

Improving Environmental Literacy and Creative Thinking Skills Through Earth and Space Science Integrated Eco-Pedagogy (ESS-EcoP) Module

Nurasyah Dewi Napitupulu^{1*}, Miftah¹, Muhammad Zaky¹, Siddik¹, Amelia Septianti¹, Regina Chalista Agata Talokon¹

¹Department of Physics Education, Universitas Tadulako, Palu, Indonesia.

Received: August 11, 2024

Revised: December 02, 2024

Accepted: January 25, 2025

Published: January 31, 2025

Corresponding Author:

Nurasyah Dewi Napitupulu

nurasyahdewinapitupulu@gmail.com

DOI: [10.29303/jppipa.v11i1.9878](https://doi.org/10.29303/jppipa.v11i1.9878)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Eco-pedagogy is an educational approach that places emphasis on the relationship between humans and the natural world, and encourages the undertaking of practical actions for the benefit of environmental sustainability. The objective of this study is to enhance students' environmental literacy and creative thinking abilities through the Earth and Space Science (ESS) integrated eco-pedagogy (EcoP) modules. This research is development research (R & D) using 4-D model by Thiagarajan. The research subjects were 22 prospective physics teacher students. Data on environmental literacy and creative thinking skills were collected through pre-test and post-test by using the environmental literacy test and creative thinking skills questionnaire. The results demonstrated that the implementation of the validated ESS-EcoP module integrated with eco-pedagogy can markedly enhance 65.05% students' environmental literacy and 55.49% students' creative thinking skills. This research is anticipated to contribute to the advancement of innovative learning models that can augment students' awareness and concern for the environment.

Keywords: Creative thinking skill; Environmental literacy; ESS-EcoP

Introduction

Global environmental crises such as climate change, pollution, loss of biodiversity and damage to ecosystems remain pressing issues facing the world today (Abbass et al., 2022; Malhi et al., 2020; Upadhyay, 2020; Maximillian et al., 2019). Efforts to address them require awareness and a deep understanding of human interactions with the environment (Kabir et al., 2023; Napitupulu et al., 2023; Shivanna, 2022). Unfortunately, environmental literacy among the general public, including at the university level, is still relatively low (Masalimova et al., 2023; Aikowe, 2022; Debrah et al., 2021). Students, as the next generation, need to be equipped with knowledge and skills that can increase

their awareness of environmental issues (Debrah et al., 2021; Maurer & Bogner, 2020; Kamil et al., 2020; Fawehinmi et al., 2020), especially as they face increasingly complex future challenges. Environmental literacy, which includes the understanding, attitudes and skills needed to actively participate in the preservation and improvement of the environment, is increasingly important to be strengthened in the educational process (Maurer & Bogner, 2020; Biswas, 2020).

The implementation of an eco-pedagogy-based learning approach has been demonstrated to be an effective strategy for enhancing environmental literacy (Amaliati et al., 2024; Kotaman et al., 2022; Sukma et al., 2020). Eco-pedagogy places significant emphasis on the

How to Cite:

Napitupulu, N. D., Miftah, Zaky, M., Siddik, Septianti, A., & Talokon, R. C. A. (2025). Improving Environmental Literacy and Creative Thinking Skills Through Earth and Space Science Integrated Eco-Pedagogy (ESS-EcoP) Module. *Jurnal Penelitian Pendidikan IPA*, 11(1), 734-741.
<https://doi.org/10.29303/jppipa.v11i1.9878>

necessity of an educational approach that not only prioritizes cognitive development but also fosters emotional and ethical engagement with the surrounding environment among students. Prior research indicates that this pedagogical approach can enhance students' environmental awareness and facilitate critical and creative thinking in addressing ecological issues (Yevira et al., 2023; Pratiwi et al., 2019). Nevertheless, despite the numerous advantages that have been identified, the implementation of eco-pedagogy at the tertiary level, particularly in courses that are directly related to environmental science, such as Earth and Space Science (ESS), remains limited.

The objective of the ESS course is to provide students with a comprehensive understanding of the earth and space systems, including the interactions between various natural components (Campbell, 2023; Uzorka et al., 2024). The course encompasses the study of the earth system (atmosphere, hydrosphere, lithosphere, biosphere) and space (from its structure to its technology) without a focus on the environment (Johnson & Ruzek, 2000; Huggett, 2023). The incorporation of eco-pedagogy into the ESS course materials serves as a foundational element in fostering a scientific understanding of the earth and space and its relevance to human life (Hidayanti et al., 2018; Azizah et al., 2024; Chumakov, 2023). The course's essence extends beyond the mere transmission of knowledge, encompassing the development of environmental awareness, critical and creative thinking skills, and the capacity to address problems pertaining to the sustainability of the earth and its ecosystems (Taimur & Sattar, 2020). The availability of eco-pedagogy-integrated learning modules is instrumental in facilitating students in this regard.

