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Abstract: Sumedang Regency has a hilly landscape, making it one of the 13 
cities/regencies in West Java Province that are prone to landslides. A total of 
80 landslide incidents were recorded from 2019 to 2023. These landslides 
resulted in 45 fatalities, 53 injuries, and damage to 317 infrastructure units. 
This situation indicates the importance of conducting an analysis of landslide 
hazard distribution. The landslide hazard distribution analysis is carried out 
using a weighting and scoring method on the parameters used, which include: 
slope gradient, rainfall, actual land cover, landform, lithology, and soil type. 
Based on these parameters, four landslide hazard classes were identified in 
Sumedang Regency: low, medium, high, and very high hazard classes. 
Proportions of these hazard are as follows: high hazard class (42.24%), 
medium hazard class (40.38%), low hazard class (13.90%), and very high 
hazard class (3.49%). The low hazard class is mainly found in the northern part 
of Sumedang Regency, the medium hazard class is widespread in sloping 
areas, and the high to very high hazard classes are primarily found in the 
Tampomas mountains and areas with hilly landforms. Slope gradient and 
rainfall are the factors that most influence landslide hazards, making it 
necessary to design appropriate mitigation. 
 
Keywords: Hazard; Disaster; Landslide; Mitigation. 

  

 

Introduction  

 
Indonesia's unique geographic position at the 

convergence of three tectonic plates—the Indo-
Australian, Eurasian, and Pacific plates—makes it one of 
the most tectonically active regions in the world (Fauza 
et al., 2023). This tectonic activity results in frequent and 
intense geodynamic processes, including earthquakes, 
tsunamis, and landslides, that pose significant risks to 
human life and infrastructure. Coupled with Indonesia's 
wet tropical climate, driven by its equatorial location 
between two major oceans and continents, the country 
faces a heightened risk of natural disasters like floods, 
landslides, and erosion (Karimah et al., 2022a).  

Landslides, in particular, are a common and 
destructive natural disaster in Indonesia, especially in 

regions with hilly or mountainous terrain. These 
landslides often occur during the rainy season and are 
exacerbated by factors such as steep slopes, loose soil, 
and high rainfall (Ba et al., 2017). The dynamic 
interaction of these factors destabilizes slopes, leading to 
the mass movement of soil, rock, and debris, which can 
cause catastrophic damage to both natural and built 
environments (Abbaszadeh Shahri et al., 2019). 

Materials on the surface of landslides can be divided 
into three, namely rocks, soil, and debris. This 
classification is based on the size of the particles. The 
coarsest size and bound in the soil layer are called rock, 
coarse particles and 20-80% of the particles are larger 
than 2 mm are called debris, while particles that have a 
proportion of more than 80% with a size of 2 mm are 
called soil (Bianchini et al., 2018). The larger the particle 
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size, the smaller the charge owned by the particles so 
that the binding power between particles will be lower, 
therefore a balanced proportion between particle sizes is 
very important in forming ideal physical properties in a 
type of soil (Rabby et al., 2020). 

Landslides are triggered by a complex interplay of 
various natural and human-induced factors. Among the 
primary causes is high rainfall intensity, which saturates 
the soil, reduces its cohesion, and increases the 
likelihood of slope failure (Shafique, 2020). Steep slopes 
further exacerbate this risk, as gravity more easily pulls 
saturated soil and loose debris downhill. The presence 
of loose soil and weak rock formations, which lack the 
structural integrity to withstand added pressure from 
rainfall and other environmental stressors, also 
contributes significantly to landslide occurrences 
(Canavesi et al., 2020). 

Human activities, such as inappropriate land use, 
can increase landslide susceptibility (Dwinanda et al., 
2024). For instance, deforestation and the removal of 
vegetation for agriculture or urban development 
weaken the natural stability of slopes, reducing the 
land's ability to absorb and manage water runoff. This 
change in land cover can lead to accelerated erosion, 
stripping away the topsoil and further destabilizing the 
slope. The remnants of previous landslides can create 
weak zones that are more prone to reactivation, 
especially during periods of heavy rain (Nachappa et al., 
2020). 

Additionally, geological features such as 
discontinuity planes or unconformities—where layers of 
rock do not align or are separated by faults—serve as 
natural slip surfaces, making it easier for soil and rock to 
move. These factors, when combined, create conditions 
ripe for landslides, particularly in regions with a history 
of such events and where proactive land management 
and mitigation strategies are lacking (Palloan et al., 
2023). 

