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Abstract: Stunting is a significant issue, particularly in the context of Indonesia. 
Identifying crucial risk factors is crucial for mitigating and developing effective strategies 
to control stunting. A Bayesian approach was employed to develop a regression model 
that incorporates spatial variation, allowing risk factors to vary across different districts 
and cities. The aim was to obtain the most optimal regression model. The analysis 
revealed that the impact of immunization varies across districts and cities in Indonesia 
when it comes to explaining the differences in stunting prevalence. The hotspot 
prediction results indicate that most urban districts in Indonesia remain hotspot areas, 
with a stunting risk exceeding 20%. The government must ensure the effective 
implementation of the immunization program in order to mitigate the prevalence of 
stunting in Indonesia. The novelty of this research lies in the use of Bayesian approaches 
to spatial analysis in identifying and understanding stunting risk factors as well as the 
prediction of stunting hotspots in Indonesia. This approach provides in-depth insight 
into local variations in the prevalence of stunting and the effectiveness of health 
interventions, which supports more effective and targeted policy development. 
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Introduction  

 
Stunting remains a prevalent issue in global public 

health. Based on data from the World Health 
Organization (WHO), it is estimated that there are 
approximately 149 million children under the age of five 
worldwide who are experiencing stunted growth by the 
year 2020. The majority of children affected by stunting, 
over 90%, reside in developing nations, primarily in Asia 
and Africa. According to WHO data on stunting 
prevalence, Indonesia ranks third in Southeast Asia with 
an average of 36.4% of short news prevalence between 
2005 and 2017. According to the World Health 
Organization (WHO) in 2015, stunting refers to a growth 
and developmental issue in children that arises from 
persistent malnutrition and frequent infections. It is 
characterized by a below-average length or height 
compared to the standard. According to WHO (2020), 
stunting is a condition where a child's height or length is 
below -2 standard deviations (SD) on the WHO growth 

curve for a specific age. This condition is caused by 
inadequate nutrition and/or repeated or chronic 
infections during the first 1000 days of life. The value is 
1000 HPK. According to (La Ode Alifariki, 2020), 
stunting has negative effects on children's physical and 
cognitive growth, as well as their motor development 
and language skills (WHO, 2013) 

Stunting is influenced by various factors, but the 
primary cause is insufficient food consumption and the 
presence of infection (Umeta M et al., 2003). Other 
factors that influence stunting include lack of 
immunization status, exclusive breastfeeding, adequate 
zinc and iron nutrients, family income, food availability 
within the family, food diversity, genetic factors 
(Setiyabudi, 2019), low parental education level, 
maternal height < 150 cm, high-risk maternal age at 
delivery, low birth weight, and short birth length (Putri 
& Nuzuliana, 2020) 

Based on the research conducted by Nadhiroh & 
Ni’mah, (2010), birth length, history of exclusive 
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breastfeeding, family income, maternal education, and 
maternal nutritional knowledge are factors associated 
with the occurrence of stunting in toddlers. Maternal 
education is important because a lack of maternal 
knowledge about health and nutrition before and during 
pregnancy, as well as after childbirth, can impact 
stunting. Based on research conducted by Sutarto & 
Indriyani, (2018), approximately 60% of children aged 0-
6 months do not receive exclusive breastfeeding, and 2 
out of 3 children aged 0-24 months do not receive 
complementary foods to breastfeeding. (MP- ASI). MP-
ASI is given/started to be introduced when the toddler 
is over 6 months old. In addition to introducing new 
types of food to infants, complementary feeding 
(MPASI) can also meet the nutritional needs of the 
baby's body that can no longer be supported by breast 
milk, as well as build the child's immune system and the 
development of the immunological system against food 
and beverages. Additionally, a study conducted in 
Nepal by Paudel et al., (2012) revealed that socio-
economic factors are related to the incidence of stunting, 
which is caused by mothers who are unemployed and 
lack food. 

Hence, in order to mitigate and diminish stunting 
in Indonesia, it is imperative to possess a comprehensive 
comprehension of the factors that exert influence on it. 
The advantages of stunting control encompass the 
provision of sufficient nutrition to expectant mothers 
and children, the supplementation of children who are 
at risk of stunting, enhanced sanitation and 
environmental hygiene, education and socialization 
regarding the significance of nutrition and health in 
pregnant women and children, and the consistent 
monitoring and evaluation of child growth. According 
to (qar Bhutta et al., 2008), long-term efforts to reduce 
stunting should include improvements in addressing 
factors such as poverty, low education, disease burden, 
and lack of women's empowerment, which are known to 
affect nutrient intake.  

