
 

JPPIPA 10(12) (2024) 
 

Jurnal Penelitian Pendidikan IPA 
Journal of Research in Science Education  

 
http://jppipa.unram.ac.id/index.php/jppipa/index 

 
   

___________ 
How to Cite: 
Mardyansyah, R. Y., Kurniawan, B., Soekirno, S., & Nuryanto, D. E. (2024). Communication Satellite-Based Rainfall Estimation for Flood 
Mitigation in Papua. Jurnal Penelitian Pendidikan IPA, 10(12), 11326–11335. https://doi.org/10.29303/jppipa.v10i12.8409  

Communication Satellite-Based Rainfall Estimation for Flood 
Mitigation in Papua 
 

Raden Yudha Mardyansyah1, Budhy Kurniawan2*, Santoso Soekirno2, Danang Eko Nuryanto1 
 
1Badan Meteorologi Klimatologi dan Geofisika, Jakarta, Indonesia. 
2Department of Physics, Universitas Indonesia, Depok, Indonesia. 
 

 
Received: July 06, 2024 
Revised: November 21, 2024 
Accepted: December 25, 2024 
Published: December 31, 2024 
 

Corresponding Author:  
Budhy Kurniawan 
budhy.kurniawan@sci.ui.ac.id  
 
DOI: 10.29303/jppipa.v10i12.8409  
 
© 2024 The Authors. This open 
access article is distributed under a 
(CC-BY License) 

 

Abstract: Papua, an equatorial region in Indonesia, faces unique geographical and 
natural challenges, including heavy annual rainfall. This heavy rainfall increases 
flooding risks and impacts infrastructure, the economy, and daily life. Despite the 
importance of rain gauges for monitoring floods and climate change, Papua's difficult 
geography and limited transportation infrastructure hinder their installation and 
maintenance. In this work, we investigate a deep learning one-dimensional convolution 
neural network (1DCNN) model to estimate rainfall intensity using energy per symbol 
to noise power density ratio (Es/No) of the signals received from a communication 
satellite signal coupled with additional data representing satellite daily movement. The 
findings of this study demonstrate that the performance of the proposed model has a 
higher accuracy for moderate to heavy rainfall than for light rainfall. The NRMSE values 
for light rain, moderate rain, and heavy rain are 47.09, 31.78, and 33.58%, respectively. 
These results show that this method is promising for monitoring heavy rainfall as a flood 
mitigation effort. However, there is still room to improve the accuracy of the estimation 
such as using other secondary data that is highly correlated with rain at the satellite 
transceiver location. 
 
Keywords: Deep learning; One-dimensional convolution neural network; Rainfall 

prediction 

  

Introduction 
 

Papua is one of the equatorial regions in Indonesia 
that has unique geographical conditions and significant 
natural challenges. The geographical conditions rich in 
mountains and tropical rainforests make this area one of 
the highest annual rainfall in Indonesia (Aldrian & 
Susanto, 2003; Hamada et al., 2002). In addition, The 
diurnal cycle of rainfall across Indonesia is one of the 
strongest in the tropics (Lin et al., 2000; Sorooshian et al., 
2002) and plays a significant role in the global climate 
(Neale & Slingo, 2003). Heavy rainfall not only increases 
the risk of flooding but can also impact the 
infrastructure, economy and daily lives of local 
residents. For example, the city of Sorong, located in 
West Papua province, has experienced frequent flooding 
due to high annual rainfall (Arief et al., 2019). 

Rain gauges are one of the key technologies in 
monitoring and predicting potential floods and climate 
change (Mujiati et al., 2021; Wang et al., 2008). By 
increasing the density of the rain gauge network, the 
ability to predict and provide early warning of potential 
natural disasters such as flash floods and landslides can 
be improved. However, the geographical conditions and 
limited transportation infrastructure in the Papua region 
provide significant obstacles to the installation and 
maintenance of rain gauges. The application of the latest 
technology in weather monitoring, such as remote 
sensing and satellite technology (Purwanto & Paiman, 
2023; Ramadhan et al., 2022), can help overcome these 
geographical and accessibility constraints. 

