

Antibacterial Activity of Indonesian Medicinal Plant Extracts *Tinospora crispa*, *Averrhoa bilimbi* and *Syzygium polyanthum* against *Shigella sonnei*

Laili Fitri Yeni^{1*}, Nurfatehah¹, Erma¹, Eni Eka Sari¹

¹ Faculty of Teacher Training and Education, Universitas Tanjungpura, Pontianak, Kalimantan Barat, indonesia.

Received: October 09, 2024

Revised: January 11, 2025

Accepted: April 25, 2025

Published: April 30, 2025

Corresponding Author:

Laili Fitri Yeni

laili.fitri.yeni@fkip.untan.ac.id

DOI: [10.29303/jppipa.v11i4.9378](https://doi.org/10.29303/jppipa.v11i4.9378)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Diarrhea and dysentery are major health problems in Indonesia, with *Shigella sonnei* being one of the primary causative agents. Excessive use of antibiotics has led to bacterial resistance, necessitating safe and effective alternative treatments. This study evaluates the antibacterial potential of extracts from brotowali (*Tinospora crispa*), wuluh starfruit (*Averrhoa bilimbi*), and bay leaf (*Syzygium polyanthum*) against *Shigella sonnei*. Plant materials were sourced from Kakap Village, West Kalimantan, and extracted using maceration with 96% ethanol. Phytochemical tests were conducted to identify active compounds in the extracts, while antibacterial activity was assessed using the disk diffusion method at extract concentrations of 20%, 40%, 60%, and 80%. All three plant extracts contained active compounds such as alkaloids, flavonoids, phenolics, and tannins. Antibacterial tests showed that all extracts exhibited antibacterial activity against *S. sonnei*, with *bay leaf* extract at 80% concentration demonstrating the largest inhibition zone of 20.3 mm. Statistical analysis indicated that increasing extract concentration enhanced antibacterial effectiveness. This study suggests that extracts of brotowali, wuluh starfruit, and bay leaf have the potential to be effective natural antibacterial agents against *S. sonnei*. Further research should focus on understanding the mechanisms of action and exploring the potential clinical applications of these plant extracts. Additionally, integrating these findings into science education can enhance students' scientific literacy and provide practical examples of using natural resources in addressing health issues.

Keywords: Antibacterial; *Shigella sonnei*; *Tinospora crispa*; *Averrhoa bilimbi*; *Syzygium polyanthum*

Introduction

Diarrhea is still a health problem in Indonesia, with a high morbidity rate. According to the 2023 Indonesian Health Survey, the prevalence of diarrhea was recorded at 2% across all age groups, 4.9% among toddlers, and 3.9% among infants. Meanwhile, data from the 2018 Sample Registration System indicated that diarrhea remained one of the leading causes of death, contributing to 7% of neonatal deaths and 6% of deaths

among 28-day-old infants (Kemenkes RI, 2023). Diarrhea is the second leading cause of death for children under five years old worldwide, with the majority of cases occurring in developing countries (Adria et al., 2023; Djikoloum et al., 2024). Dysentery is a more severe type of diarrhea that is accompanied by blood or mucus in the stool.

Shigella sonnei is one of the bacteria that cause dysentery, is one of the most frequent pathogenic agents causing diarrhea and dysentery in countries with poor

How to Cite:

Yeni, L. F., Nurfatehah, Erma, & Sari, E. E. Antibacterial Activity of Indonesian Medicinal Plant Extracts *Tinospora crispa*, *Averrhoa bilimbi* and *Syzygium polyanthum* against *Shigella sonnei*. *Jurnal Penelitian Pendidikan IPA*, 11(4), 355-363. <https://doi.org/10.29303/jppipa.v11i4.9378>

sanitation and contaminated water (Desalegn et al., 2024; Ohlsen et al., 2024). The bacteria are transmitted through contaminated food and water, as well as direct contact with patients (Berihu et al., 2024; Conti et al., 2024; López-Jiménez et al., 2024). The high prevalence of diarrhea and dysentery in Indonesia, especially those caused by *S. sonnei*, poses a threat to public health.

Although antibiotics have been widely used to treat *S. sonnei* infections, inappropriate and excessive use has led to increasing bacterial resistance to antibiotics. This condition results in a decrease in the effectiveness of standard treatment and increases the risk of complications and death (Asad et al., 2024; Moges et al., 2024). Therefore, effective, and safe alternative treatments are needed, one of which is using medicinal plants that can function as natural antimicrobials.

