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Abstract: The fate of glyphosate in soil and water is dependent on the properties of 
glyphosate and its envoronement. Behaviour of glyphosate in soil, sediment and water is 
strongly influenced the way by which it can be adsorbed by soils, sediments, and 
suspended material in water. The role of soil organic matter, clay mineral, and amorphous 
minerals on the adsorption of glyphosate depends primarily on the nature and properties 
of the soil itself and the properties of glyphosate. Environmental factors have some 
influence on sorption and degradation of glyphosate. Glyphosate is rapidly inactivated in 
soil, is in part due to adsorption. Some soil properties have been identified strongly 
influence adsorption of glyphosate, such as clay minerals, composition of cations in 
exchangeable site of clay and organic matter, unoccupied phosphate adsorption site, degree 
of humification, and soil pH. Adsorption limits the availability of glyposate for microbial 
degradation. The sorbed glyphosate is not directly available to microorganisms in soil. 
Evidence also suggests that not only a strongly sorbed compound such as paraquat but also 
weakly sorbed compounds such as flumetsulam and picloram can persist for long periods 
when they are sorbed by soil constituents. This suggests that the interaction between 
sorption and biodegradation should be considered in predicting the fate of pesticides in 
soils and sediments. 
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Introduction  

 
In order to be able to effectively control the 

environmental risk resulting from the application of 
pesticides, it is important to understand how pesticides 
behave in soils and water. Soil is the ultimate sink for 
many pesticides used, while at the same time, soil may 
become a source from which pesticide residues can 
move into living organisms, ground and surface waters 
and the atmosphere (Gerstl and Mingelgrin 1984; Rao 
and Hornsby, 2001).  

Pesticides can reach soils either by direct 
application or indirectly, for example, from inaccurate 
spraying technique, runoff, rain and dust. Some 
pesticides can also be absorbed by plant through the 

leaves and may remain unchanged and become part of 
soil organic matter with the death of leaves and 
subsequent decay of the plant (Burns 1975; Rampazzo, 
2009). 

When pesticides reach the soils, they may 
undergo one or more of several processes. These 
include evaporation, photochemical degradation, 
leaching, runoff, plant removal, adsorption, chemical 
and microbial degradation (Rampazzo, 2009; Kanissery, 
et al, 2019; Sarkar, et al, 2020). Adsorption and 
degradation are two of the most important processes 
influencing the residue behaviour of most pesticides in 
soils and sediments (Cox, et al. 1993; Hermosin & 
Carnejo 1990; Rao and Hornsby 2001). These processes 
are not only control the mobility and potential for 
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leaching of the pesticide away from the site of 
application but also strongly influence the uptake of 
pesticide by plant root and soil fauna (Gerstl & 
Mingelgrin, 1984; Simonsen, et al, 2008)  

Adsorption and degradation of pesticides and 
other organic compounds in soils and sediments have 
been extensively reviewed in the literature (Calvet, 
1980; Hance, 1988; Hassett&Banwart 1989; Koskinen& 
Harper 1990; Bollag & Liu, 1990; Cork & Krueger, 1991; 
Arunakumara et al. 2013; Sviridov, et al, 2015; Sadegh-
Zadeh, et al, 2017; Kanissery, et al, 2019). This review 
will discuss the basic concept of adsorption in relation 
to the sorptive properties of soil, will consider factors 
which influence adsorption and degradation of 
pesticides in soils, how sorption influences degradation 
of pesticides, kinetics of biodegradation of sorbed 
chemicals, and the behaviour and metabolism of 
glyphosate in soil and sediments. 

