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Abstract: Forward modeling of 2D gravity anomalies, considering density contrasts that 
vary polynomially with depth, was performed to examine basin structures. This process 
involved two main stages: deriving analytical formulas and executing numerical 
integration. The Gauss-Kronrod Quadrature Method, utilizing 7 Gauss points and 15 
Kronrod points, was employed to precisely compute these integrals. Initial modeling 
applied to theoretical basement scenarios with fixed density contrasts showed gravity 
anomalies that accurately reflected the curvature of the basement. To validate the 
approach, it was then applied to real-world cases including the Sebastian Vizcaino Basin, 
San Jacinto Graben, and Sayula Basin. By incorporating suitable density contrasts, 
modeling lengths, and basement curvature shapes, the results revealed that both fixed-
density and depth-variable density models produced gravity anomalies with patterns 
consistent with the actual basement curvature. These findings validate the modeling 
technique’s effectiveness in representing real geological features accurately. The study 
confirms that the Gauss-Kronrod Quadrature Method (G7, K15) is robust for analyzing 
2D gravity anomalies, providing a reliable tool for understanding the influence of 
varying density contrasts on gravity responses. 
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Introduction  
 

Gravity anomaly modeling is a crucial geophysical 
technique used to explore the Earth's subsurface 
structure. These anomalies, which result from 
differences between the measured gravitational 
acceleration at the Earth's surface and the expected 
values from a homogeneous Earth model, provide vital 
insights for geological mapping, identifying disaster 
zones such as liquefaction (Silalahi et al., 2023), 
exploring natural resources such as geothermal 
structures (Larasati et al., 2023) and analyzing regional 
Earth dynamics. and regional Earth dynamics analysis. 
The variations in the gravitational field that lead to these 

anomalies are caused by differences in the mass of the 
Earth's crust. 

Sedimentary basins, often characterized by negative 
gravity anomalies, are of particular economic 
importance. These basins are essential sources of energy-
related products such as oil, gas, coal, uranium, and 
geothermal fluids, and they also serve as major 
depositional reservoirs for various minerals (Oksum, 
2021). The negative gravity anomalies observed over 
these basins typically result from the lower density of 
the sedimentary rocks filling the basin compared to the 
denser basement rocks beneath them (Chakravarthi et 
al., 2016). This density generally increases with depth 
due to processes like mechanical compaction and 
diagenesis, which raise sediment density and reduce 

https://doi.org/10.29303/jppipa.v10i8.8493
mailto:zulhendra@fmipa.unp.ac.id
https://doi.org/10.29303/jppipa.v10i8.8493


Jurnal Penelitian Pendidikan IPA (JPPIPA) August 2024, Volume 10, Issue 8, 6252-6259 
 

6253 

porosity (Cai & Zhdanov, 2015; Chappell & Kusznir, 
2008; Tenzer & Gladkikh, 2014). 

Many existing algorithms use stacked prism models 
to analyze sedimentary basin gravity anomalies (Abdoh 
et al., 1990; Bott, 1960; İşseven et al., 2024) and complex 
contour integrals (Kwok, 1991). The technique 
developed by Annecchione et al. (2001) is based on the 
assumption that the sediment load above the bed has a 

uniform density. Understanding the relationship 
between rock density and depth is crucial for delineating 
basin boundaries and assessing the depth distribution of 
sedimentary basins, which plays a vital role in 
hydrogeological studies and resource management 
(Abbott & Louie, 2000; Chakravarthi et al., 2016; 
Chakravarthi & Sundararajan, 2005, 2007; Himi et al., 
2017; Lekula et al., 2018). Various mathematical 
formulations have been developed to model subsurface 
mass distribution, including exponential (Chappell & 
Kusznir, 2008; Cordell, 1973; Cowie & Karner, 1990; 
Granser, 1987; Rao, 1990), hyperbolic (Litinsky, 1989; 
Silva et al., 2006), parabolic (Roy & Wu, 2023), and 
polynomial models (D’Urso, 2015; García-Abdeslem, 
1996, García-Abdeslem, 2003; García‐Abdeslem et al., 
2005; Srigutomo et al., 2018). 