Indonesia has abundant biodiversity, including yard plants that have potential as antimicrobial agents. Three of them are brotowali (*Tinospora crispa*), wuluh starfruit (*Averrhoa bilimbi*), and bay leaf (*Syzygium polyanthum*). These plants are known to contain active compounds that have the potential to inhibit bacterial growth. Brotowali is known to contain alkaloids, flavonoids, terpenoids and saponins that have antimicrobial and anti-inflammatory activities (Haque et al., 2023; Harahap et al., 2024). Wuluh starfruit leaves contain compounds such as flavonoids, saponins, triterpenoids, sitosterols, phenolic compounds and tannins that have antibacterial properties (Fitria et al., 2023; Sakib et al., 2024; Widiasuti et al., 2024). Meanwhile, bay leaf contains essential oils, flavonoids, alkaloids, phenol compounds, terpenoids, saponins and tannins which are also antimicrobial (Aditya et al., 2023; Pratama et al., 2023).

Several studies have shown the effectiveness of this plant extract against various types of bacteria. Brotowali extract has potential as an antibacterial agent especially against Gram-positive bacteria such as *Staphylococcus aureus* and *Bacillus cereus* (Pham & Nguyen, 2020). Wuluh starfruit has potential as an effective natural antibacterial agent especially against multi-drug resistant (MDR) bacteria, such as *Mycobacterium tuberculosis*, *Escherichia coli*, *Klebsiella pneumoniae*, *Staphylococcus aureus* (MRSA), and *Pseudomonas aeruginosa* (Prastyianto et al., 2020). Bay leaf have potential as a natural antibacterial agent effective against several Gram-positive and Gram-negative bacteria such as *Staphylococcus aureus* (including MRSA), *Streptococcus pyogenes*, *Klebsiella pneumoniae*, and *Salmonella typhimurium* (Abd Wahab & Aqilah Ja'afar, 2021; Afifah et al., 2021; Rochmat et al., 2022).

Research on the inhibitory power of extracts of the three plants against *S. sonnei* is still limited. Therefore, this study aims to test the inhibition of brotowali, wuluh

starfruit leaf, and bay leaf extracts against *S. sonnei*. It is hoped that this research can find effective and safe antimicrobial alternatives from nature, which can be used to overcome *S. sonnei* infections and support the development of sustainable and affordable traditional medicine for the community.

This research has significant implications in the context of science education because the findings on the antibacterial activity of Indonesian medicinal plant extracts against *Shigella sonnei* can be integrated into science learning through the development of STEM-based learning materials. This approach not only enriches students' understanding of biological and chemical concepts but also enhances scientific literacy by providing practical insights into the use of natural resources in addressing health issues such as antibiotic resistance.

Method

The raw materials for the extract are brotowali stems (*Tinospora crispa*), wuluh starfruit (*Averrhoa bilimbi*) and bay leaf (*Syzygium polyanthum*) from Kakap Village, Kubu Raya Regency, West Kalimantan. This research was conducted in July 2022 at the Research Laboratory and Chemical Biotechnology of Tanjungpura University and at the Biology Laboratory of FKIP Untan. The research process includes several stages, namely sample preparation, sample extraction, phytochemical analysis, and inhibition testing using extracts from brotowali stem rhizomes, wuluh starfruit and bay leaf.

Sample Preparation

Brotowali stems, bay leaf, and wuluh starfruit leaves have been collected, washed thoroughly with running water and dried in the shade until completely dry. The dried samples were ground into fine powder using a blender. A total of 100 grams of powder of each sample was put into a glass container and 1000 ml of 70% ethanol was added. The maceration process was carried out with periodic stirring for 24 hours. Filtering was done using whatman paper number 1 to separate the extract from the residue. The maceration process was repeated by adding 500 ml of 70% ethanol for 24 hours. The filtrate was combined and evaporated using a rotary evaporator until a thick extract was obtained (Harborne, 1996).

Phytochemical Test

To test phytochemical compounds, by adding a few drops of Mayer's reagent into 2 ml of extract and observed whether a white precipitate is formed indicating the presence of alkaloids. Next, add 2 ml of the extract into a test tube and a few drops of 10% NaOH; a bright yellow color that fades after the addition of HCl indicates the

presence of flavonoids. To detect saponins, shake 2 ml of the extract for 15 minutes and observe the formation of a stable foam that persists for more than 30 seconds. Add a few drops of 1% FeCl_3 solution to 2 ml of the extract to test for tannins; a blue-black or green color indicates their presence. For terpenoids, add 2 ml of extract, 2 ml of chloroform, and 3 ml of concentrated H_2SO_4 in a test tube; a red-brown colored layer indicates the presence of terpenoids. Finally, add a few drops of acetic anhydride and concentrated H_2SO_4 to 2 ml of the extract, and a green color will indicate the presence of steroids.