Glyphosate is pre-emergence herbicide and 
widely used in agriculture to control wide range of 
weeds (Kremer and Means, 2019). Considerable 
information is available on the chemistry of glyphosate, 
its mode of action, and the effect of this compound on 
the plant metabolism (Piccolo & Celano, 1994; Mallik, et 
al. 1989; Sadegh-Zadeh, et al, 2017). However, very 
little information is available on the ehavior of this 
compound in a wide range of soils (Torstensson, 1985; 
Ronaldo, et al, 2017)). The rate of decomposition of this 
compound in soil has been shown to be strongly 
dependent on the sorption characteristic of soil 
(Eberbach 1998; Wang, et al, 2016; Zhang, et al, 2015), 
yet a simultaneous process of sorption-desorption, and 
the influence sorption on the rate of decomposition in 
soils is not well understood. Moreover, little is known 
regarding the influence of environmental factors 
particularly temperature on the sorption and 
decomposition of this compound. 

A major gap in our understanding of the fate of 
pesticide in soil and water is inability to predict the 
influence of sorption on biodegradation. This is due to 
a lack of a method, which is capable of quantifying the 
various strengths of adsorption that exist where 
multiple sorption mechanisms exist. A method should 
look at how strength of adsorption influences the rate 
of herbicide degradation “in situ”. The use of a Non 
Steady State Compartmental Analysis (NSSCA) 
(Winkler, 1971) using glyphosate degradation data has 
been shown to discriminate between the soluble and 
sorbed glyphosate “in situ” (Eberbach, 1998). This 
technique shows its applicability for explaining the 
dependence of herbicide degradation on strength of 
adsorption, but as yet has not been used extensively in 
herbicide research (Suwardji, 1998). 

This review paper is a part of three consecutive 
reseach papers will be published in this Journal of 
Research in Science Education. 
 

Method 
 

Some scientific publications used in this review 
are from books and articles from scientific papers 
published in international journals related to the 
sorption behavior of glyphosate in soil and water and 
its relationship to the process of glyshoste 
decomposition behavior. Data from various sources of 
information are then analyzed descriptively to discuss 
The Fate of Glyphosate in Soil and Water containing:  
What is the glyphosate; Interaction beween glyphosate 
and soil: (1) The role of clay minerals on adsorption, (2) 
The role of organic material on adsorpsion, (3) The role 
of pH in adsorption, (4) Movement of glyphosate in soil 
and water; Degradation of glyphosate in soil and water; 
Conclussion. 

 
Result and Discussion 
 
What Is the Glyphosate 

Glyphosate, the active ingredient of the herbicide 
Roundup and others is widely used to control a wide 
range of perennial and annual weeds. The chemical 
structure of this compound is presented in the Figure 1. 
Glyphosate has been reported to be rapidly inactivated 
when in contact with mineral and organic soils 
(Sprankle, et al, 1975b; Suwardji, 1998), and this rapid 
inactivation of glyphosate in soil has been suggested to 
be a result of rapid adsorption to soil constituents. 

 
Figure 1. Chemical stucture of glyphosate 

 
In a study of behaviour of glyphosate residue in 

soil using bioassay plants, Sprankle, et al. (1975a) found 
that the application of 56 kg ha-1glyphosate on clay 
loam and mucksoil did not significantly reduce the dry 
weight of wheat. The dose used in this experiment was 
25 times of the proposed dosage normally used to 
control weeds. Similar results have been reported by 
other authors (Moshier, et al. 1976; Moshier & Penner, 
1978a; Klingman & Murray, 1976; Egley & William, 
1978; Blowes, et al. 1985). As the roots of plant have 
been reported to be unable to absorb glyphosate 
(Hance, 1976), low activity of glyphosate in soil in these 
studies may be due to the combination of moderate 
adsorption and low acropetal uptake of this compound 
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when applied to the root (Hance, 1976). 
Due its strong adsorption of this compound 

when in contact with the soil constituents and rapid 
degradation in soil and water, it is generally believed 
that this compound is considered to be an 
environmentally safe.  