Despite extensive research on landslide causes, 
there is a critical need for more precise and localized 
hazard assessments, particularly in high-risk areas like 
Sumedang Regency in West Java. Sumedang's hilly and 
mountainous landscape makes it particularly 
susceptible to landslides, as evidenced by the 80 
landslide incidents recorded between 2019 and 2023. Of 
these, 72% were directly linked to high rainfall intensity, 
resulting in significant loss of life and damage to 
infrastructure. 

Spatial modeling of landslide hazards is a 
sophisticated process that leverages advanced 
geospatial technologies to analyze and interpret 

complex environmental data (Sharma et al., 2015). Key 
to this process is the use of specialized Geographic 
Information System (GIS) software, such as ArcGIS, 
QGIS, and ERDAS, which allows for the integration and 
analysis of diverse data types. These platforms enable 
the combination of vector and raster data, each serving 
distinct roles in spatial analysis (Sun et al., 2020). 

The process involves the application of spatial 
analysis techniques, such as buffering, overlay, and 
interpolation, to assess how different environmental 
factors interact across a landscape (Ulfah et al., 2021). For 
instance, slope steepness derived from DEMs can be 
combined with rainfall data to identify critical zones 
where landslides are more likely to occur. Land use data 
can then be integrated to assess the potential impact on 
human settlements and infrastructure (Wang et al., 
2019). 

The outcome of this analysis is the creation of 
spatial-based landslide hazard maps, which are 
invaluable tools for disaster risk management and 
mitigation planning. These maps not only delineate 
high-risk areas but also provide insights into the 
underlying causes of landslides, allowing for more 
targeted interventions. By using geospatial-based 
software, planners and decision-makers can make 
informed choices about land use, infrastructure 
development, and emergency preparedness, ultimately 
reducing the vulnerability of communities to landslide 
hazards (Mahlianurrahman & Aprilia, 2024). 

The study will utilize a combination of 
parameters—including slope steepness, rainfall, 
landform, geology, land use, and soil type—to generate 
a more accurate and actionable landslide hazard map for 
Sumedang Regency. This method represents a 
significant advancement in landslide hazard analysis, 
offering a sharper, more data-driven tool for disaster 
mitigation and planning. 

 

Method  
 

Landslide Hazard Mapping is the process of 
identifying and mapping areas that are potentially prone 
to landslides, with the aim of minimizing the risks and 
impacts caused by landslide disasters (Diharja et al., 
2022). This mapping is carried out through several 
stages of analysis that involve the collection and 
processing of both spatial and non-spatial data. The 
steps in the landslide hazard mapping model are 
explained in Figure 1. 
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Figure 1. Landslide hazard model procedure 

 
Landslide hazard analysis is conducted by 

weighting and scoring the parameters used, which 
include slope gradient, rainfall, landform, geology, 
current land use, and soil type (Asrizal et al., 2023). The 
weight of each parameter is determined from the factor 
analysis previously conducted. The weighting of each 
landslide triggering parameter refers to the formula 
used by as follow:   
 

𝑤𝑗 =
𝑛 − 𝑟𝑗 + 1

∑(𝑛 − 𝑟𝑗 + 1)
 

(1) 

 
Equation information:   
wj = normalized weight values 
n   = parameters amount (1,2,3,…..n) 
rj   = parameter sequence position 

 
Based on the results of these weight calculations, the 

equation for creating a landslide hazard map (estimation 
model) is as follows: 
 

H = 29 (S) + 24(R) + 19(LC) + 14(Lf) + 10(Lt) + 5(ST) (2) 
 
Equation information:   
H  = Landslide Hazard 
S  = Slopes 
R = Rainfalls 
LC  = Land Covers 
Lf  = Landform 
Lt  = Lithology 
ST = Soil Types 

 
The results of the calculations using this formula are 

then classified into four hazard classes: low hazard, 
moderate hazard, high hazard, and very high hazard. 
Next, mapping of landslide hazard classes is carried out 
based on these four classes (Karimah et al., 2022b). 
Subsequently, the landslide hazard map will become the 
center point of this research. Classification is done using 
intervals calculated with the following formula: 

 

Class Intervals =  
Highest Value − Lowest Value

Number of Class
 

(3) 

 
Next, with field data in the form of the history of 

landslide events in each sub-district in Sumedang 
Regency, linear regression analysis can be used to test 
the accuracy of the landslide hazard map by comparing 
predictions from the hazard map with actual landslide 
occurrence data (Diharja et al., 2022). The regression is 
obtained based on the correlation results between 
landslide hazard classes and the landslide occurrence 
density values (density) according to the following 
linear regression equation. 
 