In the last decade there have been several studies 
related to rainfall measurement by utilizing satellite 
signal reception used for data communication and 
internet access. Satellites with high frequencies ranging 
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from Ku-band to Q/V-band have been studied by 
several authors (Adirosi et al., 2017; Gharanjik et al., 
2018b; Gharanjik et al., 2018a; Rossi et al., 2022; Xu et al., 
2017) because in that frequency range, electromagnetic 
waves correlate linearly with rainfall intensity (Arslan et 
al., 2018; Upton et al., 2005). In addition, a machine 
learning technique approach for rainfall estimation by 
extracting features from the satellite signals has also 
been previously investigated (Diba et al., 2021; Xian et 
al., 2020b). However, most of the research on satellite-
based rainfall prediction is conducted in subtropical 
regions with stratiform, evenly distributed rains. 
Therefore, there is a research challenge for tropical 
regions where rainfall originates from convective clouds 

with a narrower coverage than stratiform rainfall (Qian, 
2008; Worku et al., 2019; Yamanaka et al., 2018). 

In this study, rainfall intensity estimation is carried 
out by utilizing satellite communication devices that are 
widely used in the Papua region as data communication 
infrastructure and internet access. The method used is a 
deep learning model to estimate rainfall intensity 
directly from satellite signal reception parameters 
coupled with two additional parameters as features that 
have never been used in previous studies. The study was 
conducted in the city of Sorong to determine the 
performance of the model to predict rainfall that can 
lead to flood disasters. 

 

 
 

Figure 1. The spot beams-based satellite gateway configuration and servicing (Ippolito, 2017) 

 

Method 
 

The High Throughput Satellite (HTS) system offers 
two-way communication with electromagnetic wave 
media using Geostationary satellites orbiting at an 
altitude of about 36 thousand kilometers above the 
equator. This communication system connects the 
satellite gateway (GW) and satellite transceiver (ST) on 
the user terminal which enables interactive services such 
as high-speed internet. High data rate capacity is 
obtained from HTS technology that applies multiple 
high-capacity spot beams in a region with several GWs 
as shown in Figure 1. The signal transmission path from 
GW to ST is called forward link (FWD) while the reverse 
path is return link (RTN). 

In this paper we propose a rainfall estimation 
approach using energy per symbol to noise power 
spectral density ratio (Es/No) of the signals emitted by 

GW and received by ST. The ST receives Ku-band 
downlink signals from Apstar-5C’s 138 east orbital 
position. The ST then sends the Es/No data back 
periodically to the network management system server 
located at GW. The collected Es/No data is then 
processed based on a model that connects rainfall 
intensity and signal attenuation to obtain hourly rainfall 
estimates. The signal attenuation on the FWD path is 
only affected by the rain that occurs along the path 
between the satellite and ST. This is because there is an 
automatic power adjustment mechanism if there is rain 
on the GW side (Gharanjik et al., 2018b). 

Figure 2 shows the correlation between the Es/No 
signal received by ST and the rain rate (RR) in 
millimeters per hour (mm/h) highlighted with green 
color. The Es/No and RR shown are samples of research 
data at the study site. 
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Figure 2. Data sample of the Es/No in decibels (dB) and RR in millimeters per hour (mm/h) 

 

 
 
Figure 3. Location of satellite transceiver and rain gauge of the 
study in Sorong, Papua 

 
The study was conducted in the city of Sorong, 

Papua where there is an ST from the satellite 
communication network owned by Telkomsat company. 
Rainfall intensity data is obtained from the rain gauge 
(RG) at the Sorong meteorological station which is about 
1 km away as shown in Figure 3. 

The red line indicates the direction of the link 
between the ST and the satellite which is in a stationary 
orbit position at 138o East. The Sorong Meteorological 
Station is a weather observation facility that is under the 
ownership of the Meteorological Climatological and 
Geophysical Agency of Indonesia. 

In this work, we use the deep learning one-
dimensional convolution neural network (1DCNN) 
model which is part of deep learning (Kumar et al., 
2019). The 1DCNN is a specialized type of CNN used for 
processing one-dimensional data, like sequences or time 
series (Allamy & Koerich, 2022; Chen et al., 2021; Chen 

& Lee, 2021; Kiranyaz et al., 2021; Singh et al., 2021; Yang 
et al., 2021). Time series data from microwave link and 
weather radar has also been investigated to estimate 
rainfall using 1DCNN by previous authors (Mishra et 
al., 2020; Polz et al., 2020; Zhang et al., 2021). The 
1DCNN employs convolutional layers with filters to 
capture local patterns and features in the input data. In 
general, it consists of convolutional layer, pooling layer, 
dense layer and output layer which acts as the prediction 
output of the model (Islami et al., 2024; Noor et al., 2023). 
The architecture of 1DCNN is shown in Figure 4 where 
the output part is the estimated hourly rainfall intensity. 