 
Interaction between Glyphosate and Soil 

How glyphosate binds to the soil particles is not 
well understood. Using bioassay plants, Sprankle et al. 
(1975a) found that a correlation existed between plant 
injury and the increase in the amount of inorganic 
phosphate applied to soils treated with glyphosate. 
This result suggested that glyphosate and inorganic 
phosphate may share the same adsorption site on soil, 
and that phosphate may have stronger affinity to 
compete with glyphosate for the adsorption sites. 
Consistent with this result, Hance (1976) showed that 
glyphosate adsorption has some correlation with the 
amount of unoccupied phosphate adsorption site in a 
wide range of soils, r2 = 0.72, n=9. This suggested that 
glyphosate is likely to be adsorbed by soil constituents 
in a similar mechanism to that of orthophosphate but 
that orthophosphate is adsorbed preferentially. 

Current work has been performed to further 
understand of the mechanism of sorption of glyphosate 
in soil. In an attempt to understand the mechanism 
binding of glyphosate to soil constituents, the 
interaction between glyphosate and humic acids and 
metal-humic complexes have been intensively 
investigated (Miano, et al., 1992; Piccolo, et al., 1992; 
Piccolo & Celano, 1994; Piccolo, et al. 1994; Piccolo, et 
al. 1995a; Suwardji, 1998). Piccolo, et al., (1994) showed 
that adsorption of glyphosate in some European soils 
increased with an increase in the amount of amorphous 
iron (oxalate extractable). This finding confirmed the 
postulated ligand exchangemechanism as proposed by 
Sprankle, et al., (1975a) and Torstensson, (1985) for 
glyphosate, in which a hydroxyl of the iron hydration 
sphere is exchanged by the P-OH group of the 
phosphonic moiety of the glyphosate. Moreover, the 
adsorption isotherm study of glyphosate on Fe-humic 
complex showed the S-type of the Giles (1960) 
classification. The S-type adsorption isotherm explains 
the relationship of the attraction between the 
glyphosate molecules in solution and those already 
adsorbed on the substrate and thereby producing an 
enhanced affinity at higher concentration (Piccolo, et al. 
1992). This result suggests that there are two adsorption 
mechanisms operating simultaneously. At low 
glyphosate concentration, adsorption occurs through 
the exchange of an hydroxyl associated with the iron 
hydration sphere by a P-O- group of the phosphonic 
moiety of herbicide (Piccolo et al. 1992; Piccolo, et al. 
1995b). This type of interaction is considered to be very 

strong binding and occurs during the phosphate 
fixation on iron hydrous oxides in soil (Parfitt et al. 
1975). At high concentrations of herbicide, glyphosate 
to be adsorbed on already adsorbedmolecules by 
intermolecular hydrogen bonding that may occur 
between the electronegative atoms of the herbicide 
(Piccolo, et al., 1992; Piccolo, et al., 1995a). Further 
investigations of the interactions between glyphosate 
and pure humic acid demonstrated that glyphosate 
could establish multiple hydrogen bonding (Miano, et 
al., 1992). They showed that the interaction of 
glyphosate and humic acids (HA) is through the 
formation of multiple hydrogen bond as evidenced by 
infrared spectra with strong two absorption bands at 
1170 and 1090 Cm-1 for the stretching of the P=O and P-
O bonds of the phosphono groups of glyphosate. Picolo 
and Celano, (1994) suggested that the multiple 
hydrogen bonding may occur between phosphonic 
group of glyphosate and complementary oxygen-
containing functional groups of the humic acid such as 
ketones and qui-ketones (Piccolo & Celano, 1994). 
Results from fluorescence spectra of the HA-glyphosate 
sample confirmed the occurrence of an increasing 
desegregation of humic molecules, possibly ascribed to 
the formation multiple hydrogen bonds by glyphosate 
(Miano, et al., 1992). 

