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Abstract: Earlier research reported that GABA had a correlation with diabetes 
in processes of glucose homeostasis. This study aims to identify the validity of 
B-receptor Rattus norvegicus as GABA protein target, modeling the structure 
and knowing the binding affinity between GABA and B-receptor Rattus 
norvegicus through molecular docking.   The research was carried out using in-
silico method.  The interaction of GABA with the target protein was 
determined using SuperPred, followed by modeling the protein target using 
SwissadMe. Ramachandran Plot and Errat Procheck are used to determine the 
validity of the protein target. Molecular docking was determined using Pyrx 
and PyMol. The results showed that GABA binding to the B- receptor Rattus 
norvegicus has biological activity as glucose oxidase inhibitor and 
antidiabetic.  The conclusion are: B-receptor Rattus norvegicus is a valid 
protein target for binding to GABA; there are four 3-dimensional models of B-
receptor Rattus norvegicus and the best model has 98.43% sequence identity; 
the binding affinity of GABA (ligand) on B-receptor Rattus norvegicus from the 
best model is -3.4 kcal/mol energy, 1.773 RMSD lower bound, and 1.81 RMSD 
upper bound. It is suggested that this research might be used as an empirical 
basis to further investigate GABA as antidiabetic. 
 
Keywords: Antidiabetic; GABA; GABA B receptor; Molecular docking; Rattus 
norvegicus 

  

 

Introduction  
 
Diabetes was the ninth biggest cause of death 

worldwide in 2019, according to the World Health 
Organization (WHO, 2020). This result is based on the 
rise in male mortality due to diabetes, which has 
increased by 80% since 2000. In coherence with the 
WHO, the International Diabetes Federation (2021) 
estimated, the number of diabetics will increase by more 
than 600 million in 2030 and reach 735 million in 2045.  
Research related to anti-diabetes needs to be conducted 
to address this global health issue.  

Gamma Amino Butyric Acid (GABA) is an active 
compound that has potential as antidiabetic. In 
mammals, GABA is the main neurotransmitter in the 
central nervous system.  Besides in central nervous 

system, GABA also exists in high concentration in 
pancreas β-cells with insulin (Nikmaram et al., 2017). 
Earlier research reported that GABA in pancreas had 
correlation with diabetes in regards with regulating 
glucose homeostasis condition and including insulin 
and glucagon in their regulation process (Taneera et al., 
2012), effect on insulin expression in pancreas by IHC 
(Indrowati et al., 2017) and promotes β-cell proliferation 
(Untereiner et al., 2019). 

Liu et al. (2017) reported GABA and sitagliptin 
individually improved glucose control, increased 
plasma insulin levels, and reduced plasma glucagon 
levels. Its related with stated from Choat et al. (2019) that 
GABA may protect β-cells from autoimmune 
destruction,  reduce pancreatic inflammation, and 
potentiate the regeneration of new β-cells in the setting 
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of type 1 diabetes mellitus (Choat et al., 2019). 
Rezazadeh et al. (2021) showed GABA and insulin 
treatments effectively lowered blood glucose levels, 
improved glucose tolerance, and reduced HbA1c levels 
in patients and their offspring. GABA also increased 
insulin sensitivity as measured by glucose infusion rates 
(GIR) and enhanced the expression of IRS1, Akt, and 
GLUT4 genes, which are crucial for insulin function. 
Furthermore, Soltani et al. (2011) found that GABA 
therapy has potential clinical application in treating T1D 
by regulating islet cell function and glucose regulation 
through both β-cell restoration and immunosuppression 
pathways.  

GABA can function optimally when it encounters 
valid receptors. There are two kinds of receptors of 

GABA involves GABAA and GABAB receptors, which 
structures and functions were different. GABAA 
receptors are ligand-gated chloride channels formed up 
of pentameric arrangements of several subunits (Ghit et 
al., 2021). GABAB receptors are G protein-coupled 
receptors that activate Gαi/o-type proteins, providing 
slow and persistent inhibitory activity. GABAB 
receptors exert their inhibitory effects by activating 

positively rectifying K+ channels, inactivating voltage-
gated Ca2+ channels, and inhibiting adenylate cyclase 
(Terunuma, 2018). The GABA-B receptor is found, 
among others, in Rattus norvegicus. The potential of 
GABA as an anti-diabetic agent can be more 
comprehensively understood if information about the 
binding of GABA to its receptor is validated. 