Antibacterial Test

Mueller-Hinton agar (MHA) medium was prepared and sterilized in an autoclave. *S. sonnei* isolate collected from the Health Laboratory of the West Kalimantan Provincial Health Office was cultured on an inclined medium and incubated for 24 hours at 37°C. Bacterial suspension was prepared by adjusting the turbidity according to 0.5 McFarland standard (approximately $1.5 \times 10^8 \text{ CFU/ml}$) (Balouiri et al., 2016). Inhibition was measured using the disc diffusion method. MHA media was poured into sterile petri dishes and allowed to solidify. Suspensions of *S. sonnei* bacteria have been spread evenly on the surface of the media using a sterile swab. Sterile paper discs that had been impregnated with 20 μl of extracts (concentrations of 20%, 40%, 60%, and 80%) were placed on the surface of the media. Each treatment was replicated five times to ensure validity of the results. DMSO was used as a negative control and tetracycline 20% as a positive control. Petri dishes were incubated at 37°C for 24 hours.

The diameter of the inhibition zone around the paper discs was measured using a caliper or ruler. The measurement results were recorded and compared with the positive control. Interpretation of the inhibition strength category based on the size of the inhibition zone formed: weak (< 10 mm); moderate (10-15 mm); strong (15-20 mm) and very strong (> 20 mm) (Balouiri et al., 2016; Bauer et al., 1966; Khante, 2010).

Data Analysis

Inhibition zone measurement data were statistically analyzed to determine the effectiveness of the extract against *Shigella sonnei*. Analysis of variance (ANOVA) was used to compare the zone of inhibition between various concentrations of extracts and controls.

Result and Discussion

This study aims to answer questions regarding the effectiveness of brotowali stem (*T. crispa*), wuluh starfruit (*A. bilimbi*), and bay leaf (*S. polianthum*) extracts in inhibiting the growth of *S. sonnei* bacteria. The results

showed that all tested extracts had antibacterial activity against *S. sonnei*.

Phytochemical Test Result

The ethanol extracts of the three plants were tested for phytochemical content at the Chemistry Laboratory of the Faculty of Mathematics and Natural Sciences, Tanjungpura University. The results of the phytochemical test of the three extracts showed variations in the content of secondary metabolites (Table 1).

Table 1. Phytochemical test results of brotowali stem extract (Tc), wuluh starfruit leaf (Ab), and bay leaf (Sp)

Secondary metabolites	Tc	Ab	Sp
Flavonoid	++	+	+++
Tannin	++	+	++
Fenolik	++	+	++
Saponin	-	-	+
Terpenoid	-	-	+
Alkaloid	++	+++	-
Steroid	-	++	-

Description:

(-) : Does not contain

(+) : Low levels

(++) : Sufficient levels

(+++) : High level

Tc: *Tinospora crispa*; Ab: *Averrhoa bilimbi*; Sp: *Syzygium polyanthum*

Phytochemical test results show that bay leaf extract contains flavonoids (+++), tannins (++) , phenolics (++) , saponins (+), and terpenoids (+). Wuluh starfruit leaf extract contains alkaloids (+++), flavonoids (+), steroids (++) , tannins (+), and phenolics (+). Brotowali stem extract contains alkaloids (++) , flavonoids (++) , phenolics (++) , and tannins (+).

Antibacterial Test Results

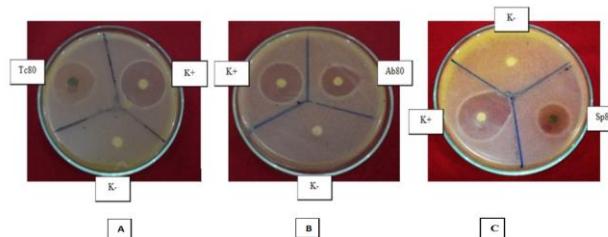
This study consisted of six treatments, including positive control (tetracycline 20%), negative control (DMSO), and four extract concentrations (20%, 40%, 60%, and 80%). Tests were conducted using the paper disc method to measure the zone of inhibition of *S. sonnei* bacteria (Table, 2, 3, 4, figure 1 and figure 2).

Table 2. Antibacterial activity of brotowali stem extract (*T. crispa*) against *S. sonnei*

Treatment	Mean Zone Inhibition (mm)	Category
Control - (DMSO)	0.00 ± 0.00a	NI
20% extract concentration	15.2 ± 0.75b	Medium
40% extract concentration	15.7 ± 0.90b	Medium
60% extract concentration	19.2 ± 1.03c	Powerfull
80% extract concentration	20.6 ± 1.08c	Very powerfull
Control + (Tetrasiklin 20%)	26.6 ± 1.4d	Very powerfull

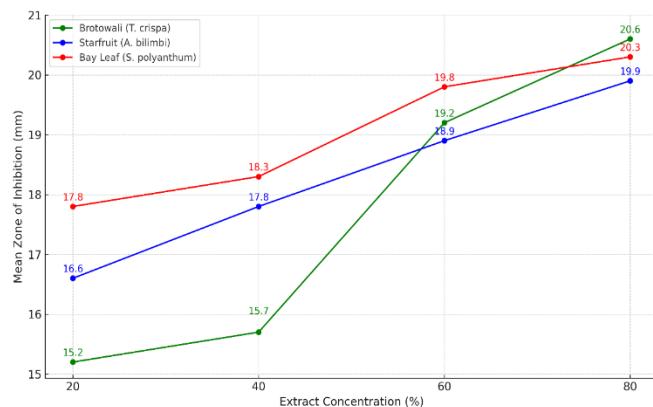
Description: the numbers above are the mean values of the five replicates ± standard deviation. Lower case letters indicate significant differences from each treatment at the 95% level; NI: No Inhibition