 
1. Role of Clay Minerals In Adsorption 

Results of many studies of the role of clay 
minerals on sorption of glyphosate are ambiguous in 
the literature. The type of clay mineral is considered to 
have some influence on adsorption of glyphosate. For 
example, Miles and Moye, (1988) reported that 
glyphosate was much more extensively adsorbed by 
kaolinite and bentonite than by montmorillonite. By 
contrast, Glass (1987) showed that more glyphosate was 
adsorbed by illite than by kaolinite or montmorillonite. 
Inconsistent results in the literature of the effect of type 
of clay minerals on the adsorption of glyphosate may 
partly be due to the different concentration ranges of 
solutions used for adsorption study. For example the 
concentration of glyphosate solution used for 
adsorption study by Glass (1987) is almost 100 times 
greater than that used by Miles and Moye, (1988). 

Further studies showed that the composition of 
cations on cation exchange sites of soil solids has a 
strong influence on adsorption of glyphosate. Sprankle 
et al., (1975b) investigated the influence of cation 
composition on bentonite clay using a wheat bioassay. 
They saturated bentonite clay with particular cations 
and treated with glyphosate at either 0 or 4.8 L ha-1 of 
Roundup (360a.i. g-1 ha-1). Poor wheat growth was 
observed on the bentonite clay saturated with Na+, 
Ca2+, Mg2+, suggesting lower adsorption of glyphosate 
in clays saturated with these cations. As glyphosate is 
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unlikely to be absorbed through plant roots (Hance 
1976), poor wheat growth in the clay saturatedwith 
Na+, Ca2+, Mg2+ may be due to inhibition of wheat roots 
by the soluble glyphosate and subsequent lower uptake 
of nutrients and water. In contrast, greater plant growth 
was observed under bentonite clay saturated with the 
Zn2+, suggesting greater adsorption of glyphosate. No 
differences in the fresh weight of the shoot of wheat 
plant was noted on clay saturated with Mn2+ and Al3+ 
and then treated with glyphosate (Sprankle et al. 
1975b). Results from an adsorption studyusing 14C-
glyphosate confirmed the bioassay study (Sprankle et 
al. 1975b). In this study, glyphosate adsorption on 
bentonite clays saturated with cations decreased as: 
Al3+> Fe3+> Mg2+> Zn2+> Mg2+>Zn2+> Mn2+> 
Ca2+(Sprankle et al. 1975b) The strong adsorption of 
glyphosate to Al3+ and Fe3+ further supported the 
concept that phosphate might be implicated in 
adsorption (Torstensson, 1985). 

It is possible that bentonite saturated with Fe and 
Al exchanges sufficient amounts of the Fe and Al into 
the solution to enable these two metals to bind 
glyphosate by forming a chelate. A chelation of 
glyphosate has been postulated by McBride (1994). He 
pointed out that glyphosate is capable of forming a 
terdenate (three bonds) or tetradenate (four bonds) 
chelate with several of the coordination position on the 
surface metal ions being occupied by ligand group 
(Figure 2). 

 
Figure 2.Chelate formation between lyphosate and iron 

(McBridge 1994) 

 
Like clays, cations in association with the surface 

of organic matter have a strong influence on the extent 
of glyphosate adsorption. When glyphosate was 
applied in the organic mattersaturated with Ca2+ or 
Na+, a significant reduction of fresh weight of wheat 
plants was apparent (Sprankle, et al., 1975b) indicating 
of little adsorption of glyphosate. However, the organic 
matter saturated with Mn2+, Fe3+ or Al3+ did not 
significantly reduce the fresh weight of wheat, 
indicating greater adsorption of glyphosate. Moreover, 
Hensley, et al., (1978) reported that the increased 