Figure 5 presents the flow chart of the rainfall 
estimation model which consists of 3 stages: 1. data 
preprocessing, 2. model construction, and 3. model 
evaluation. The dataset of input features is 2-minute 
Es/No data and hourly rain rate output paired for each 
sample. In this study we propose an additional 2 
features in the input of 1DCNN in the form of encoded 
hour of timestamp for each sample because naturally the 
signal received by ST has daily fluctuations due to 
orbital perturbations (Giannetti & Reggiannini, 2021). 
The expression of the vector features Xi of the proposed 
1DCNN model is shown as follows: 

Xi =  [Xa; Xb]  

Xa =  [x1; x2; … ; x29; x30] 

Xb =  [x31; x32]             

x31 =  sin(2 ∗ hi 24⁄ ) 

x32 =  cos(2 ∗ hi 24⁄ ) 
 

 
 
 
 
 

(1) 

where Xa is the one-hour sample of Es/No data and Xb 
is the encoded hour of timestamp for each sample. 

The first stage in data preprocessing is to use linear 
interpolation on Es/No data to fill in any gaps caused by 
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the absence of a satellite connection link. The data is then 
normalized, a process that has been investigated by 
various authors (Kumah et al., 2020; Polz et al., 2020). 
Interpolation is restricted to data gaps of up to six 
minutes. As part of the normalization procedure, the 
median value determined from the entirety of the prior 
and subsequent 12-hour data is subtracted for each time 

step. After interpolation and normalization, the dataset 
is divided into training and testing sets. The model is 
trained with datasets ranging from December 2019 to 
May 2023. For performance evaluation, we employ 
sample data from June 2023 to February 2024 as data test 
set. Samples that have data gaps are discarded in the 
data cleaning process. 

 

 
Figure 4. The architecture of 1DCNN 

 

 
Figure 5. The flow chart of the rainfall estimation model 
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In the final stage, the performance of the proposed 
model is tested both as a whole test data and partially 
based on rainfall categories. The correlation coefficient 
(CC) and root-mean- square error (RMSE) are chosen as 
the overall evaluation metrics while for partial 
evaluation normalized bias (NB) and normalized root-
mean- square error (RMSE) are used as follows: 
 

CC =  
∑ (Pi − P̅)2(Ai −  A̅)n

i=1

√∑ (Pi −  P̅)2n
i=1 √(Ai −  A̅)2

 (2) 

 

RMSE =  √
1

n
∗ ∑(Pi −  Ai)

2

n

i=1

  
(3) 

 

NB =  
∑ Pi

n
i=1

∑ Ai
n
i=1

− 1 
(4) 

 

NRMSE =  
RMSE

Amax −  Amin

 (5) 

 
where Ai is actual value, Pi is the predicted value, n 

sample size, A̅ mean of the n actual values, P̅ mean of the 
n predicted values, Amax is the maximum of n actual 
values and Amin is the minimal of n actual values. The 
NB allows to evaluate the quality of the difference of the 
two datasets: negative NB values indicate an 
underestimation of ST with respect to the rain gauge, 
while positive NB indicate an overestimation of them. 
Meanwhile, NRMSE is better used for comparison of 
regression values against datasets with different scales 
(Moursi et al., 2022). 
 

Result and Discussion 
 

In this section, we evaluate the performance of the 
proposed model. We use data from October 1, 2019 to 
February 28, 2023 in training 1DCNN as a regression 
model to calculate RR. Furthermore, the best model 
obtained from many trainings was evaluated with test 
data in the period of March 1, 2023 to February 29, 2024. 
Figure 6 depicts the comparison of hourly rainfall 
predicted by ST and measured by rain gauge (actual rain 
rate). The CC and RMSE for rain rate estimation are 0.83 
and 1.491 mm/h, respectively. These results are in line 
with previous research that evaluated the performance 
of long-term rainfall estimation (Xian et al., 2020b; Zhao 
et al., 2021). 

These findings indicate that the proposed model is 
good for measuring rainfall from satellite signals in the 
Papua region where there are still many valley and 
mountain areas and experiences high annual average 
rainfall (Zaini et al., 2023). 