Various factors, such as inadequate nutrition, 
unsanitary conditions, and unhealthy surroundings, can 
exert varying influences on stunts in cities and districts. 
These influences may differ due to disparities in 
population and environmental attributes between these 
locations. As a result of these disparities, the factors that 
influence stunting can differ between cities and districts, 
and the strategies to reduce the risk of stunting can also 
vary between these two locations. Aridiyah et al., (2015) 
argues that the factors influencing the chronic 
nutritional status of young individuals differ between 
urban and rural areas, necessitating adjustments in 
settlement strategies. The study focuses on the 
district/city as the unit of observation, therefore it is 
crucial to consider the potential spatial effects of the 
districts/cities in Indonesia. The initial phases reveal the 

spatial impacts, which are observable from the spatial 
representation of the stunting variables depicted in 
Figure 1. 

 

 
Figure 1. Spatial distribution of stunting in Indonesia, 2022 

 

Figure 1 shows that the prevalence of stunting in 
every district and city in Indonesia is consistently above 
10%. This figure is still significantly below the 
government's target of 8%. The prevalence of stunting is 
believed to vary across districts and cities, with districts 
generally exhibiting higher average rates of stunting 
compared to cities. The conditions described above 
indicate the presence of spatial heterogeneity among 
districts and cities. To identify factors influencing the 
prevalence of stunting, it is crucial to consider this 
spatial variation. Therefore, modeling that involves 
spatially varying coefficient regression is necessary, 
especially for accurately identifying hotspots. Accurate 
hotspot identification is a vital step for the government, 
as it allows for the early detection of areas requiring the 
most urgent attention. This prioritization ensures that 
resources can be allocated effectively to hotspot 
locations.  

The purpose of this study is to develop a Bayesian 
spatial multigroup model to analyze the prevalence of 
stunting in Indonesia. The objectives are to identify the 
stunting risk factors in each district and city and to 
achieve accurate hotspot prediction. Additionally, the 
study aims to explain the significant impact of these risk 
factors in different regions. The remainder of this 
manuscript is organized as follows: Section 2, Data and 
Methodology, provides a comprehensive explanation of 
the varying coefficient regression model using a 
Bayesian approach. Section 3, Application and 
Prediction, illustrates the application of the model to 
predict stunting in Indonesia. Finally, Section 4 presents 
the conclusions drawn from the study. 
 

Method  
 
Data 

Indonesia is comprised of 34 provinces, 416 
districts, and 98 cities, encompassing territories that 
exhibit extensive cultural, social, and economic 
variations. Every province, district, and city possess 
distinct attributes that can impact the nutritional status 
and well-being of children. The data utilized in this 
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study comprises stunting data extracted from the 
Indonesian Nutritional Status Survey (SSGI) 
pocketbook, which was published by the Ministry of 
Health of the Republic of Indonesia in 2022. In addition, 
predictor variables such as poverty, asylum allowance of 
less than 6 months, and immunization were acquired 

from the Central Statistics Authority in 2022. 
 

Method 
This study utilized a Bayesian methodology. The 

Bayesian method is a data analysis approach that utilizes 
Bayes' theorem to update the available knowledge about 
the parameters in a statistical model with information 
from the observed data (Van de Schoot et al., 2021). In 
the Bayesian framework, parameters are considered to 
be random variables that follow a prior distribution 
(Wagenmakers et al., 2008).The posterior distribution 
can be obtained by combining the prior and likelihood, 
and from this posterior distribution, a Bayesian 
estimator can be derived. For further details, a flowchart 
is shown in this study. 

 
Figure 1. Research Flow 

 

Bayesian Spatially Varying Coefficient Model (SVCM) 
The conventional regression model is inadequate 

for analyzing spatial data. Thus, it is imperative to create 
models that can consider spatial effects, such as spatial 
dependencies and spatial heterogeneity. A spatially 
variable coefficient model (SVCM) is a mathematical 
model that is employed to compute regression 
coefficients that vary across space and account for the 
existence of spatial dependencies and heterogeneity in 

them (Cressie, 1993). (Congdon, 2014) developed the 
SVCM approach to account for the impact of spatial 
dependency on the regression parameters in equation 
(1). The expression for a model with spatially varying 
coefficients for m groups is as follows: 

 

𝐸[𝑦𝑖] =  𝛽0 +  𝑓(𝛽1𝑗𝑋1𝑖) + 𝑓(𝛽2𝑗𝑋2𝑖) + ⋯ + 𝑓(𝛽𝐾𝑗𝑋𝐾𝑖); 𝑗

= 1, … , 𝑚                                                      (1) 
 
with 𝑚  expressing many groups on data with 𝑚 ≤ 𝑁. 
The model (1) can be expanded by including random 
components of spatial dependence and heterogeneity.  
 