percentage of soil organic matter and the addition of 
Fe3+ and Al3+ reduced the soil activity of glyphosate, 
but inactivation of glyphosate did not well correlate 
with the amount of soil organic matter and cation 
exchange capacity. This indicates that saturation of 
cations on the organic matter was much more 
important than both the amount of soil organic mater 
and the amount of cation exchange sites available. They 
suggested that adsorption of glyphosate onto organic 
matter might be enhanced by the formation of Fe3+ and 
Al3+ complexes with glyphosate. They also noted that 
there was no significant inactivation of glyphosate with 
the addition of CaCl2, NaCl, and KCl butthe addition of 
FeCl2, FeCl3, and AlCl3 significantly reduced the 
activity of glyphosate. Further, a precipitation test 
indicated that a red-brown precipitate was formed 
when glyphosate and FeCl3were allowed to stand in 
solution. They suggested that the adsorption of 
glyphosate may partly be due to the formation of metal-
glyphosate complexes, perhaps similar to those 
postulated by McBride (1994). 

 
2. The role of organic material on adsorption 

The adsorption of glyphosate on soil organic 
matter has been shown to be related to the degree of 
humification of organic matter. The application of 
glyphosate to a muck (organic) soil did not injure 
Barnyard grass (Echinochloa crugalli (L) Beauv) and 
Italian grass. Sprankle, et al., (1975b) demonstrated that 
glyphosate was rapidly inactivated in muck soil. 
However, when glyphosate was applied into 
sphagnum peat (non-decomposed plant materials), 
injury of Barnyardgrass (Echinochloa crugalli (L) 
Beauv) and Italian ryegrass (Lilium multiflorium Lam) 
was observed, indicating that non-decomposed organic 
matter did not render glyphosate unavailable. As 
previously mentioned the plant root system is unlikely 
to be able to absorb glyphosate, hence the injury of 
Barnyardgrass or Italian ryegrass could be due to 
substantial amount of glyphosate residue in soil 
solution which may inhibit the root system of the 
seedling plants in the early establishment. These results 
suggest that the fresh plant materials do not render 
glyphosate biologically unavailable. 
 
3. The role of pH in Adsorption 

The pH of soil systems influences the adsorption 
of glyphosate. Glyphosate is zwitterionic, therefore the 
charge structure of the molecule is dependent on the 
pH of the systems (Sprankle, et al., 1975b) as shown in 
the Figure 2. 12. Some studies showed that soil pH had 
little effect on adsorption of glyphosate (Sprankle, et al. 
1975b; Hance, 1976). However, McConnell and Hossner 
(1985) showed a strong negative correlation between 
pH and adsorption of glyphosate by montmorillonite 
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and nontronite minerals. At lower pH, there was a 
greater attraction between glyphosate and these clay 
minerals. This may have been due to an increase in 
positive charge on the end of layer clays at low pH. As 
the soil pH increases (> 4.5), glyphosate becomes an 
activated anion, resulting in the electrostatic repulsion 
between the negatively charged clay mineral and 
glyphosate (McConnell & Hossner, 1985). Similar 
observations were observed for the adsorption of 
glyphosate on kaolinite, hematite and goethite 
(McConnell & Hossner, 1985). In this study, the 
maximum adsorption of glyphosate by kaolinite was 
achieved at pH 4.5, the adsorption decreases as pH 
increases or decreases to the value of 4.5. This was 
probably due to the zero point of net charge (ZPNC) of 
this clay mineral being 3.7. At pH below 3.7 the end 
surface of kaolinite was net positively charged while at 
above pH 3.7 was neutral to negatively charged 
(McConnell & Hossner, 1985).  

 

 
Figure 3. Proposed dissociation diagram and ionisation 

constant for glyphosate (Sprankle et al. 1975). 
 
Both glyphosate and kaolinite lose their 

exchangeable proton as pH is raised. As a result both 
glyphosate and kaolinite become anionic, a decrease in 
the strength of adsorption occurs due to increasing 
repulsion between glyphosate and clay system. Similar 
patterns were observed for hematite and goethite. This 
evidence indicates that the pH of soil systems might 
influence the adsorption of glyphosate by two ways: (i) 
determine the charge structure of glyphosate, and (ii) 
influence the surface charge of pH dependent clays 
(McConnell & Hossner, 1985). 