Y = a + bX (4) 

 
Equation information:   
Y = actual landslide event. 
X = is the landslide danger value. 
a = is an interception. 
b = is the slope or slope of the regression line. 

 

Result and Discussion 
 
Analysis of Factors Causing Landslides  

The parameters used for landslide hazard analysis 
and mapping include: slope gradient, rainfall, landform, 
lithology, current land use, and soil type. Each factor will 
be analyzed based on its weight of influence on landslide 
disasters (Fadli et al., 2023). The explanation of each 
causative factor is as follows: 

 
Slopes 

Slope gradient is a crucial factor in the occurrence of 
landslides. The steepness of a terrain directly impacts 
soil stability and the likelihood of landslides. Areas with 
steep slopes have a significantly higher risk of landslides 
(Dharma et al., 2022). On such slopes, the force of gravity 
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exerts a stronger pull on the soil mass, making the 
ground more prone to instability and eventual collapse. 
Steep slopes inherently have low soil stability, and any 
disturbance—such as soil loosening for agriculture or 
deforestation—can further reduce this stability, 
increasing the landslide hazard (Haribulan & Gosal, 
2019). When coupled with high rainfall, steep slopes 
become even more vulnerable as rainwater quickly 
infiltrates the soil, leading to saturation. Waterlogged 
soil becomes heavier and less stable, significantly raising 
the risk of landslides (Gojali et al., 2020). The slope 
gradient classes are divided into 5 categories: 0%-8% 
(flat to gentle), 8%-15% (slightly steep), 15%-25% (steep), 
25%-45% (very steep), and above 45% (extremely steep). 
The slope gradient conditions in Sumedang Regency 
area can be seen in Figure 2. 

 

  
Figure 2. Slopes gradient class map 

 

Based on Figure 2, it can be seen that slope classes 
potentially prone to landslides are steep (15-25%), very 
steep (25-45%), and steep (>45%). These are 
predominantly found in the upper slope areas of Mount 
Tampomas (in the districts of Cimalaka, Conggeang, 
and Buahdua) and hilly regions scattered in the 
southern, western, and southeastern parts of Sumedang 
regency. The slope and length of the slope are the two 
topographic elements that most influence landslides. 
Other elements that may influence are the configuration, 
uniformity and direction of the slope. The steeper the 
slope, the greater the possibility of land movement from 
the top to the bottom of the slope (Fathan Al-Hakim & 
Rizal, 2021). 

From the distribution data of slope classes, the flat 
to gentle slope class dominates the area with 45.05%, 
while the very steep slope class covers only 0.01% of the 
area. Slope steepness is a crucial factor in triggering 
landslides (Febriarta & Wibowo, 2021). The inclination 
or steepness of an area directly influences soil stability 
and the potential for landslides. Regions with steep 

slopes have a higher potential for landslides. On steep 
slopes, gravitational forces exert a stronger pull on the 
soil mass downwards, leading to soil instability and 
eventual landslides. Steep slopes tend to have lower soil 
stability (Isneni et al., 2020). 

 
Table 1. Slopes gradient class table 

Range Class Wide (ha) Percent 

0-8% Flat to gentle       70,125.02  45.05% 

8-15% Slightly steep       45,553.35  29.26% 

15-25% Steep       29,427.60  18.90% 

25-45% Very steep       10,549.32  6.78% 

>45% Extremely steep               9.95  0.01% 

Total  155,665.24 100.00% 

 
Rainfall 

Rainfall in a particular area is influenced by climate 
conditions, geographic position, and the convergence of 
air currents, rainfall is one of the influencing factors for 
landslides (Isneni et al., 2020). During periods of high 
rainfall, water infiltrates the soil through the process of 
infiltration. This infiltrated water increases the soil's 
moisture content, leading to saturation. Saturated soil 
becomes heavier. The addition of water increases the 
load on slopes, which can lead to soil instability, 
especially on steep slopes locations. When soil becomes 
saturated, the bonds between soil particles weaken. This 
reduces soil cohesion and shear strength, making it more 
vulnerable to movement or landslides (Pratiwi et al., 
2022). The distribution of rainfall classes can be seen in 
Figure 3. 

