorukov, V. N., Kalmykov, V., Omelchenko, A. V., & Orekhov, A. N. (2022). Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. *International Journal of Molecular Sciences*, 23(3). https://doi.org/10.3390/ijms23031332
- Rais, E. E., Aziz, I. R., & Surdianah, S. (2024). Pemeriksaan total kolesterol pada sampel serum 220

darah dengan menggunakan metode fotometrik di Balai Besar Laboratorium Kesehatan Makassar. *Filogeni: Jurnal Mahasiswa Biologi,* 4(1), 19–27. https://doi.org/https://doi.org/10.24252/filogen i.v4i1.42013

- Ramalho, A., & Petrica, J. (2023). The Quiet Epidemic: An Overview of Emerging Qualitative Research Trends on Sedentary Behavior in Aging Populations. *Healthcare* (*Switzerland*), 11(15). https://doi.org/10.3390/healthcare11152215
- Silva, T. O., Norde, M. M., Vasques, A. C., Zambom, M. P., Antonio, M. A. R. de G. M., Rodrigues, A. M. D. B., & Geloneze, B. (2023). Association of physical activity and sitting with metabolic syndrome and hyperglycemic clamp parameters in adolescents BRAMS pediatric study. *Frontiers in Endocrinology*, 14(June), 1–11.

https://doi.org/10.3389/fendo.2023.1191935

- Slaght, J. L., Wicklow, B. A., Dart, A. B., Sellers, E. A. C., Gabbs, M., Carino, M., & McGavock, J. M. (2021). Physical activity and cardiometabolic health in adolescents with type 2 diabetes: A cross-sectional study. *BMJ Open Diabetes Research and Care*, 9(1), 1– 7. https://doi.org/10.1136/bmjdrc-2021-002134
- Xu, Z., Wang, S., Li, D., Wang, Y., Wang, S., & Guo, K. (2022). Exercise/Physical Activity in Individuals with Type 2 Diabetes from the American College of Sports Medicine: Interpretation and Clinical Significance. In *Chinese General Practice* (Vol. 25, Issue 25). https://doi.org/10.12114/j.issn.1007-9572.2022.0353