More recently, Nicholls and Evans, (1991) 
showed that the maximum sorption of phosphate was 
similar in strength to that of glyphosate (Figure 4) and 
occurred at similar values of pH. However when pH 

increased from pH 8 to 10, adsorption of glyphosate did 
not decrease as much as that of phosphate. At pH 
values above 8.5, the phosphate started to increase in 
such a way notobserved for glyphosate. While there 
may be some similarities in the binding mechanism 
between glyphosate and phosphate, the current 
evidence suggests that this mechanism is not the only 
binding mechanism operable and that other binding 
mechanisms of glyphosate are likely to exist. 
 

 
Figure 4. The influence of pH on the sorption of glyphosate 
(a) and inorganic phosphate (b). The R and W are silty clay 

and sandy loam soils respectively. Closed symbols are for soil 
where pH was adjusted by adding HCl or Ca (OH) solution 

(Nicholls & Evans 1991). 
 

 
4. Movement of Glyphosate In Soil And Water 

Glyphosate is considered to be fairly immobile in 
soil. Using soil thin-layer plates, Sprankle, et al. (1975b) 
found that mobility of glyphosate is very slow with RF 
values from 0.04-0.2. The mobility of glyphosate in the 
thin soil layer increased with increasing soil pH and 
level of phosphate in soil. The addition of phosphate is 
likely to compete with glyphosate for some adsorption 
sites, and leave more glyphosate in the soil solution. 
However runoff studies confirmed that glyphosate is 
relatively immobile and leaching is unlikely to occur in 
the field (Edwards, etal., 1980). 

A recent study suggests that glyphosate may 
leach to deep layers in the soil profile. Piccolo and 
Cellano, (1994) investigated the binding interaction 
between glyphosate and water-soluble humic 
substances, and found that these substances were 
capable of rendering glyphosate becomes “biologically 
inactive” thatwater soluble. This humic substances 
finding may influence suggest the partitioning 
glyphosate at the soil-water interface and sufficient 
amount of glyphosate may bedistributed on the surface 
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of soluble organic matter. And as the water-soluble 
humic substances are regarded as an important carrier 
of organic contaminants (Spark 1998), the adsorption of 
glyphosate on the surface of water-soluble humic 
substance may serve as a mechanism for enhanced 
mobility (Piccolo & Cellano, 1994). The significance of 
dissolved humic acids inenhancingthe   mobility   of   
glyphosate   in   agriculture. However, as the amount of 
the dissolved humic substances in most soils is 
considered to be very low, it is likely to have only a 
minor role in affecting the movement of glyphosate in 
soil. However in agricultural practices in which sewage 
sludge is applied, leaching of glyphosate may be more 
prominent. 
 
Degradation of Glyphosate in Soil and Water 

Rapid biodegradation has been suggested to be 
the main route of glyphosate disappearance in soil and 
sediments (Bronstad & Friestad, 1985; Sprankle, et al., 
1975b; Torstensson, 1985; Rueppel, et al., 1977). Other 
processes such as chemical and photo decomposition 
have been shown to be oflittle importance regarding the 
decay of glyphosate in soil (Nomura & Hilton, 1977; 
Rueppel, et al., 1977). However, Bronstad and Friestad, 
(1985) pointed out that photolysis may be an important 
process in influencing the disappearance of glyphosate 
in the aquatic system. 

Results of many studies have shown that while 
soil microflora are responsible for decomposition of 
glyphosate in soil (Al Rajab et al, 2019; Sprankle, et al. 
1975b; Torstensson & Aamisepp, 1977; Rueppel, et al. 
1977, & Torstensson, 1985), the dominant process for 
decomposition is co-metabolism. Hence 
microorganisms do not use this compound as a carbon 
(C) or energy source (Sprankle, et al., 1975b; 
Torstensson & Aamisepp, 1977; Nomura & Hilton, 
1977), but that degradation is likely to be due to soil 
enzymatic activity and no adaptation to growth on the 
herbicide or energy gain by organism has been 
observed (Torstensson & Aamisepp, 1977; Torstensson, 
1985). To date no soil microorganisms have been 
isolated from the field soil, which utilize glyphosate as 
carbon source (Carlisle & Trevors, 1988). However, 
some Pseudomonas spp. isolated from activated sludge 
have been reported to be able to utilise glyphosate as a 
P source (Moorman, 1993). 