Table 3. Antibacterial activity of wuluh starfruit leaf extract (*Averrhoa bilimbi*) against *S. sonnei*


Treatment	Mean Zone Inhibition (mm)	Category
Kontrol - (DMSO)	0.00 ± 0.00a	NI
20% extract concentration	16,6±1.29b	Powerfull
40% extract concentration	17,8±1.04b	Powerfull
60% extract concentration	18,9±0.96b	Powerfull
80% extract concentration	19,9±1.19b	Powerfull
Control + (Tetrasiklin 20%)	29,1± 1.29c	Very powerfull

Description: the numbers above are the mean values of the five replicates ± standard deviation. Lower case letters indicate significant differences from each treatment at the 95% level; NI: No Inhibition

Table 4. Antibacterial activity of bay leaf extract (*Syzygium polyanthum*) against *S. sonnei* bacteria


Treatment	Mean Zone Inhibition (mm)	Category
Kontrol - (DMSO)	0.00 ± 0.00a	NI
20% extract concentration	17,8 ±1,61b	Powerfull
40% extract concentration	18,3 ±1,61b	Powerfull
60% extract concentration	19,8 ±1,92b	Powerfull
80% extract concentration	20,3 ±1,44b	Very powerfull
Control + (Tetrasiklin 20%)	29,1 ±1,67c	Very powerfull

Description: the numbers above are the mean values of the five replicates ± standard deviation. Lower case letters indicate significant differences from each treatment at the 95% level; NI: No Inhibition

Figure 1. Zone of inhibition at 80% concentration of each extract compared to positive control and negative control. A. Tc80: 80% concentration of *T. crispa* extract. B. Ab80: 80% concentration of *A. bilimbi* extract. C. Sp80: *S. polyanthum* extract 80% concentration; K+: Positive control (tetracycline 20%); K-: Negative control (DMSO)

The largest zone of inhibition of brotowali stem extract was found at 80% concentration with a diameter of 20.6 mm categorized as very strong. The 60% concentration had an inhibition zone of 19.2 mm (strong), 40% concentration of 15.7 mm (medium), and 20% concentration of 15.2 mm (medium) (Table 2). The zone of inhibition of wuluh starfruit leaf extract at 80% concentration was 19.9 mm, which was also categorized as very strong. The 60% concentration had an inhibition zone of 18.9 mm (strong), the 40% concentration was 17.8 mm (strong), and the 20% concentration was 16.6 mm (strong) (Table 3). The largest inhibition zone of bay leaf extract was found at 80% concentration with an average diameter of 20.3 mm, 60% concentration had an inhibition zone of 19.8 mm (strong), 40% concentration of 18.3 mm (strong), and 20% concentration of 17.8 mm (strong) (Table 4). These results indicate that the higher the concentration of the extract, the greater the inhibition (Figure 2). Statistical analysis of One-way ANOVA test showed that there were significant differences between treatments (p value <0.05). Duncan's further test showed that the higher concentration of the extract had a significant difference compared to the lower concentration and negative control.

Figure 2. The concentration of the extract and the mean zone of inhibition (MZOI)

This finding confirms that the higher the concentration of the extract, the greater the inhibition against bacterial growth. The inhibitory activity of brotowali extract is attributed to its phytochemical constituents, such as alkaloids, flavonoids, and diterpenoids, which have been identified in various previous studies (Pham & Nguyen, 2020). For instance, the alkaloid fraction of *T. crispa* is known to exhibit effective antibacterial activity against Gram-positive bacteria, such as *Staphylococcus aureus* and *Bacillus cereus* (Wahyuningrum et al., 2018). Additionally, other studies have demonstrated that the ethanolic extract of *T. crispa* is capable of inhibiting the growth of *Helicobacter pylori*, a bacterium that also exhibits high resistance to many conventional antibiotics (Pham & Nguyen, 2020). This activity is thought to result from the complex interaction between the phytochemical components in the extract and the bacterial cell wall, affecting cell permeability and causing structural damage.