𝜂𝑖 =  𝛽0 + 𝜔𝑖 + 𝜐𝑖 +  𝑓(𝛽1𝑗𝑋1𝑖) + 𝑓(𝛽2𝑗𝑋2𝑖) + ⋯

+ 𝑓(𝛽𝐾𝑗𝑋𝐾𝑖)                                                 (2) 

 
To estimate the spatial model in equation (2) using the 
Bayesian method, we employ a Laplace approximation 
known as Integrated Nested Laplace Approximation 
(INLA).  
 

Suppose the data observed in the area to i, is 
derived from the probability distribution 𝑝(𝒚𝒊|𝛀, 𝚺) with 
unknown parameters 𝛀 = (𝛽0, 𝛽1𝑖 , 𝛽2, 𝛽3𝑖 , 𝝎′, 𝝊′)′ . 

Unknown parameter 𝛀  is taken as a random variable 
with the priors 𝑝(𝛀|𝚺)  and the hyperparameter 

unknowns 𝚺 = 𝐷𝑖𝑎𝑔(𝜎𝜀
2, 𝜎𝜔

2 , 𝜎𝜐
2, 𝜎𝛽1

2 , 𝜎𝛽2

2 , 𝜎𝛽3

2 )
′

 and with 

the hyperprior 𝑝(𝚺). The combined posterior density of 
𝛀 and 𝚺 conditional 𝒚 is defined (Jaya & Folmer, 2019b): 

 

𝑝(𝛀, 𝚺|𝒚) =
𝑝(𝒚|𝛀, 𝚺)𝑝(𝛀|𝚺)𝑝(𝚺)

𝑝(𝒚|𝚺)
(3) 

with 𝑝(𝒚|𝛀, 𝚺)  is a function of the likelihood of the 
prevalence of stunting 𝐲  and  𝑝(𝒚|𝚺)  are marginal 
likelihoods of the conditional data of the 
hyperparameter 𝚺  which is a normalization constant 
because it does not depend on 𝛀 so can be ignored in 
estimates. Therefore, the combined posterior density is 
defined as follows (Jaya &Andriyana, 2020):  
 

𝑝(𝛀, 𝚺|𝒚) ∝ 𝑝(𝒚|𝛀)𝑝(𝛀|𝚺)𝑝(𝚺) (4) 
with a sign equal to (=) replaced by a sign proportional 
to (∝). 
 
Inference Using INLA 

The first phase consists of the likelihood function of 
the observed 𝑦  variable, 𝑝(𝒚|𝛀, 𝚺) , which can be 
rewritten as follows (Jaya & Folmer, 2019): 

𝑝(𝒚|𝛀, 𝚺) = ∏ 𝑝(𝒚𝒊|𝛀𝒊, 𝚺)

𝑛

𝑖=1

= ∏ ∏ 𝑝(𝒚𝒊𝒕|𝛀𝒊𝒕, 𝚺)

𝑇

𝑡=1

𝑛

𝑖=1

(5) 
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with 𝒚 is a vector that contains the observation value, the 
vector 𝛀  is an unknown parameter  and 𝚺 is a 

hyperparameter of 𝛀. 
The second phase consists of the latent Gaussian 

field 𝛀  conditional vector hyperparameter 𝚺 , 𝑝(𝛀|𝚺) , 
which follows the Gaussians multivariate distribution. 
The prior density function of 𝛀 is observed as follows: 

 

𝑝(𝛀|𝚺) = (2𝜋)𝑛𝑇|𝐐(𝚺)|
1

2 exp (−
1

2
𝛀′𝐐(𝚺)𝛀) (6) 

with |·|  specifies determinants and 𝐐(𝚺)  specifies 
sparse/rare precision matrices. 