Robertson and Alexander (1994) investigated the 
relationship between the occurrence of accelerated 
pesticide biodegradation and the susceptibility of the 
pesticide to growth-linked degradation and 
cometabolism. They found a slight increase in 
glyphosate metabolism in the second application but 
was not significantly different (P < 0.05). The initial 
amount of the population of glyphosate metabolising 
micro-organisms of 3.9 x 10-4 mL-1 rose shortly after the 

first addition of glyphosate, but the second addition of 
glyphosate was not accompanied by a marked increase 
in cell number. As there is no significant increase in the 
rate of metabolism and the number of cells observed in 
the second addition, it is evident that microbes are 
unlikely to be able to utilise glyphosate as an energy 
source. 

Many decomposition studies have used 14C-
glyphosate to evaluate the rate of decomposition of 
glyphosate in soil (Torstensson, 1985). This method is 
attractive because measuring the evolution of 14CO2 is 
simple. However, the major disadvantage of this 
method is that the primary substance (glyphosate) is 
not analysed for (Torstensson, 1985). The use of the 
14CO2-evolution rate as a measure of the rate of 
glyphosate degradation is only correct if 14CO2 is 
released as 14C-glyphosate degrades (Torstensson 1985). 
Eberbach (1998) showed that the loss of triethylamine 
extractants glyphosate (250C) occurred at the same rate, 
as did the evolution of 14CO2. Other work by Eberbach 
1998 also indicated that AMPA was only a transitory 
immediate of glyphosate metabolism. These findings 
indicate that the rate of 14CO2 evolution closely reflects 
the rate of 14C-glyphosate decomposition in soil. The 
degradation of glyphosate has been reported to be very 
rapid in the first few days slowing down with time to 
the steady state rate of decomposition (Eberbach, 1998; 
Nomura & Hilton, 1977; Torstensson, 1985). Rapid 
decomposition of glyphosate in the first few days has 
been thought to be due to rapid metabolism of soluble 
(un-bound) glyphosate. While the slow degradation in 
the later stage was ascribed to the decomposition of 
glyphosate from the most slowly available (the bound 
fraction) (Eberbach, 1998; Nomura & Hilton, 1978; 
Torstensson, 1985). 

A number of factors affect the degradation of 
glyphosate in soil. The addition of phosphate enhanced 
the degradation of glyphosate in some, but not all soils 
(Sprankle, et al., 1975b; Hensley, et al., 1978). The 
reason for this is not clear but this may in part be due to 
differences in the extent ofun-occupied phosphate 
adsorption sites as, it has been found to correlate highly 
with the adsorptionof glyphosate (Hance, 1976). The 
addition of cations such as Fe and Al inhibited 
glyphosate degradation (Moshier & Penner 1978b). This 
is particularly due to a change in the adsorption site, 
and hence the availability of glyphosate in soil. More 
recently, Picollo, et al. (1995a) found that the complexes 
Fe-humic substances were capable of adsorbing 
glyphosate in soil and may reduce its availability for 
decomposition. Soil pH has also been reported to have 
little effect on the degradation of glyphosate (Moshier 
& Penner, 1978b). 