The data showed that the higher the concentration of wuluh starfruit leaves extract, the larger the inhibition zone produced. This trend suggests that the phytochemical content in the extract works more effectively at higher concentrations in inhibiting the growth of *S. sonnei*. This study is in line with previous literature which shows that star fruit leaf extract has phytochemical components that contribute to antibacterial activity, including *Staphylococcus aureus*, *Bacillus subtilis*, *Bacillus cereus*, *Shigella dysenteriae*, *Shigella boydii*, *Pseudomonas aeruginosa* and *Vibrio cholerae* (Fitria et al., 2023; Sakib et al., 2024; Widiastuti et al., 2024). The phytochemical content in bay leaf extract, namely flavonoids, tannins, phenolics, saponins, and terpenoids, collectively contributes significantly to antibacterial activity, including *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhimurium*, *Klebsiella pneumoniae*, *Listeria monocytogenes*, *Pseudomonas aeruginosa*, *Proteus mirabilis*, *Vibrio cholerae* and *Vibrio parahaemolyticus* (Aditya et al., 2023; Harahap et al., 2024; Pratama et al., 2023; Ramli et al., 2023). The formation of a clear zone around the disc containing the extract indicates the death or inhibition of bacterial cell growth around the application area of the phytochemical compound on agar media. This clear zone is an indicator of the effectiveness of the antibacterial compound in inhibiting bacterial growth, with a larger zone size indicating stronger antibacterial activity.

The combination of various inhibitory mechanisms by alkaloids, flavonoids, tannins, phenolics, saponins, terpenoids, and steroids make plant extracts effective antibacterial agents. Each of these classes of phytochemicals works through their own specific mechanisms, leading to the disruption of various

bacterial cellular processes, from membrane disruption to inhibition of DNA and protein synthesis (Radulović et al., 2013; Yixi et al., 2015).

Alkaloids are known to have various antibacterial mechanisms, including intercalation with DNA, which interferes with DNA replication and bacterial protein synthesis. Some alkaloids, such as berberine, are able to interact directly with DNA through the intercalation process, causing disruption of the normal function of DNA and inhibiting bacterial growth (Haque et al., 2023; Yan et al., 2021). Flavonoids exhibit antibacterial activity through several mechanisms. One of the main mechanisms is the disruption of bacterial cell membranes, including the outer and cytoplasmic membranes, which disrupts the transportation of nutrients and metabolites and inhibits the supply of energy to bacteria (flavonoids). Flavonoids can also inhibit peptidoglycan synthesis and β -lactamase enzyme activity in antibiotic-resistant bacteria (Yan et al., 2024; Yixi et al., 2015; Yuan et al., 2021). Tannins work by disrupting the bacterial cell membrane and inactivating important enzymes or proteins. Tannins can interact with bacterial cell membranes, cause disruption of membrane structure and function, and inhibit protein synthesis through binding to enzymes that are essential for bacteria (Farha et al., 2020; Hossain et al., 2021; Javed et al., 2020).

Phenolic compounds, such as chlorogenic acid, can disrupt bacterial cell membranes, increasing permeability and causing leakage of intracellular components. They can also inhibit key enzymes in bacterial metabolism and DNA/RNA synthesis, resulting in inhibition of bacterial growth (Radulović et al., 2013). Saponins are known for their ability to interact with sterols in bacterial cell membranes, causing pore formation and loss of membrane integrity. This results in increased membrane permeability, leading to leakage of ions and other small molecules from the bacterial cell, as well as disruption of electrochemical gradients (Jubair et al., 2021; Nguyen et al., 2020).

Terpenoids, such as thymol, interact with bacterial cytoplasmic membranes, insert themselves between phospholipid acyl chains, increase membrane fluidity, and cause disruption of membrane function. Terpenoids can also affect ATP synthesis and citrate metabolism in bacteria, resulting in inhibition of bacterial growth (Ergüden, 2021; Wang et al., 2019).

Steroids such as steroid glycosides function by inhibiting bacterial protein synthesis and damaging cell membrane integrity. They can cause coagulation of cytoplasmic components and disruption of bacterial intercellular communication, such as the quorum sensing system, which is important for virulence regulation and biofilm formation (Dogan et al., 2017).

The results of this study are in line with the literature showing that flavonoids, tannins, phenolics, and alkaloids have antibacterial activity. The advantage of this study lies in the use of three types of local plants that have not been widely studied before to inhibit *S. sonnei*, which is a bacterium that causes diarrhea. This study provides new information about the antibacterial potential of Indonesian local plant extracts, which can be further developed as an alternative to natural medicine.

The significance of this study shows that bay leaf, wuluh starfruit, and brotowali stem extracts have the potential to be an effective natural antibacterial source against *S. sonnei*. Potential applications of the results of this study include the development of herbal medicines or health supplements for the prevention and treatment of bacterial infections.

This research has significant implications in the context of science education, particularly in the development of relevant and applicable learning materials. The findings on the antibacterial activity of Indonesian medicinal plant extracts against *Shigella sonnei* can be integrated into science education through the development of student worksheets (LKPD) or thematic modules focusing on bacterial resistance and phytochemistry. For instance, teachers can design STEM-based practical activities that involve students researching and observing how extracts from plants such as brotowali, wuluh starfruit, and bay leaf can inhibit bacterial growth. Through these activities, students not only grasp fundamental concepts in biology and chemistry but also gain insights into the importance of Indonesia's biodiversity and its applications in developing natural remedies. Additionally, discussions on the mechanisms of phytochemical action can enhance students' scientific literacy by providing a deeper understanding of how natural compounds can be utilized to address health issues like antibiotic resistance. Thus, this research not only contributes to scientific knowledge but also offers educational value that can improve the quality of science education in schools.