 

 
Figure 3. Rainfall class map 
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Figure 4. Rainfall class charts 

 
High rainfall can cause surface runoff, which can 

erode soil and increase erosion. This erosion can remove 
the supporting soil layers that play a crucial role in 
maintaining slope stability (Ramadhan et al., 2021). As 
seen in Figure 4, the highest average rainfall was 
recorded from 2020 to 2022, ranging more than 3,000 
mm/year. High rain intensity corelated with landslides 
frequency within 2020 to 2022. 
 
Table 2. Rainfalls class table 

Rainfall Class Wide (ha) Percent 

 2,400 – 2,700 mm        17,000.25  10.92% 

 2,700 – 3,000 mm        61,461.36  39.48% 

 3,000 – 3,300 mm        75,735.47  48.65% 

 3,300 – 3,600 mm         1,468.15  0.94% 

Total 155,665.24 100.00% 

 
Based on Table 2, the distribution of rainfall in 

Sumedang Regency can be observed in terms of area. 
The most dominant rainfall range in Sumedang Regency 
is 3,000–3,300 mm/year covering an area of 75,735.47 
hectares or 49%. Meanwhile, the smallest area is covered 
by rainfall ranging from 3,300 to 3,600 mm/year, which 
totals 1,468.15 hectares or 0.94% of the total area. This 
indicates that Sumedang Regency has a significant area 
with high rainfall intensity (>3,000 mm/year). High 
rainfall intensity can increase the load on slopes as a 
result of increased water content in the soil, which 
ultimately triggers landslides (Setyaningsih & 
Kurniasari, 2016).  

 
Land Cover   

The relationship between land cover and landslides 
is very close, as the type and condition of land cover can 
affect slope stability and the risk of landslides (Nugroho 
& Nugroho, 2020). Land cover is closely correlated with 
vegetation types and infrastructure development, 
especially buildings on the ground surface. Areas with 
steep to very steep slopes that have vegetation with 

strong root systems can stabilize slopes by binding soil 
particles and reducing surface erosion. Meanwhile, 
buildings and infrastructure on the ground surface can 
add weight to the soil and disrupt soil drainage systems, 
thereby increasing the risk of landslides (Rivai & Hanafi, 
2021). Land cover spreads can be seen on Figure 4 . 

 

 
Figure 4. Land covers map 

 
Based on Figure 4, natural forests are distributed in 

the southern and western regions of Sumedang 
Regency. Meanwhile, the northern and northeastern 
parts predominantly have plantation forests. Generally, 
forested areas feature hilly and mountainous terrain, 
with land cover on slopes and hill ridges focusing on 
agricultural fields such as dryland farming, terraced 
paddy fields, and mixed gardens. Settlements are 

commonly found on some slopes and at the foot of hills. 
 
Table 3. Land covers table 

Land Covers Wide (ha) Percent 

Dryland agriculture 30,796.53 19.78% 

Paddy field 33,265.93 21.37% 

Plantation forest 33,031.98 21.22% 

Built-up area 11,542.72 7.42% 

Open area 824.29 0.53% 

Mixed garden 2,121.63 1.36% 

Nature forest 40,189.67 25.82% 

Water body 3,892.48 2.50% 

Total 155,665.24 100.00% 

 

Based on the table 3, natural forests cover the largest 
area at 40,189.67 hectares (25.82%), followed by rice 
fields at 33,265.93 hectares (21.37%), plantation forests at 
33,031.98 hectares (21.22%), and dryland farming at 
30,796.53 hectares (19.78%). Open land and mixed 
gardens have the smallest areas, each comprising 0.53% 
of the total area. Land cover plays a crucial role in 
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mitigating and increasing the risk of landslides. Wise 
land use practices and effective vegetation management 
can reduce landslide hazards by enhancing slope 
stability and reducing soil erosion. Reforestation, the use 
of deep-rooted plants, and appropriate terracing designs 
are some steps that can be taken to mitigate landslide 
hazards (Julianto et al., 2020). 