The third stage involves 𝑝(𝚺)  which is the 
hyperprior distributions 𝚺. 𝑝(𝚺) does not need Gaussian 
distributions and the correct distribution for the 
precision parameter is the Inverse Gamma. Of the three 
stages described above then the distribution of the 
posterior combination written in the equation (4) can be 
rewritten as follows: 
 

                   𝑝(𝛀, 𝚺|𝒚) =
𝑝(𝚺)𝑝(𝛀|𝚺)𝑝(𝒚|𝛀, 𝚺)

𝑝(𝒚|𝚺)
 

∝ 𝑝(𝚺)|𝐐(𝚺)|
1

2 exp (−
1

2
𝛀′𝐐(𝚺)𝛀 + ∑ 𝑙𝑜𝑔(𝒚𝒊|𝛀𝒊, 𝚺)

𝑛

𝑖=1

) (7) 

 
The INLA procedure does not consider the full 

posterior distribution of 𝛀  and 𝚺  but is based on a 
marginal lateral distribution approach i.e. 𝑝(𝛀𝒊|𝒚) and 
𝑝(𝚺𝒌|𝒚) . The posterior marginal distribution for 𝛀𝒊  is 
defined as follows: 

 

𝑝(𝛀𝒊|𝒚) = ∫ 𝑝(𝛀𝒊 , 𝚺|𝒚) 𝑑𝚺 = ∫ 𝑝(𝛀𝒊|𝚺, 𝒚) 𝑝( 𝚺|𝒚) 𝑑𝚺,   

                𝑖 = 1, … , 𝑛 (8)
 

with 𝑛 is the number of spatial units. And the marginal 
posterior distribution of 𝚺𝒌 is defined as follows: 
 

𝑝(𝚺𝒌|𝒚) = ∫ 𝑝(𝚺|𝒚) 𝑑𝚺−𝒌,   𝑘 = 1, … ,6 (9) 

with 𝚺−𝒌 shows all elements in 𝚺  except for element −𝑘. 

 
Result and Discussion 
 

Analysis Descriptive  
The data used in this study are stunting data in 

Indonesia in 2022, below is a summary of the research 
variables in Table 2. 
 
Table 2. Result of Analysis Descriptive 
Variable Mean SD Min Max 

Stunting (Y) 24.28 8.57 4.80 54.50 
Immunization (X1) 53.76 18.43 5.68 85.77 
Exclusive ass gift < 6 
months (X2) 

25.77 7.56 0.30 54.83 

Poverty (X3) 11.682 7.27 2.28 42.03 

From the table above it can be seen that stunting 
cases with the minimum exclusive breastfeeding factor 
of 0.30% and the maximum immunization of 85.77%. 
This indicates that exclusive milk delivery for children is 
still very low, while the immunization coverage for 
children has been quite high.  According to Figure 1, the 
spatial distribution of stunting in Indonesia can be 
described as follows. The dark red areas indicate regions 
with a very high percentage of stunting (close to or 
exceeding 50%). In contrast, orange to yellow areas 
represent regions with a lower percentage of stunting 
(ranging from around 10% to close to 50%). The dark red 
regions are predominantly located in the eastern part of 
Indonesia, such as Papua and East Nusa Tenggara, 
which exhibit very high levels of stunting. This figure 
clearly illustrates that the prevalence of stunting in 
Indonesia varies significantly between districts and 
cities. Additionally, the color groupings between 
districts and cities suggest a spatial effect on stunting 
data in Indonesia. Districts and cities with high stunting 
rates tend to be clustered around other high stunting 
areas. Two spatial effects are evident: spatial 
dependency and spatial heterogeneity. The figure shows 
that the number of stunting cases has spatial 
dependencies, indicating a connection between 
neighboring regions. This implies the presence of similar 
influencing factors, such as access to healthcare, 
sanitation, and other determinants. Furthermore, there 
is a spatial heterogeneity effect, where the number of 
stunting cases differs between cities and districts. It can 
be observed that districts generally have higher stunting 
rates compared to city areas. 
 
Spatially varying coefficient model  
The initial step in Bayesian modeling using inla involves 
selecting the optimal model. At this stage, we choose the 
optimal model by identifying risk factors that exhibit 
time-varying regression coefficients. We employed 
multiple model selection criteria, namely Deviance 
Information Criteria (DIC), Watanabe Akaike 
Information Criteria (WAIC), and log-Marginal 
likelihood (LML). The results of the model comparison 
are displayed in Table 3. 
 
Table 3. Model comparison 
Spatially varying 
variable 

WAIC DIC LML 

Immunization  3599.18 3598.07 -1847.10 
Exclusive 
breastfeeding gift < 6 
months  

3605.78 
 

3604.40 
 

-1847.74 

Poverty  3607.17 3605.81 -1849.28 

 
According to Table 3, we chose a regression model 

that takes into account the varying effects of 
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immunization in different districts and cities. This 
model has the lowest Deviance Information Criterion 
(DIC) and within-cluster sum of squares (WIC), and the 
highest Log Marginal Likelihood (LML). To support that 
models with spatially varying immunization are best, 
we show the effects of spatially varying for all variables, 
including intercepts on the picture. 
 