Conclusion

This study successfully showed that brotowali stem extract, wuluh starfruit leaves, and bay leaves have significant antibacterial activity against *S. sonnei* bacteria. Bay leaf extract at 80% concentration showed the largest inhibition zone, followed by wuluh starfruit and brotowali extracts. Increasing the concentration of the extracts was shown to increase the antibacterial effectiveness. The results of this study support the use of the three plants as an alternative natural treatment for diarrhea, with the potential to be developed into a safe

and effective herbal medicine. Further research is needed to further explore the mechanism of action and potential clinical applications of these plant extracts.

This study achieved its main objective by showing that bay leaf, wuluh starfruit and brotowali stem extracts have significant antibacterial activity against *S. sonnei*. However, there are some results that require further research, such as variations in effectiveness between concentrations and types of extracts. Further research is needed to understand the mechanism of action and potential clinical applications of these plant extracts. Additionally, integrating these findings into science education can enhance students' scientific literacy and provide practical examples of using natural resources in addressing health issues.

Author Contributions

All authors have made a real contribution to completing this manuscript.

Funding

This research did not receive external funding from any party.

Conflicts of Interest

The authors declare that there is no conflict of interest in this study.

References

Abd Wahab, N. Z., & Aqilah Ja'afar, N. S. (2021). Phytochemical composition and antibacterial activities of *syzygium polyanthum* methanolic leaves extract. *Pharmacognosy Journal*, 13(6), 1355-1358. <https://doi.org/10.5530/PJ.2021.13.171>

Aditya, R., Santoso, B., & Widjiati. (2023). Comparative study of bioactive compound content and antioxidant activity in different extraction methods of *Syzygium Polyanthum* leaves. *Bali Medical Journal*, 12(3), 3425-3430. <https://doi.org/10.15562/bmj.v12i3.4931>

Adria, B. P., Wulandari, R. A., & Kurniasari, F. (2023). Spatial Analysis of Diarrhea Incidences, Environmental Influences, and Behavioral Factors in An Ecological Study. *Media Kesehatan Masyarakat Indonesia*, 19(4), 185-192. <https://doi.org/10.30597/mkmi.v19i4.28644>

Afifah, A. N., Zuprizal, & Dono, N. D. (2021). In vitro antibacterial activities of *Syzygium polyanthum* leaves extract-nanoparticle against *Salmonella typhimurium*, *Escherichia coli*, and *Lactobacillus acidophilus*. *IOP Conference Series: Earth and Environmental Science*, 782(2). <https://doi.org/10.1088/1755-1315/782/2/022093>

Asad, A., Jahan, I., Munni, M. A., Begum, R., Mukta, M. A., Saif, K., Faruque, S. N., Hayat, S., & Islam, Z.

(2024). Multidrug-resistant conjugative plasmid carrying mphA confers increased antimicrobial resistance in *Shigella*. *Scientific Reports*, 14(1), 1-11. <https://doi.org/10.1038/s41598-024-57423-1>

Balouiri, M., Sadiki, M., & Ibsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. *Journal of Pharmaceutical Analysis*, 6(2), 71-79. <https://doi.org/10.1016/j.jpha.2015.11.005>

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. *American Journal of Clinical Pathology*, 45(4_ts), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493

Berihu, T., Gebremariam, G., Weldu, Y., Kahsay, A., Asmelash, T., & Gebreyesus, A. (2024). Prevalence, antimicrobial susceptibility test and associated factors of *Salmonella* and *Shigella* in ready-to-eat fruit juices and salads in Mekelle, northern Ethiopia. *BMC Infectious Diseases*, 24(1), 1-10. <https://doi.org/10.1186/s12879-024-09066-w>

Conti, V., Rossi, O., Clarkson, K. A., Mancini, F., Nakakana, U. N., Sarakinou, E., Callegaro, A., Ferruzzi, P., Acquaviva, A., Arora, A. K., Marchetti, E., Necchi, F., Frenck, R. W., Martin, L. B., Kaminski, R. W., Podda, A., & Micolli, F. (2024). Putative correlates of protection against shigellosis assessing immunomarkers across responses to *S. sonnei* investigational vaccine. *Npj Vaccines*, 9(1), 1-10. <https://doi.org/10.1038/s41541-024-00822-2>

Desalegn, G., Tamilselvi, C. S., Lemme-Dumit, J. M., Heine, S. J., Dunn, D., Ndungo, E., Kapoor, N., Oaks, E. V., Fairman, J., & Pasetti, M. F. (2024). *Shigella* virulence protein VirG is a broadly protective antigen and vaccine candidate. *Npj Vaccines*, 9(1), 1-11. <https://doi.org/10.1038/s41541-023-00797-6>