 
Landform   

Landforms are physical features of the Earth's 
surface created by various geological processes, such as 
erosion, sedimentation, and tectonic activities. 
Landforms include different types of Earth's surface 
features, such as mountains, valleys, plains, and others. 
They reflect the geological history and natural processes 
occurring in a region (Raharjo, 2013). The study related 
to landform formation is called geochronology. The 
distribution of landforms can be seen in Table Figure 5. 

 

 
Figure 5. Landform distribution map 

 
Based on the map of landform distribution, areas 

with steep to very steep topography host volcanic hill, 
volcanic mountain, and volcanic slope (upper and 
middle) landforms. Landforms formed by volcanic 
activity dominate the landscape of Sumedang Regency, 
followed by those shaped by tectonic activity and 
hydrological processes. Volcanic hills are landforms 
created by volcanic activity. They are formed from 
materials ejected by volcanic eruptions, such as lava, 
volcanic ash, and pyroclastic rocks. These materials 
accumulate around the crater or volcanic fissures, 
forming hills that often have steep slopes. Volcanic hills 
are typically located in areas prone to volcanic hazards 
such as eruptions, lava flows, and landslides.  

Based on Table 4, the landform that dominates 
Sumedang Regency is volcanic hills, covering 40,058.67 
hectares (26%), while the smallest area is occupied by flat 
peneplain landform, covering 162.3 hectares (0.10%). 
Mountainous and hills landform are naturally became 

potential factor that affect landslides because of it slopes 
(Raharjo & Haryono, 2020) 

 
Table 4. Landform distribution table 

Landform Wide (ha) Percent 

Upper river terrace 3,898.27 2.50% 

Middle river terrace 7,158.28 4.60% 

Lower river terrace 7,698.29 4.95% 

Lacustrine basin 1,039.12 0.67% 

Flat peneplain 162.29 0.10% 

Wavy peneplain 4,278.13 2.75% 

Undulating tectonic terrain 20,789.84 13.36% 

Tectonic hills 6,138.53 3.94% 

Upper volcanic slopes 5,054.37 3.25% 

Middle volcanic slope 13,257.46 8.52% 

Lower volcanic slopes 4,430.34 2.85% 

Vulcan foot 3,916.82 2.52% 

Lava flow 8,539.16 5.49% 

Volcanic canyon 11,702.17 7.52% 

Undulating volcanic plain 5,477.89 3.52% 

Volcanic hills 40,058.67 25.73% 

Volcano mountains 7,525.38 4.83% 

Volcanic intrusion 649.38 0.42% 

Escarpment 294.46 0.19% 

Water body 3,596.39 2.31% 

Total 155,665.24 100.00% 

 
Lithology   

Lithology, which refers to the types and 
characteristics of rocks that make up the Earth's surface, 
has a significant relationship with the occurrence of 
landslides. Rocks with high porosity allow water to 
infiltrate more easily, increasing weight and reducing 
soil particle cohesion, thereby triggering landslides. Less 
compact and easily weathered rocks tend to be more 
prone to landslides. Hard and compact rocks are usually 
more resistant to landslides (Raharja, 2023). Based on the 
distribution of parent rock materials, there are four main 
types of parent rocks found in Sumedang Regency: 
alluvium, andesite, claystone, and colluvium. The 
distribution of these parent materials can be seen in 
Figure 6. 
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Figure 6. Lithology distribution map 

 
Based on Figure 6, it can be seen that the 

distribution of andesite parent material dominates 
Sumedang Regency, except for parts of the north, 
northeast, east, and southeast regions. Andesite parent 
material is often found in volcanic areas with hilly or 
mountainous topography and steep slopes. This steep 
topography naturally increases the risk of landslide 
disasters, especially if the slopes are covered by thick 
and loose weathered andesite soil. 