 
 

(a) Spatialy varying 
intercept 

(b) Spatially variying 
immunitation 

 
 

(c) Spatially varying 
Exclusive 
breastfeeding gift < 
6 months 

(d) Spatially varying 
poverty  

Figure 2. Spatially varying effects 

 
Figure 2a shows that the data distribution for the 

spatially varying intercept is similar in groups 0 
(districts) and 1 (cities), with an average of 0 in both 
groups. The quantile range suggests that the majority of 
the data is in close proximity to the mean, exhibiting 
minimal variability. This boxplot offers a lucid depiction 
of the distribution of data in both groups, revealing no 
noteworthy disparities in terms of distribution and 
mean.  

Figure 2b displays the data distribution for the 
immunization variable, indicating that the values of the 
immunization parameter in districts (group 0) span from 
approximately -0.02 to 0.04. The values exhibit a slight 
positive inclination, with an average or median of 
approximately 0.02, indicating a slightly elevated 
immunization impact in districts. The immunization 
parameter values for cities in group 1 range from 
approximately -0.04 to 0.02, with a slightly negative 
trend and an average or median value of around -0.02. 
This implies that the impact of immunization in urban 
areas may be marginally less significant compared to 
rural areas. Therefore, it is imperative for the 
government to prioritize immunization initiatives in 
urban areas.  

According to Figure 2c, the data distribution for the 
variable "exclusive breastfeeding of less than 6 months" 
in districts (group 0) exhibits parameter values that span 

from approximately -0.03 to 0.06. The distribution shows 
a slightly positive trend, with an average or median 
value around 0.03. Within urban areas (group 1), the 
parameter values span from approximately -0.06 to 0.03, 
exhibiting higher levels of variation and an average or 
median value close to 0. The disparities between the two 
categories suggest that districts generally exhibit slightly 
higher parameter values for exclusive breastfeeding 
compared to cities, although there is variation within 
both groups. 

Figure 2d illustrates that the data distribution for 
the poverty variable is highly similar and concentrated 
around 0 in both districts (group 0) and cities (group 1). 
There is no notable distinction between the two 
categories. In summary, these findings indicate that the 
poverty variable does not have a substantial impact on 
the adjustment, as the posterior averages and confidence 
intervals for both categories are nearly 
indistinguishable. Put simply, there are no notable 
disparities in the poverty variable between districts and 
cities. 
 
Table 4. Summary statistics for the fixed effects 
Variable Mean SD Quantile 

(0.025) 
Quantile 

(0.975) 

Intercept 23.242 1.698 19.910 26.572 
Immunization  -0.079 0.019 -0.117 -0.041 
Exclusive ass gift 
< 6 months  

-0.056 0.044 -0.142 0.029 

Poverty  0.489 0.048 0.395 0.583 

 
Table 4 shows that the coefficient of immunization 

and exclusive assigning for less than 6 months has a 
negative value, while the poverty variable has a positive 
value. The 95% credible interval for the immunization 
variable is [-0.117; -0.041]. For the exclusive ass granting 
variable <6 months, the interval is [0.142; 0.029]. Lastly, 
for the poverty variable, the interval is [0.395; 0.583]. A 
95% credible interval indicating a non-zero value for the 
immunization and poverty variables suggests that these 
variables have a statistically significant impact. 
Conversely, a zero value in the credible interval for the 
exclusive assigning variable <6 months indicates that it 
does not have a significant impact. Hence, the variables 
of immunization and poverty exert a positive and 
substantial impact on the percentage of stunting in 
Indonesia. 

According to the Table 5, the Gaussian observation 
variability has an average of 7.97 and a standard 
deviation of approximately 0.26. This indicates that the 
stunting observation data has a significant level of 
variability. The variable variability of immunization has 
an average of 0.019 and a standard deviation of 0.014. 
This suggests that the random effects of immunization 
against stunts contribute relatively little to the overall 
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variability of observations. The of immunization on 
stunting shows significantly less variation compared to 
the overall variability in observations of stunting. This 
suggests that regular immunization has a more uniform 
impact on reducing stunting, although there may be 
some variations in certain instances. The percentage 
range indicates that, for the most part, the variability of 
immunization effects is minimal. However, there are 
certain scenarios where the effects can exhibit greater 
variation.  