In this study, we will apply the Gauss-Kronrod 
Quadrature G7, K15 method to model 2D gravity 
anomalies in basins with polynomial density 
distributions with depth. This approach introduces a 
more robust numerical framework for handling the 
complexities of density variations in geophysical 
contexts. While previous studies have employed various 
mathematical approaches to describe density-depth 
relationships, the Gauss-Kronrod Quadrature method 
stands out for its enhanced accuracy in numerical 
integration, which is critical for modeling complex 
subsurface structures. By offering greater precision in 
gravity anomaly modeling, this method facilitates more 
accurate interpretations of subsurface structures, which 
is crucial for effective exploration and management of 
natural resources, particularly in sedimentary basins. 
The introduction of this method not only addresses the 
limitations of previous approaches but also advances the 
field of geophysical modeling, providing new 
perspectives on managing complex subsurface density 
distributions. Ultimately, this research aims to 
significantly improve the accuracy and reliability of 
subsurface modeling, thereby deepening our 
understanding of the Earth's subsurface and its resource 
potential. 

 
Method  

Figure 1 illustrates the cross-section of a 
sedimentary basin. The source body, situated between 

x1 and x2, is divided into M segments. These segments 
are located within the source body Ω, either on the 
vertical lines of the segments or between them, and are 
confined by the functions h1(x) and h2(x). The density 
contrast along the segment body changes vertically with 
depth according to a polynomial equation (García-
Abdeslem, 2003). 

𝜌(𝑧) = 𝑝 + 𝑞𝑧 + 𝑟𝑧2 + 𝑠𝑧3                (1) 

where p, q, r, and s are the coefficients describing 
the density contrast as a function of depth. 

 
The gravitational anomaly of each segment, 

𝑔(𝑥0, 𝑧0) , at each observation point, 𝑃(𝑥0, 𝑧0) , on the 
profile between x1 and x1, enclosed within a region Ω, 
follows the formulation (García-Abdeslem, 2003). 

𝑔𝑠𝑒𝑔(𝑥0, 𝑧0) = 2𝛾 ∬ 𝑑𝑥𝑑𝑦
𝜌(𝑧)𝑍

𝑋2+𝑍2 
⬚

Ω
           (2) 

where γ is Newton’s gravitational constant. Here, X 
= x − x0, Z = z − z0, and (x, z) denote the coordinates of a 
material point within the region. 

 Equation 2 is solved García-Abdeslem (2003) in 
two steps: first, by analytically solving the z-dependent 
integral 

𝑔𝑠𝑒𝑔(𝑥0, 𝑧0) = ∫ 𝑑𝑥
𝑥2

𝑥1
2𝛾 {∫

𝜌(𝑧)𝑍

𝑋2+𝑍2

ℎ2(𝑥)

ℎ1(𝑥)
}          (3) 

Performing the integration along the z-direction 
yields 

𝑔𝑠𝑒𝑔(𝑥0, 𝑧0) = 2𝛾 ∫ 𝑑𝑥
𝑥2

𝑥1
{

1

2
 [𝜌(𝑧0) − [𝑟 + 3𝑠𝑧0 ]𝑋2 ] ×

𝑙 𝑛(𝑋2 + 𝑍2 ) + [𝑠𝑋2 − 𝜌′(𝑧0)]𝑋𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑍

𝑋
) + [𝜌′(𝑧0) −

𝑠𝑋2]𝑍 +
(𝑟+3𝑠𝑧0)𝑍2

2
+

𝑠𝑍3

3
}|

ℎ1(𝑥)

ℎ2(𝑥)

} ,          (4) 

Where 𝜌′(𝑧0) = 𝑞 + 2𝑟𝑧0 + 3𝑠𝑧0
2  is the depth 

derivative of the density function evaluated at z = z0. 
 
In the case of a land survey, h1(x) describes the 

topographic relief, and the gravity station is positioned 
above it so that h1(x) → z0. Consequently, the integral in 
equation (4) becomes singular. To avoid singularities in 
such cases, the integration interval is divided around the 
gravity station location. Furthermore, by substituting 
the coefficients of the density-depth function in equation 
(4) with functions of the variable x, the density function 
can be modified to account for density variations along 
the x and z directions: 
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Figure 1. Illustration of the source body partition into M 

segments (Srigutomo et al., 2018) 

𝜌(𝑥, 𝑧) = 𝑝(𝑥) + 𝑞(𝑥)𝑧 + 𝑟(𝑥)𝑧2 + 𝑠(𝑥)𝑧3         (5) 

These must be continuous functions, such as 
polynomials or circular functions. This approach allows 
for the conversion of a velocity field into a density field 
using empirical velocity–density relationships, which 
can be useful for geological stripping (García-Abdeslem, 
2003). 