The half-life of glyphosate in soil is quite 
variable, ranging from few days to several years 
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(Eberbach 1998; Nomura & Hilton 1977; Torstensson 
1985). In a study using four Victorian soils, Eberbach 
(1998) showed that the half-life of glyphosate in the 
soluble phase was very short; in the order of one week. 
However the estimate half-life of glyphosate in the 
sorbed phase varied considerably; in the 4 soils 
investigated half-lives ranged from 7 months to 6 years. 
Eberbach (1998) suggested that this be attributed to the 
influence of sorption-desorption characteristic of soil on 
the availability of this compound for microbial 
cometabolism. A considerable difference in the rate of 
glyphosate decomposition between soils reported in the 
literature may be due to differences in the strength of 
adsorption that render glyphosate un-available for 
decomposition. 

 

Conclussion 
 
The behaviour of pesticide particularly 

glyphosate in soil and sediment have been discussed. 
The nature and properties of a pesticide strongly 
influence the way by which it can be adsorbed by soils 
and sediments. The role of soil organic matter, clay 
mineral, and amorphous minerals on the adsorption of 
pesticide depends primarily on the nature and 
properties of the soil itself and the properties of 
pesticide. Environmental factors have some influence 
on sorption and degradation of pesticide. 

Adsorption limits the availability of pesticide for 
microbial degradation. The sorbed pesticide is not 
directly available to microorganisms in soil. Evidence 
suggests that not only a strongly sorbed compound 
such as paraquat but also weakly sorbed compounds 
such as flumetsulam and picloram can persist for long 
periods when they are sorbed by soil constituents. This 
suggests that the interaction between sorption and 
biodegradation should be considered in predicting the 
fate of pesticides in soils and sediments. 

Glyphosate is rapidly inactivated in soil, is in 
part due to adsorption. However adsorption of 
glyphosate may not occur in some sandy soils with low 
adsorption capacity. Some soil properties have been 
identified that strongly influence adsorption of 
glyphosate, such clay minerals, composition of cations 
in exchangeable site of clay and organic matter, 
unoccupied phosphate adsorption site, degree of 
humification, and pH. Even though there is a similarity 
in the mechanism of binding between glyphosate and 
phosphate to soil solids, current evidence suggests that 
this mechanism is not the only binding mechanism 
operable, and that other binding mechanisms of 
glyphosate are likely to exist. The influence of 
phosphate on adsorption and decomposition of 
glyphosate in soil is not fully understood. The addition 

of phosphate increased the rate of glyphosate 
degradation in some soils but did not have such an 
effect in all soils. As phosphate is the common fertilizer 
applied in agriculture practice and it is applied in high 
amount in horticulture system, it is important to gain 
understanding the competition effect of phosphate on 
the adsorption behaviour of glyphosate that may occur 
in soil. Understanding the basic mechanism of sorption 
and desorption is required to avoid situation which 
may trigger the release of bond residues of glyphosate 
in field situations. In addition, information is lacking in 
the literature on the influence of environmental factors 
particularly temperature, concentration and repeated 
applications on adsorption and decomposition of 
glyphosate in soil. 

Degradation of glyphosate is mainly through 
biodegradation and the dominant process is 
cometabolism. Rapid initial degradation followed by 
slower rate of degradation in the further stage suggests 
that adsorption influences its availability for microbial 
degradation. Little information is available on the 
influence of adsorption characteristic of wide ranges of 
soils on the rate of glyphosate degradation. The use of 
non steady state compartmental analysis provides a 
good tool to evaluate the dependence of glyphosate 
degradation on sorption characteristic of soil (Suwardji, 
2000), and this technique has shown its applicability to 
evaluate the simultaneous processes of sorption-
desorption and degradation of this compound to allow 
for a clear understanding of their interrelationship. 

Repeated applications of glyphosate will become 
common practice in the near future with development 
of glyphosate tolerant crops. This may influence 
partitioning of glyphosate into the soluble and sorbed 
phases and sorption-desorption behaviour of this 
compound in soil. To date, little, if any information is 
available in the literature on the influence of repeated 
applications of glyphosate on sorption dynamic and 
decomposition of this compound in soil. 
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