 
Table 5. Summary statistics for the random effects 

 Mean SD Quantile 
(0.025) 

Quantile 
(0.975) 

SD for the 
Gaussian 
observations 

7.9653 0.2607 7.4562 8.4795 
 

SD for 
Immunization 

0.0194 0.0143 0.0046 0.0579 

  
The significant variability in Gaussian observations 

indicates that stunting is influenced by numerous other 
factors that exhibit substantial variability. It 
demonstrates the necessity of considering factors 
beyond immunization when assessing and addressing 
stunting problems. In general, immunization appears to 
be a consistent factor in decreasing stunting. However, 
due to the significant variation in overall stunting rates, 
a more comprehensive approach that considers other 
factors is necessary to effectively address stunting 
issues. 
 

Mapping Prediction of Stunting Prevalence 
After selecting the optimal model, which is the 

model that displays the spatially varying impact of 
immunization, a predictive analysis was conducted to 
identify areas with very high levels of stunting 
prevalence. This analysis aims to find regions with 
stunting risk exceeding the limits set by WHO 
standards.  

Predictions were made using the optimal model 
that considers spatial variation in the impact of 
immunization. In other words, this model takes into 
account that the effect of immunization on reducing 
stunting may vary across different regions. According to 
WHO standards, areas with stunting prevalence rates 
exceeding 20% are classified as high-risk zones. This 
means that areas falling into this category require special 
attention and more intensive interventions to reduce 
stunting rates. The results of the predictive analysis are 
illustrated in Figure 2. This figure provides a 
visualization of areas with very high stunting 
prevalence rates, based on the selected model. By 
looking at this map, policymakers and relevant parties 

can identify which areas most urgently need 
intervention. 
 

 
Figure 2. Spatial Distribution of Predicted Stunting 

Prevalence 

 
The colors in Figure 2 indicate the percentage of 

stunting prevalence, with a color gradient from yellow 
to red. Yellow indicates areas with relatively lower 
stunting prevalence, around 20%. Orange indicates 
areas with moderate stunting prevalence, around 30%. 
Meanwhile, red indicates areas with high stunting 
prevalence, over 40%.  

From the map, it can be seen that the regions in the 
eastern part of Indonesia, such as Papua and some parts 
of Nusa Tenggara, have a higher prevalence of stunting 
(marked in red and orange). Meanwhile, the regions in 
the western and central parts of Indonesia, such as 
Sumatra and Java, have a lower prevalence. (ditandai 
dengan warna kuning). 

To clarify further, this study also presents the 
spatial distribution of exceedance probability in figure 3. 
Exceedance probability is used to calculate the 
probability that the prevalence of stunting will exceed 
the WHO threshold that has been set at 20%. 

 

 
Figure 3. Spatial distribution of exceedance probability 

 

The image above displays a region of Indonesia 
exhibiting a probability exceedance for a relative risk 
exceeding 20%. Yellow areas indicate a relatively low 
probability, ranging from 0% to 25% of encountering a 
risk higher than 20%. Orange areas represent a moderate 
probability, ranging from 25% to 50%. Red areas indicate 
a high probability, ranging from 50% to 75%, while dark 
red areas indicate a very high probability exceeding 
75%. The map highlights several regions in Indonesia 
with high and very high likelihoods of relative risks 
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surpassing 20%, signifying significant potential risks. 
Areas shaded in red and dark red represent major 
hotspots with relatively high-risk levels, potentially 
including parts of Sumatra, Kalimantan, Sulawesi, and 
Papua. These high probability regions warrant special 
attention in policy planning and intervention strategies 
to mitigate the risk of stunting. 
 

Conclusion  
 

The Spatially Varying Coefficient Model was 
created to detect risk factors that have different effects 
depending on the spatial locations, which in this study 
are districts or cities. The study employed Bayesian 
Integrated Nested Laplace Approximation (INLA) to 
model regression coefficients that vary spatially. 
Analysis of 2022 data on stunting and risk factors, 
including immunization, exclusive breastfeeding for less 
than 6 months, and poverty, revealed that the impact of 
immunization varies among different districts and cities. 
There is a correlation between the increase in 
immunization rates in urban areas and a more rapid 
decrease in stunting rates, as compared to rural areas. 
The hotspot analysis results, according to the criteria set 
by the World Health Organization (WHO), indicate that 
numerous districts and cities in Indonesia can be 
classified as hotspot areas due to the prevalence of 
stunting exceeding 20%. 
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