This study aims to identify the validity of Rattus 
norvegicus B-receptor as GABA protein target, 
modeling the structure of GABA B receptor Rattus 
norvegicus and knowing the binding affinity between 
GABA and B receptor Rattus norvegicus. The research 
was carried out using the in-silico method through 
molecular docking analysis. The results of in silico 
research can become the basis for further research, 
including antidiabetics in vivo research. 

This research is important because it provides 
specific information about the precise molecular basis of 
GABA binding to target proteins. The novelty of the 
research is presented by the absence of research results 
that provide specific information about the biological 
activity of GABA binding to the GABA-B receptor in 
Rattus norvegicus from a valid three-dimensional model 
structure review based on a molecular basis. 
 

Method  
 

The research was carried out using the in-silico 
method. The interaction of GABA with the target protein 
was determined using SuperPred, followed by modeling 
the protein target using SwissadMe. Ramachandran Plot 
and Errat Procheck are used to determine the validity of 

the target protein. Molecular docking of GABA with B- 
receptor in Rattus norvegicus was determined using 
software from Pyrx and PyMol. The workflow is 
presented in Figure 1. 
 

 
Figure 1. Workflow of molecular docking GABA B receptor 

Rattus norvegicus 

 

Result and Discussion 
 

The research was conducted in silico, starting with 
the identification of the GABA structure through the 
PubChem NCBI website. The identification results show 
GABA (mf C4H9NO2), Canonical smiles GABA 
C(CC(=O) O) CN and molecular weight 103.12 g/mol. 
GABA is also known by other names such as 4-
aminobutyric acid, 4-Aminobutanoic acid, Piperidic 
acid, Piperidinic acid, Aminalon, 56-12-2, Gaballon, or 
Gammalon. 

The computational prediction from PASSonline 
Way2drug indicates that in wet lab experiments, GABA 
has been strongly implicated in biological activity as a 
glucose oxidase inhibitor (Pa 0.938; Pi 0.003; Pa>Pi; 
Pa>0.7). However, its predicted biological activity as an 
antidiabetic agent remains weak (Pa 0.194; Pi 0.172; 
Pa>Pi; Pa<0.3). The computational results from 
SuperPred for identifying protein targets indicate that 
the GABA-B receptor is one of the protein targets 
associated with GABA, with visualization at 7C7S, 
activity at 530 nm, and EC50 type. 
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The protein target used for specific three-
dimensional modeling is gamma-aminobutyric acid 
(GABA) B receptor 2 Rattus norvegicus justified with 
FASTA. FASTA is a text-based file format representing 
nucleotide sequences, originating from the FASTA 
software package, and it has become a standard in 
bioinformatics. Information from FASTA of GABA B-
receptor 2 Rattus norvegicus are NC_086023.1:c66083695-
65743073 Gabbr2; organism=Rattus norvegicus; GeneID 
83633 and location at chromosome 5 locus. Besides 

GABA B-receptor 2, there's other targets in Rattus 

norvegicus, which is the CRA isoform of GABA B-
receptor 1. 

The GABA's protein target was modeled using 
SwissadMe, with validation determined using 
Ramachandran Plot and Errat Procheck.  The results 
from SwissadMe computation indicate there are four 3-
dimensional models of GABA B-receptor Rattus 

norvegicus with varying sequence identity values. Those 
four models are shown in Figure 2. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Model of GABA B-receptor Rattus norvegicus: (a) Model 1; (b) Model 2; (c) Model 3; and (d) Model 4 
 

Based on the four three-dimensional models of the 
GABA B receptor in Rattus norvegicus, the best model is 
model 1 with a sequence identity value 98.43%.  The 
validation of 3 dimensions structure model Gaba B-
receptor Rattus norvegicus using Ramachandran Plot and 
Errat Procheck. Results of validation model 1 are 
presented in Figures 3. 

Next, molecular docking computational analysis 
was conducted using the Pyrx program to determine the 
binding affinity of four models from GABA B-receptor 
Rattus norvegicus.  The result of Pyrx computation is 
presented in Table 1. 