Djikoloum, B., Abakar, M. F., Ndze, V. N., Nkandi, R. G., Enjeh, C. N., Kimala, P., Assam, J. P. A., & Boda, M. (2024). Epidemiology of group A rotavirus in children under five years of age with gastroenteritis in N'Djamena, Chad. *BMC Infectious Diseases*, 24(1), 1-8. <https://doi.org/10.1186/s12879-023-08647-5>

Dogan, A., Otlu, S., Çelebi, özgür, Kılıçle, P. A., Saglam, A. G., Can Dogan, A. N., & Mutlu, N. (2017). An investigation of antibacterial effects of steroids. *Turkish Journal of Veterinary and Animal Sciences*, 41(2), 302-305. <https://doi.org/10.3906/vet-1510-24>

Ergüden, B. (2021). Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. *Letters in Applied Microbiology*, 73(4), 438-445. <https://doi.org/10.1111/lam.13529>

Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. *Food Bioscience*, 38, 100751. <https://doi.org/https://doi.org/10.1016/j.fbio.2020.100751>

Fitria, E. A., Budaraga, I. K., & Salihat, R. A. (2023). The effect of wuluh starfruit (*Averrhoa bilimbi* L.) added on the physicochemical and antimicrobial characteristics of chitosan-PVA edible film. *Future of Food: Journal on Food, Agriculture and Society*, 11(5), 1-13. <https://doi.org/10.17170/kobra-202307218416>

Haque, E., Bari, M. S., Khandokar, L., Anjum, J., Jantan, I., Seidel, V., & Haque, M. A. (2023). An updated and comprehensive review on the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of *Tinospora crispa* (L.) Hook. f. & Thomson. In *Phytochemistry Reviews* (Vol. 22, Issue 1). Springer Netherlands. <https://doi.org/10.1007/s11101-022-09843-y>

Harahap, M. M., Ahmad, A. G., Ulfa, M., Ginting, I. M., & Wirabuana, P. Y. A. P. (2024). The distribution of *Syzygium* sp. and its potential use in green space of Universitas Sumatera Utara. *IOP Conference Series: Earth and Environmental Science*, 1352(1). <https://doi.org/10.1088/1755-1315/1352/1/012068>

Harborne, J. (1996). *Metode Fitokimia: Penuntun Cara Modern Menganalisis Tumbuhan*. ITB.

Hossain, M. T., Furhatun-Noor, Asadujjaman, M., Matin, M. A., Tabassum, F., & Rashid, M. H. A. (2021). A review study on the pharmacological effects and mechanism of action of tannins. *European Journal of Pharmaceutical and Medical Research*, 8(8), 05-10. <https://www.researchgate.net/publication/354163529>

Javed, B., Nawaz, K., & Munazir, M. (2020). Phytochemical Analysis and Antibacterial Activity of Tannins Extracted from *Salix alba* L. Against Different Gram-Positive and Gram-Negative Bacterial Strains. *Iranian Journal of Science and Technology, Transactions A: Science*, 44(5), 1303-1314. <https://doi.org/10.1007/s40995-020-00937-w>

Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). *Evidence-Based Complementary and Alternative Medicine: ECAM*, 2021, 3663315. <https://doi.org/10.1155/2021/3663315>

Kemenkes RI. (2023). Profil Kesehatan Indo-nesia. In

Pusdatin.Kemenkes.Go.Id.
<https://www.kemkes.go.id/downloads/resource/s/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-2021.pdf>

Khante, D. H. T. * and B. S. (2010). Antibacterial Properties of Traditionally Used Medicinal Plants for Enteric. *Ijpsr*, 1(9), 120-128.

López-Jiménez, A. T., Özbaykal Güler, G., & Mostowy, S. (2024). The great escape: a *Shigella* effector unlocks the septin cage. *Nature Communications*, 15(1), 2-4. <https://doi.org/10.1038/s41467-024-48208-1>

Moges, M., Rodland, E. K., Legesse, T., & Argaw, A. (2024). Antibiotic resistance patterns of *Staphylococcus aureus* and *Enterobacteriaceae* isolated from street foods in selected towns of Ethiopia. *BMC Infectious Diseases*, 24(1), 1-9. <https://doi.org/10.1186/s12879-024-09266-4>

Nguyen, L. T., Farcas, A. C., Socaci, S. A., Tofana, M., Diaconeasa, Z. M., Pop, O. L., & Salanta, L. C. (2020). An Overview of Saponins - A Bioactive Group. *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology*, 77(1), 25-36. <https://doi.org/10.15835/buasvmcn-fst:2019.0036>