In this study, equation 4 is solved numerically using 
the Gauss-Kronrod Quadrature Method (Alqahtani et 
al., 2024; Kronrod, 1965; Laurie, 1997; Notaris, 2016; 
Oishi & Sakamoto, 2017). The Gauss-Kronrod 
quadrature formula is an adaptive technique for 
numerical integration. It is a variation of Gaussian 
quadrature where the evaluation points are selected to 
allow for an accurate approximation by reusing 
information from a less precise approximation. This 
method exemplifies a nested quadrature rule: it employs 
the same set of function evaluation points to create two 
quadrature rules, one of higher order and one of lower 
order (known as the embedded rule). The difference 
between these two approximations helps estimate the 
computational error of the integration. 

 
The challenge in numerical integration is to 

approximate definite integrals of the form: 

∫ 𝑓(𝑥)𝑑𝑥
𝑥2

𝑥1
             (6) 

Such integrals can be approximated using n-point 
Gaussian quadrature as follows: 

∫ 𝑓(𝑥)𝑑𝑥
−1

1
≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛
𝑖=1            (7) 

where 𝑤𝑖  and 𝑥𝑖 are the weights and points at which the 
function f(x). 

When the interval [x1, x2] is subdivided, the Gauss 
evaluation points of the new subintervals do not match 
the previous evaluation points (except at the midpoint 
for an odd number of points), requiring the integrand to 
be evaluated at every point. The Gauss-Kronrod 
formulas extend the Gauss quadrature formulas by 
adding n+1 points to an n-point rule, resulting in a rule 

of order 3n+1 (while the corresponding Gauss rule is of 
order 2n-1). These additional points are the zeros of 
Stieltjes polynomials, enabling higher-order estimates 
while reusing function values from lower-order 
estimates. The difference between a Gauss quadrature 
rule and its Kronrod extension is often used to estimate 
the approximation error.  

In this study, the 7-point Gauss rule was combined 

with the 15-point Kronrod rule which can be seen in 
Table 1. Since the Gauss points are included in the 
Kronrod points, only 15 function evaluations are 
required. The integral is then estimated using the 
Kronrod rule K15 and the error can be estimated as (G7- 
K15). For an arbitrary interval [x1, x2] the node positions 
xi and weights wi are scaled to the interval as follows: 

𝑥𝑖, 𝑠𝑐𝑎𝑙𝑒 =
𝑥𝑖+1

2
(𝑥2 − 𝑥1) + 𝑥1           (8) 

𝑤𝑖 , 𝑠𝑐𝑎𝑙𝑒 =
𝑤𝑖

2
(𝑥2 − 𝑥1)            (9) 

The total gravity anomaly produced by a basin at any 
observation point can be obtained as: 

𝑔𝑏𝑎𝑠𝑖𝑛(𝑥0, 𝑧0) = ∑ 𝑔𝑠𝑒𝑔(𝑥0, 𝑧0)𝑀
𝑖=1          (10) 

Where M represents the number of segments/ 
observations on the profile. 

 
Tabel 1. Gauss and Kronrod nodes and weights. 

(G7, K15) on [−1,1] 

G7 Gauss nodes Weights 
±0.949107912342759 0.129484966168870 
±0.741531185599394 0.279705391489277 
±0.405845151377397 0.381830050505119 
0.000000000000000 0.417959183673469 

K15 Kronrod nodes Weights 
±0.991455371120813 0.022935322010529 
±0.949107912342759 0.063092092629979 
±0.864864423359769 0.104790010322250 
±0.741531185599394 0.140653259715525 
±0.586087235467691 0.169004726639267 
±0.405845151377397 0.190350578064785 
±0.207784955007898 0.204432940075298 
0.000000000000000 0.209482141084728 

 
 

Result and Discussion 
 

The modeling of the source body with a basin-
shaped basement was tried for a fixed density contrast 
to validate the gravity anomaly response using the 
Gauss-Kronrod Quadrature (G7, K15) calculation 
method. This aims to see the gravity anomaly response 
to the source body. Figure 2 shows a simple basin model 
with basin filling material as the source body that has a 
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fixed density contrast. The basement topography is 
made flat, which is expressed by the equation ℎ1(𝑥) = 0, 
and the Fourier series equation expresses the bedrock 
geometry in the form of cosine, namely ℎ2(𝑥) = 4 +
𝑐𝑜𝑠2𝜋/𝐿, where L is the modeling length. The density 
contrast value between the basement and the sediment 
filling the basin is determined at −0.7 𝑀𝑔/𝑚3. Gravity 
anomalies are calculated on the surface along 80 km with 

the exact distance between points, as many as 165 points. 
The resulting gravity anomaly response curves 
downward with a curve pattern that matches the 
geometry of the bedrock. The anomaly response 
generated in this modeling using Gauss-Kronrod 
Quadrature calculations (G7, K15) has a pattern that 
matches the calculation using the Gauss Quadrature 
two-point rule (Srigutomo et al., 2018). 