 
Figure 6. Scatter plot between hourly rainfall predicted by 

satellite transceiver (y-axis) and rain gauge (x-axis) 

 

 
Figure 7. The statistical distribution of the relative percentage 

error of each rainfall categories 
 

To utilize this measurement technique approach in 
the prevention of flash floods and landslides caused by 
significant rainfall, we divide rainfall events into three 
categories according to the size of the rain intensity. The 
rain rate categories are divided into light rain (0-2.5 
mm/h), moderate rain (2.5-10 mm/h), and heavy rain 
(10-50 mm/h) (Xian et al., 2020a; Xian et al., 2020b; Zhao 
et al., 2021). Comparison of model performance in the 
three categories uses the approach taken by authors in 
Colli et al. (2019) by means of boxplots ignoring outliers 
in Figure 7. The boxplot consists of vertical bars that 
represent the statistical distribution of the quantiles of 
the relative percentage error. It can be observed that, the 
proposed model is better at moderate and heavy rain 
with error medians of –13.03 and – 63.04% compared to 
light rain of more than 180%. The error distribution at 
moderate and heavy rain is also better than that at light 
rain as indicated by the width of the boxes. Above 
results demonstrate that the proposed model has better 
accuracy in moderate and heavy rain than light rain. 
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(a) 

 

 
(b) 

 
Figure 8. Bar plot of the predicted and actual rain rates in millimeters per hour. (a) Moderate rain. (b) Heavy rain 

 
The performance comparison on the next rain rate 

category is illustrated in Table I through the values of 
NB (in %) and NRMSE (in %). Again, the performance of 
the proposed model is better in moderate and heavy rain 
than in light rain. The NB (NRMSE) values for moderate 
rain are –23% (31.78%) and heavy rain are –42% 
(33.58%). These values compare favorably with light rain 
of 100.36% (47.09%) which overestimates rain rate 

characterized by positive NB values. Underestimation in 
moderate and heavy rain (negative values of NB) is in 
line with the results of similar recent research (Angeloni 
et al., 2024). This is also because the rain gauge provides 
a point measurement, while the attenuation of the 
satellite signal is affected by rain along its path of a few 
kilometers. Therefore, additional secondary data that is 
highly correlative with rain at the ST site is required to 
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improve the accuracy of the estimation (Wardani et al., 
2023). 

Finally, Figure 8 shows the predicted and actual 
rain rates. It can be seen that all rainfall both moderate 
(Figure 8a) and heavy rain (Figure 8b) were detected 
accurately by the proposed model and there is a relative 
agreement between predicted and actual values. 
However, there is still room for improving the 
performance of the proposed model by conducting 
research on co-located rain gauge and satellite 
transceiver. In addition, as an advantage of machine 
learning is that it can use additional features such as 
surface meteorological data or satellite remote sensing 
data to improve the accuracy of the estimation such as 
research that has been done by previous authors 
(Kumah et al., 2022; Zhang et al., 2021). 
 
Table 1. Performance of the proposed model for each 
rainfall categories 

Rainfall Categories NB (%) NRMSE (%)  

Light Rain 1.36 47.09 

Moderate Rain –0.23 31.78 

Heavy Rain –0.42 33.58 

 

Conclusion 
 

Papua, an equatorial region in Indonesia, faces 
unique geographical and natural challenges, including 
heavy annual rainfall. This heavy rainfall increases 
flooding risks and impacts infrastructure, the economy, 
and daily life. Despite the importance of rain gauges for 
monitoring floods and climate change, Papua's difficult 
geography and limited transportation infrastructure 
hinder their installation and maintenance. As an 
alternative method of measuring rainfall for regions 
where the density of rain gauge networks is still low, 
many studies in estimating rainfall have been conducted 
using satellite link signals. The proposed model adopts 
the 1DCNN regression technique from the reception 
signal of the HTS communication system by adding 
model features in the form of timestamp data samples. 
The study was conducted in Sorong city which is prone 
to flooding due to the high average level of rainfall. 
Sorong city is located in Papua region where the number 
of rain gauges per area is relatively less compared to 
other regions in Indonesia. The performance of the 
proposed model has a higher accuracy for moderate to 
heavy rainfall than for light rainfall. These results show 
that this method is promising for monitoring heavy 
rainfall as a flood mitigation effort. However, there is 
still room to improve the accuracy of the estimation such 
as using other secondary data that is highly correlated 
with rain at the satellite transceiver location. 
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