Based on the molecular docking analysis conducted 
using Pyrx, it was determined that model 1, which has a 
sequence identity of 98.43%, exhibits the highest affinity. 
Additionally, the results of molecular docking indicate 
that the binding affinity of GABA (the ligand) to the B-
receptor of Rattus norvegicus is -3.4 kcal/mol energy, 
with lower and upper bound RMSD values of 1.773 and 
1.81, respectively. The three-dimensional model 
depicting the interaction between GABA and the B-
receptor of Rattus norvegicus was visualized using 
PyMol, as illustrated in Figure 4. The visualization 
results indicate that GABA as a ligand and B-receptor of 
Rattus norvegicus as its protein target can bind perfectly. 
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(a) (b) 
Figure 3. GABA B-receptor Rattus norvegicus model 1: (a) Result of Ramachandran Plot GABA B-receptor Rattus 

norvegicus; and (b) Result of ERRAT Procheck GABA B-receptor Rattus norvegicus 
 

Table 1. Molecular Docking Result of GABA B-receptor 
Rattus norvegicus Computed by Pyrx 
Model 
Ligand 

Seq. Identity 
(%) 

Binding 
Affinity 

(kcal/mol) 

RMSD 
lower 

bound 

RMSD 
upper 
bound 

Model 1 98.43 -3.4 1.773 1.81 
Model 2 98.31 -3.6 14.901 15.321 
Model 3 18.98 -3.1 2.654 3.086 
Model 4 18.44 -2.6 11.086 11.947 

 

 
Figure 4. Molecular docking results of binding visualization 
between GABA and B-receptor Rattus norvegicus, computed 

by PyMol.  (a) GABA as ligan. (b) GABA B-receptor Rattus 
norvegicus as protein target. (c) The binding of ligan and 

protein target 

 
The comprehensive results of the study reveal that 

GABA holds substantial promise as an antidiabetic 
agent by targeting specific proteins. Gamma-
aminobutyric acid (GABA) plays a pivotal role in both 
diabetes management and neuroprotection, particularly 
through its interactions with the GABA B-receptor of 
Rattus norvegicus. GABA serves as a crucial inhibitory 
neurotransmitter in the brain, where it modulates 
neuronal communication and maintains overall brain 

function (Shaye et al., 2021). Ngo et al. (2019) stated 
Gamma-aminobutyric acid (GABA) is a non-
proteinogenic amino acid widely found in 
microorganisms, plants, and vertebrates. It has the 
potential to serve as a versatile therapeutic agent with 
applications in treating various diseases and promoting 
overall human health.  Martin et al. (1998) reported the 
decrease in GABAergic activity due to the reduction of 
GABA B receptors on neurons may be a contributing 
factor to the resistance to antidepressants in rats with 
diabetes (Martin et al., 2022). 

GABA also exerts significant influence on 
pancreatic hormone regulation. GABA regulates insulin 
and glucagon secretion, suggesting potential therapeutic 
avenues for enhancing beta-cell function in diabetes 
mellitus through activation of GABA(A) channels and 
modulation of GABA(B) receptors, it regulates. This 
dual action not only facilitates the maintenance of 
glucose homeostasis but also underscores GABA's role 
in metabolic regulation. 

Moreover, GABA exhibits notable neuroprotective 
properties, including its ability to mitigate oxidative 
stress and preserve pancreatic health. These effects are 
crucial in reducing the risk of neurodegenerative 
diseases commonly associated with diabetes (Eltahawy 
et al., 2017). The intricate interaction between GABA and 
the GABA B receptor, as elucidated by Shen et al. (2021), 
highlights the receptor's critical role in mediating these 
effects. Specific conformational changes and intricate 
signal transduction mechanisms contribute to GABA's 
ability to modulate neuronal function and protect 
against cellular damage in diabetes. 

Furthermore, insights from studies on differential 
protein profiles and immune modulation by Al-
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Kuraishy et al. (2021) and Bare et al. (2018) underscore 
the therapeutic potential of targeting the GABA B 
receptor in diabetes management. Bare et al. (2018) 
noted differential protein profiles between type 2 
diabetes mellitus (T2DM) and control rats, highlighting 
variations in protein bands across heart, liver, and 
kidney tissues. Al-Kuraishy et al. (2021) outlined the 
pancreatic GABA signaling system's role in hormone 
secretion regulation, immune suppression, β-cell 
survival enhancement, and potential conversion of α-
cells to β-cells, proposing GABA as a promising oral 
treatment option for both type 1 and type 2 diabetes 
mellitus.  