 The real problem in the field is the problem of 
estimating the shape of the bedrock of a basin from 
gravity anomaly data measured on the surface 
(Srigutomo et al., 2018). Before the gravity data inversion 
scheme was developed for this modeling case, a more 
real density and basement geometry shape was tried, 
which was taken from several cases of data 
interpretation from several basins that had been studied. 

 
Figure 2. (a) Calculation of gravity anomalies from research 
results. (b) Basin model with a constant density contrast of 

−0.7 𝑀𝑔/𝑚3. 
 

This is related to thick basins; sedimentary rock 
density varies with depth, so the assumption of constant 
density contrast is often unrealistic (Chakravarthi et al., 
2016; Florio, 2020; Mallesh et al., 2019). Density contrast 
with polynomial variation with depth in the Sebastian 
Vizcaino basin, San Jacinto graben, and Sayula basin is 
used in modeling to obtain a more realistic real case. The 
geometric shape of the basement in the modeling 
follows the geometric shape of the basement of the three 
basins from previous studies (García-Abdeslem, 2003; 
García‐Abdeslem et al., 2005), which is fitted using a 
Fourier series following Formula 11. 

 

ℎ2(𝑥) = 𝑚1 + ∑ micos [
𝑖−1

𝐿𝑏
]14

𝑖=1 + ∑ misin [
𝑖−1

𝐿𝑏
]14

𝑖=1       (11) 

 
The m value used to form the basement geometry 

for the three basins can be seen in Table 2. 

Table 2. Fourier coefficients forming the basement 
geometry used in the modeling. 

Vizcaino (mi) San Jacinto (mi) Sayula (mi) 

1.5333 0.8300 0.5857 0.3625 0.2826 0.0612 

-1.2484 -0.8405 -0.5401 -0.7074 0.2751 0.1050 

0.2631 -0.1194 0.0983 0.2235 0.2138 0.0629 

0.1145 -0.1146 -0.0042 0.0429 0.1119 -0.0193 

-0.2152 -0.0717 -0.2347 0.0438 0.0596 -0.0368 

-0.1465 -0.0253 -0.0145 0.0791 0.0426 -0.0185 

-0.0770 0.0554 0.1090 0.0204 0.0094 -0.0172 

-0.0204 -0.0025 0.0206 -0.0479 -0.0009 -0.0068 

-0.0619 -0.0008 0.0330 -0.0265 0.0126 0.0003 

-0.0387 0.0160 0.0011 -0.0121 0.0001 -0.0140 

-0.0427 0.0209 -0.0118 -0.0019 -0.0104 -0.0054 

-0.0288 0.0268 -0.0133 0.0063 0.0008 0.0104 

-0.0228 0.0211 -0.0060 0.0036 -0.0018 -0.0052 

-0.0025 0.0108 -0.0009 0.0024 0.0016 0.0010 

0.0023  0.0015  -0.0002  

 
First, the Sebastian Vizcaino basin model, Baja 

California Sur Mexico. The density contrast of this basin 
is in the form of 𝜌(𝑧) − 0,7 + 0,2548𝑧 − 0,0273𝑧2  as a 
result of fitting density data converted from the 
relationship between density and seismic velocity using 
a second-order polynomial (García‐Abdeslem et al., 
2005). The gravity anomaly response shown in Figure 3 
is the result of calculations in this study for the shape of 
the Sebastian Vizcaino basin. The results of this 
calculation are in accordance with the results of previous 
research (Cordell, 1973; García‐Abdeslem et al., 2005), 
which used 32-point Gauss Quadrature integrals in 
calculating gravity anomaly. The modeling in Figure 3 
uses the basement curvature from previous research 
(García‐Abdeslem et al., 2005) following the Fourier 
series in equation (9) and using the coefficient m in Table 
2, X1 = 1 km and X2 = 83 km, b = 5, and L = X2 – X1. The 
calculation results show that the gravity anomaly 
curvature pattern curves downward and has a negative 
value in accordance with the geometry of the basement, 
in accordance with previous research (Srigutomo et al., 
2018), which uses a 2-point Gauss Quadrature integral.  