 
Table 5. Lithology distribution table 

Lithology Wide (ha) Percent 

Andesite 110,888.07 71.23% 

Claystone 31,418.80 20.18% 

Colluvium 5,352.68 3.44% 

Alluvium 4,114.83 2.64% 

Water body 3,596.39 2.31% 

Escarpment 294.46 0.19% 

Total  155,665.24  100.00% 

 
Based on Table 5, andesite is the parent material 

with the widest distribution, covering 110,888.07 
hectares (71.23%). Meanwhile, colluvium and alluvium 
occupy the smallest lithological areas, each accounting 
for 3.44% and 2.64% of the total area. Andesite is a type 
of volcanic rock that generally has high strength and 
durability. However, when andesite undergoes 
weathering, its strength can significantly decrease. 
Weathering produces loose and porous soil, which is 
more prone to landslides. Andesite often has cracks and 
fissures formed by the rapid cooling process after 
volcanic eruptions. These cracks can allow water to seep 
deeper into the soil, increasing soil saturation and 
decreasing soil cohesion, which can trigger landslides 
(Asyari et al., 2023). By understanding the characteristics 
of parent materials and how they affect slope stability, 
appropriate preventive and mitigation measures can be 

implemented to reduce landslide hazards in vulnerable 
areas.  
 
Soil Type   

The relationship between soil type and landslides is 
very close, as the physical properties of soil can 
significantly influence slope stability. Soil with a high 
clay content has a large water-holding capacity but can 
become very plastic and slippery when saturated, 
increasing the risk of landslides. Sandy soil has low 
particle cohesion and is easily eroded, but it also has 
good drainage, making it less likely to become saturated. 
Clay soil can absorb and retain water well, but when 
saturated, its stability can decrease, leading to landslides 
(Safriani et al., 2024).  

The physical characteristics of soil can be 
categorized based on soil type, with 15 subgroups that 
can be simplified into six orders: inceptisols, alfisols, 
ultisols, andisols, entisols, and vertisols. The distribution 
of soil types by area in Sumedang Regency can be seen 
in Figure 7. 

 

 
Figure 7. Soil types map 

 
Based on the soil type distribution map, soils of the 

orders inceptisols, alfisols, and ultisols are the most 
widely distributed across nearly all areas with slopes 
that have the potential for landslide disasters. 
 
Table 6. Soil types table 

Soil Type Wide (ha) Percent 

Typic Epiaquepts  18,401.21  11.82% 

Typic Eutrudepts  35,538.71  22.83% 

Typic Epiaquerts  4,622.58  2.97% 

Typic Hapludalfs  25,353.90  16.29% 

Typic Hapludults  6,020.18  3.87% 

Typic Hapludands  7,397.19  4.75% 

Humic Dystrudepts  27,466.09  17.64% 
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Soil Type Wide (ha) Percent 

Aeric Epiaquepts  1,031.27  0.66% 

Typic Paleudalfs  2,885.55  1.85% 

Typic Endoaquents  4,592.26  2.95% 

Lithic Eutrudepts  895.55  0.58% 

Typic Dystrudepts  9,464.34  6.08% 

Aquic Eutrudepts  1,731.81  1.11% 

Oxyaquic Eutrudepts  5,724.37  3.68% 

Typic Udorthents  649.38  0.42% 

Escarpment   294.46  0.19% 

Water Body  3,596.39  2.31% 

Total   155,665.24  100.00% 

 
Based on the table 6, soils of the typic eutrudepts 

subgroup have the widest distribution, covering 
35,538.71 hectares (22.83%). It can also be interpreted 
that several inceptisols orders have a fairly wide 
distribution, each covering more than 10%, such as typic 
epiaquepts (11.82%), typic eutrudepts (22.83%), and 
humic dystrudepts (17.64%). Inceptisols are still in the 
early stages of soil development and can have various 
textures, from sand to clay. When found on steep slopes, 
inceptisols with poorly developed structure and poor 
drainage can increase vulnerability to landslides. 

Soils of the typic hapludalfs subgroup (alfisols 
order) also cover more than 10% of the area, specifically 
25,353.90 hectares (16.29%). Alfisols are generally found 
in areas with temperate to tropical climates. These soils 
are known for their argillic horizons, which contain clay 
accumulation, and are often found in forested or 
grassland areas. The relationship with landslide 
occurrence can be understood by examining some of 
their characteristics and physical properties that affect 
slope stability. Physical properties determine soil 
drainage; poorly drained soils tend to retain water, 
increasing pore water pressure, which can reduce soil 
shear strength and increase the risk of landslides 
(Lasaiba et al., 2024). 

 
Landslide Hazard Analysis 

Landslide hazards represent a significant threat in 
many regions, particularly those characterized by steep 
terrain, unstable geological formations, and high 
rainfall. Landslides occur when the equilibrium of a 
slope is disrupted, causing soil, rock, and debris to move 

downhill under the force of gravity. These events can be 
triggered by natural factors such as intense rainfall, 
earthquakes, volcanic activity, or human activities like 
deforestation, mining, and construction, which disturb 
the natural stability of the land (Purnamasari et al., 
2024). 