Ohlsen, E. C., Angel, K., Maroufi, A., Kao, A., Victorio, M. J., Cua, L. S., Kimura, A., Vanden Esschert, K., Logan, N., McMichael, T. M., Beatty, M. E., & Shah, S. (2024). Shigellosis outbreak among persons experiencing homelessness - San Diego County, California, October-December 2021. *Epidemiology and Infection*, 152(December 2021). <https://doi.org/10.1017/S0950268823001681>

Pham, T. N., & Nguyen, T. V. (2020). Evaluation of Antibacterial Activity of fractions from stem extract of *Tinospora crispa* (L.) Hook. f. & Thomson. *IOP Conference Series: Materials Science and Engineering*, 991(1), 12058. <https://doi.org/10.1088/1757-899X/991/1/012058>

Prastyianto, M. E., Wardoyo, F. A., Wilson, W., & Darmawati, S. (2020). Antibacterial Activity of Various Extracts of *Averrhoa bilimbi* against Multidrug Resistant Bacteria. *Biosaintifika*, 12(2), 163-168. <https://doi.org/10.15294/biosaintifika.v12i2.23600>

Pratama, B. P., Pranoto, Y., Supriyadi, & Swasono, R. T. (2023). The Properties of Salam Leaf Extract (*Syzygium Polyanthum*) with Different Solvent Ratio and Processing Time Using Ultrasonication-Assisted Extraction Method. *Journal of Applied Science and Engineering*, 26(4), 581-587. [https://doi.org/10.6180/jase.202304_26\(4\).0015](https://doi.org/10.6180/jase.202304_26(4).0015)

Radulović, N. S., Blagojević, P. D., Stojanović-Radić, Z. Z., & Stojanović, N. M. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. *Current Medicinal Chemistry*, 20(7), 932-952.

Ramli, S., Wong, J. X., & Rukayadi, Y. (2023). Antimicrobial Activity of *Syzygium polyanthum* Wight (Walp.) Extract against Foodborne Pathogens in Food: A Potential Antimicrobial Agent for Natural Food Washing Solution. *Malaysian Journal of Fundamental and Applied Sciences*, 19(2), 219-235. <https://doi.org/10.11113/mjfas.v19n2.2828>

Rochmat, A., Aditya, G., Kusmayanti, N., Kustiningsih, I., Hariri, A., & Rezaldi, F. (2022). Invitro Activity and Docking Approach In Silico Leaf Extract *Syzygium polyanthum* (Wight) Walp. as a *Salmonella typhi* Inhibitor. *Trends in Sciences*, 19(16), 1-8. <https://doi.org/10.48048/tis.2022.5654>

Sakib, S. A., Islam, M. M. T., & Haque, M. E. (2024). Isolation and Characterization of Secondary Metabolites of Commonly Available *Averrhoa Bilimbi* L. *Bangladesh Journal of Botany*, 53(1), 115-122. <https://doi.org/10.3329/bjb.v53i1.72254>

Wahyuningrum, R., Ritmaleni, R., Irianti, T., Wahyuono, S., & Kaneko, T. (2018). Antituberculosis activity of extract and fractions of *Tinospora Crispa* against *mycobacterium tuberculosis* H37RV using mycobacteria growth indicator tube and agar proportion method. *Asian Journal of Pharmaceutical and Clinical Research*, 11, 132. <https://doi.org/10.22159/ajpcr.2018.v11i3.22587>

Wang, C. Y., Chen, Y. W., & Hou, C. Y. (2019). Antioxidant and antibacterial activity of seven predominant terpenoids. *International Journal of Food Properties*, 22(1), 230-238. <https://doi.org/10.1080/10942912.2019.1582541>

Widiastuti, D., Sinaga, S. E., Warnasih, S., Syahputri, Y., Saputri, N. B., Sustiprijatno, & Putra, W. E. (2024). Antidiabetic Activity of *Averrhoa bilimbi* L. Fruit Extracts and the Identification of Active Compounds Using LC-MS and In silico Methods. *Indonesian Journal of Pharmacy*, 35(2), 282-291. <https://doi.org/10.22146/ijp.7746>

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. *Antibiotics*, 10(318). <https://doi.org/https://doi.org/10.3390/antibiotics 10030318>

Yan, Y., Xia, X., Fatima, A., Zhang, L., Yuan, G., Lian, F., & Wang, Y. (2024). Antibacterial Activity and Mechanisms of Plant Flavonoids against Gram-

Negative Bacteria Based on the Antibacterial Statistical Model. *Pharmaceuticals*, 17(3). <https://doi.org/10.3390/ph17030292>

Yixi, X., Weijie, Y., Fen, T., Xiaoqing, C., & Licheng, R. (2015). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. In *Current Medicinal Chemistry* (Vol. 22, Issue 1, pp. 132–149). <https://doi.org/http://dx.doi.org/10.2174/0929867321666140916113443>

Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2021). Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. *Scientific Reports*, 11(1), 1–15. <https://doi.org/10.1038/s41598-021-90035-7>