Second, the San Jacinto graben with this basin 
density contrast is in the form of (𝑧) − 0.5491 +

0.2682𝑧 − 0.0581𝑧2 + 0.0053𝑧3 . This graben is a 
transtensional basin formed due to right-side dilational 
movement that occurred in the San Jacinto fault zone 
(Matti & Morton, 1993). The gravity anomaly response 
shown in Figure 4 is the result of calculations in this 
study for the shape of the San Jacinto graben. The results 
of this calculation are also in accordance with the results 
of previous research (García-Abdeslem, 2003), which 

a 

b 
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uses a 32-point Gauss Quadrature integral in calculating 
gravity anomalies. The modeling in Figure 4 uses the 
basement curvature from previous research (García-
Abdeslem, 2003) following the Fourier series in equation 
(9) and using the coefficient m in Table 2, X1 = -0.645 km 
and X2 = 10.948 km, b = 5, and L = X2 – X1. The curvature 
of the gravity anomaly response also shows a curvature 
pattern following the shape of the basement curvature. 

 
Figure 3. (a) Calculation of gravity anomaly (black circle) 
from research results and gravity anomaly (blue line) of 

Sebastian Vizcaino Basin (Garcia et al., 2005). (b) Basement 
curvature shape of Sebastian Vizcaino Basin (Garcia et al., 

2005). 

 
 
Third, the Sayula Basin with this basin density 

contrast is in the form of (𝑧) − 0,8 + 0,7147𝑧 − 0,229𝑧2.  
The Sayula area is part of a larger geomorphological unit 
known as the Tepic-Chapala Graben that contains 
several tectonic depressions. Over the course of several 
glacial episodes, heavy rainfall submerged the land and 
left traces of large lakes (Valdez et al., 2006). The gravity 
anomaly response shown in Figure 5 is the result of 
calculations in this study for the shape of the Sayula 
Basin. 

  

 
Figure 4. (a) Calculation of gravity anomaly (black circle) 

from research results and gravity anomaly (blue line) of San 
Jacinto Graben (García-Abdeslem, 2003). (b) The shape of the 

curvature of the basement of San Jacinto Graben (García-
Abdeslem, 2003). 

 

The results of this calculation are slightly different 

by two meals at its minimum value from the results of 
previous research (Chakravarthi & Ramamma, 2015), 
which used a 32-point Gauss Quadrature integral in 

calculating gravity anomalies. This was identified as a 
result of the model lacking in the results of the slightly 
random gravity data inversion from previous studies, so 
there was a difference in the calculation of the 32-point 
Gauss Quadrature integral and Gauss-Cronrod 
Quadrature (G7, K15). The Gauss-Cronrod Quadrature 
(G7, K15) integral was able to calculate the gravity 
anomaly response in the two previous basins, namely 

the Sebastian Vizcaino Basin and the San Jacinto Graben, 
which identified the correctness of the calculation. The 
modeling in Figure 5 uses the basement curvature from 
previous studies (Chakravarthi & Ramamma, 2015) 
following the Fourier series in equation (11) and using 
the coefficient m in table 2, X1 = -0.475 km and X2 = 8.5 
km, b = 3, and L = X2 - X1. The curvature of the gravity 
anomaly response shows a curvature pattern following 
the shape of the basement curvature.  

 

 
Figure 5. (a) Calculation of gravity anomaly (black circle) 
from research results and gravity anomaly (blue line) of 

Sayula Basin (García-Abdeslem, 2003). (b) Curvature shape of 
Sayula Basin basement (García-Abdeslem, 2003). 

 

Conclusion  
 

Forward modeling of 2D gravity anomalies with 
density contrasts that vary polynomially with depth was 
conducted to analyze basin structures. The process 
involved two key stages: deriving analytical formulas 
and performing numerical integration. The Gauss-
Kronrod Quadrature Method, featuring 7 Gauss points 
and 15 Kronrod points, was used to accurately compute 
these integrals. The modeling was first applied to 
theoretical basement cases with fixed density contrasts, 
revealing gravity anomalies that corresponded well with 
the basement's curvature. Subsequently, the approach 
was validated against real-world cases from the 
Sebastian Vizcaino Basin, San Jacinto Graben, and 
Sayula Basin. By using appropriate density contrasts, 
modeling lengths, and basement curvature shapes, the 
results demonstrated that both fixed-density and depth-
variable density models produce gravity anomalies with 
curvature patterns consistent with the basement's 
structure. This confirms the effectiveness of the 
modeling technique in reflecting real geological features. 
 

b 

a 

b 

a 

a 

b 
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