The creation of a landslide hazard map is carried 
out using overlay techniques, which include slope maps, 
rainfall maps, landform maps, lithology maps, present 
land use maps, and soil type maps. The overlay is done 
by incorporating the weighting of factor analysis results, 
and then scoring is performed based on the calculated 
weights. The total landslide hazard parameter scores are 
then classified to produce a landslide hazard class map, 
as shown in Figure 8. 

 

 
Figure 8. Landslide hazard map 

 
Table 7. Landslide hazard table 

Hazard Class  Interval  Wide (ha) Percent 

Low > 178  21,634.87  13.90% 

Moderate 178 - 250  62,852.80  40.38% 

High 250 - 322  65,746.37  42.24% 

Very High > 322  5,431.20  3.49% 

Total     155,665.24  100.00% 

 
Based on Table 7, it can be seen that, with this 

model, Sumedang Regency has varying landslide 
hazard classes, ranging from low to very high. The high 
landslide hazard class dominates Sumedang Regency, 
covering an area of 65,746.37 hectares or 42.24% of the 
total area of Sumedang Regency. This is followed by the 
medium landslide hazard class with 62,852.80 hectares 
or 40.38%, the low landslide hazard class with 21,634.87 
hectares or 13.90%, and the very high landslide hazard 
class with 5,431.20 hectares or 3.49%. According to 
Figure 8, areas with low landslide hazards are located in 
the northern part of Sumedang Regency. 

The impact of landslides can be devastating, leading 
to loss of life, destruction of infrastructure, and 
disruption of communities. The economic costs 
associated with landslides include not only immediate 
damages but also long-term consequences such as the 
loss of arable land, increased erosion, and the need for 
costly mitigation measures (Prabandari & Manessa, 
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2024). By understanding the underlying factors that 
contribute to landslides, scientists and planners can 
assess the vulnerability of specific areas. This 
information is critical for developing effective land-use 
policies, designing resilient infrastructure, and 
implementing early warning systems that can save lives 
and reduce property damage (Maruddani et al., 2024). 

 
Landslide Hazard Map Accuracy Test   

The verification parameters for the landslide hazard 
map are used to assess the map's accuracy by using 
landslide occurrence data combined with the landslide 
hazard map to calculate the R square (R²) value of the 
relationship. Verification is done by plotting landslide 
hazard classes with density. The results of the 
verification of the existing landslide hazard map are 
presented in Table 8 and Figure 9. 

 
Table 8. Hazard density map 

Hazard Class Wide (ha) (L) 
Landslide 

Point (n) 

Density  
(n/L) x 

10000 

Low           21,634.87  0 0.00 

Moderate           62,852.80  4 0.64 

High           65,746.37  11 1.67 

Very High            5,431.20  3 5.52 

 

 
Figure 9. Linear regression of hazard model verification 

 
Based on the results of verifying the landslide 

hazard map with actual landslide points using a linear 
model, an R square of 0.8436 was obtained. With this R 
square value, the landslide hazard map resulting from 
the study is considered quite good. The regression value 
indicates how well the hazard values from the landslide 
hazard class map explain the variability in actual 
landslide occurrences (Husdi & Dalai, 2023). Therefore, 
landslide hazard can be used as a reference for 
considering spatial planning improvements and 
mitigations. 

 

Conclusion  

 
The landslide hazard distribution analysis is carried 

out using a weighting and scoring method on the 

parameters used, which include: slope gradient, rainfall, 
actual land cover, landform, lithology, and soil type. 
Based on these parameters, four landslide hazard classes 
were identified in Sumedang Regency: low, medium, 
high, and very high hazard classes. Proportions of these 
hazard are as follows: high hazard class (42.24%), 
medium hazard class (40.38%), low hazard class 
(13.90%), and very high hazard class (3.49%). The low 
hazard class is mainly found in the northern part of 
Sumedang Regency, the medium hazard class is 
widespread in sloping areas, and the high to very high 
hazard classes are primarily found in the Tampomas 
mountains and areas with hilly landforms. Slope 
gradient and rainfall are the factors that most influence 
landslide hazards, making it necessary to design 

appropriate mitigation.  
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