Yeap et al. (2012) reported that the presence of 
increased levels of GABA and free amino acids in 

fermented mung bean and Mardi Rhizopus sp. 5351 
extracts contributes to significant antihyperglycemic 
effects in alloxan-induced hyperglycemic mice, 
effectively lowering blood sugar levels without inducing 
hypoglycemia in normal mice. Hosseini et al. (2021) 
reported GABA administration improves liver function 
and insulin resistance in offspring of type 2 diabetic rats. 
These studies have shown variations in protein bands 

and immune responses between diabetic and non-
diabetic conditions, emphasizing GABA's role in 
regulating these pathways. 

GABA study was reported as role in episodic 
memory dysfunction (Thielen et al., 2019), ketosis 
management (Gaba et al., 2019), signalling in human 
pancreatic islets (Jin & Korol, 2023), metabolic stress (Ma 
et al., 2020), secretion in cytosolic beta cells (Menegaz et 
al., 2019), canine diabetes O’Kell et al. (2021) and insulin 
therapy (Rabinovitch et al., 2023).  Fanisah et al. (2023) 
discussed the medicinal potential of natural plants, 
promoting their use in combination therapies with fewer 
side effects compared to conventional drugs. Jin et al. 
(2023) underscored GABA's presence in blood and its 
role in modulating interactions between immune and 
pancreatic islet cells, particularly relevant in type 1 
diabetes. These insights further underscore GABA's 
broader physiological implications beyond its 
traditional neurotransmitter role, suggesting potential 
applications in immune modulation and integrative 
medicine approaches. 

Studies of GABA in experimental animals show 
that GABA dramatically improves glucose tolerance in 
streptozotocin-induced diabetic rats fed with high-fat 
diet (Sohrabipour et al., 2018); has correlation with 
insulin-deficient diabetic mice (Sarnobat et al., 2022) and  
glibenclamide combination therapy in streptozotocin 
induced diabetes (Zhu et al., 2021).  

Zhang et al. (2022) showed that GABA has effects 
on glycolipid metabolism, as well as intestinal flora in 
type 2 diabetic mice; GABA-Rich germinated Adzuki 
beans treatment has hypoglycemic effects on T2DM 

mice (Jiang et al., 2021) and triple drug therapy with 
GABA, sitagliptin, and osmeprazole prevents type 1 
diabetes onset and promotes its reversal in non-obese 
diabetic mice (Lagunas-Rangel et al., 2022). Daems et al. 
(2019) reported treatment with empagliflozin and GABA 
improves β -cell mass and glucose tolerance in 
streptozotocin-treated mice.   

GABA receptors have various roles that have been 
studied, including GABA receptor agonists in anesthesia 
and sedation (Brohan & Goudra, 2017); 
electrophysiology of ionotropic GABA receptors 
(Sallard et al., 2021); expression and function of GABA 
receptors in myelinating cells (Serrano-Regal et al., 2020) 
and  structural basis of metabotropic GABA receptor 
(Shaye et al., 2020). Tian et al. (2023) also reported about 

the GABA and GABA-receptor system in inflammation, 
anti-tumor immune responses, and COVID-19.  This 
shows that information about GABA B receptors, 
including those found in Rattus norvegicus, is an 
important study as a basis for research on GABA as an 
antidiabetic. 

In conclusion, GABA emerges as a multifaceted 
molecule with significant implications in both diabetes 

management and neuroprotection. Its interactions with 
the GABA B receptor highlight its role in modulating 
neuronal function, regulating pancreatic hormone 
secretion, and protecting against oxidative stress. The 
therapeutic potential of targeting the GABA B receptor 
in diabetes management warrants further investigation, 
with potential implications for developing novel 
treatments to enhance metabolic regulation and mitigate 
the complications of diabetes. Future studies should 
continue to explore these interactions to advance our 
understanding and application of GABA in biomedical 
research and clinical practice. 

 

Conclusion  

 
The conclusion is B receptor Rattus norvegicus is a 

valid protein target for binding to GABA; there are four 
3-dimensional models of B-receptor Rattus norvegicus 
and the best model has 98.43% sequence identity; the 
binding affinity of GABA (ligand) on B-receptor Rattus 

norvegicus from the best model is -3.4 kcal/mol energy, 
1.773 RMSD lower bound, and 1.81 RMSD upper bound. 
It is suggested that this research might be used as an 
empirical basis to further investigate GABA as an 
antidiabetic. 
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