The role of ESS books based on eco-pedagogy in fostering an environmentally conscious and responsible younger generation is paramount (Fiel'ardh et al., 2023). Integrating scientific knowledge of earth and space with the principles of sustainable education, this book offer profound insights into pressing ecological issues and cultivate critical thinking and ethical action towards environmental challenges in students (Simmons, 2019). The interactive nature of ESS, coupled with its hands-on approach and books, facilitates students' comprehension of the intricate relationship between humans and nature (Abrunhosa et al., 2020). This, in turn, fosters a sense of agency, inspiring students to become proactive agents of change, committed to the preservation and sustainability of our planet (Uzorka et al., 2024). Consequently, it functions not only as a repository of knowledge but also as a pivotal instrument in fostering environmental awareness and commitment among the forthcoming generation (Azizah et al., 2024; Yadav et al.,

2023). In response to the identified need for improved environmental education, this research project aims to enhance environmental literacy and creative thinking skills through the implementation of the ESS-EcoP module. This module has been validated and designed specifically to facilitate comprehension of complex scientific concepts related to the environment. By engaging with this module, students are encouraged to adopt a more proactive approach to learning, fostering creative thinking as they confront various environmental challenges.

Method

This research is a R & D using 4-D (Define, Design, Develop, Disseminate) model (Widyastuti & Susiana, 2019). The subjects of this research were 22 students enrolled in the Physics Education Program who on going taken Earth and Space Science (ESS) courses. The data presented in this study were obtained through the implementation of the developed and validated ESS-EcoP products. This was achieved through the administration of a pre-test and post-test on the research subjects. The research flow is shown in Figure 1.

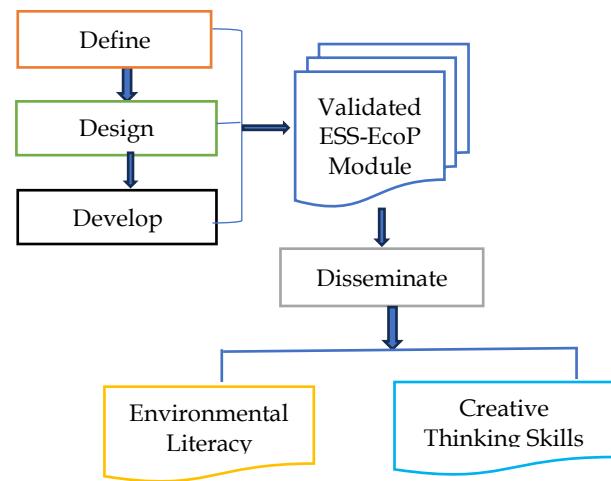


Figure 1 The flow of R & D 4-D model

The research instruments used in this study consisted of ESS-EcoP Environmental Literacy Test, and ESS-EcoP Creative Thinking Skills Test. The research instrument grids are described in Tables 1 to 2.

Table 1. The ESS-EcoP environmental literacy test

Domain of learning outcomes (CPMK)	Number of questions
Cognitive	12
Attitude	10
Skills	10
Total number	32

As indicated in Table 1, the total number of questions is 32. The environmental literacy test is administered in the form of a multiple-choice exam with four possible answers: A, B, C, or D.

Tabel 2. The ESS-EcoP creative thinking skills questionnaire

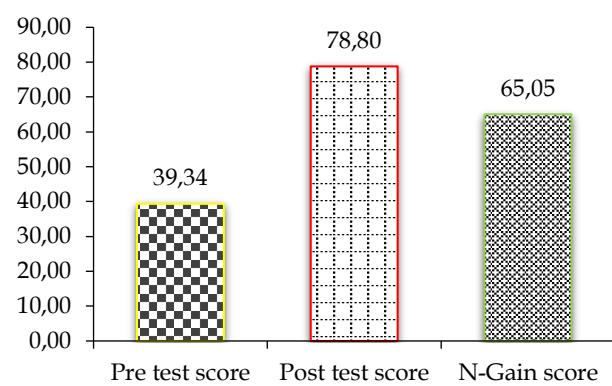
Indicator	Number of questions
Fluency	10
Flexibility	12
Originality	8
Elaboration	10
Total number of questions	40

As indicated in Table 2, the total number of questions is 40. The creative thinking skills questionnaire is administered in the form of Likert scale with four possible answers: always, frequently, rarely, never doing.

In order to ascertain the extent of improvement in students' environmental literacy and creative thinking skills the N-Gain formula is employed the calculation of the normalized gain (N-Gain) score with the N-gain formula according to Hake (1998). The interpretation described in Table 3.

$$N - Gain = \frac{S_{post} - S_{pre}}{S_{max} - S_{pre}} \times 100\% \quad (1)$$

Tabel 3. Creative thinking skills criteria

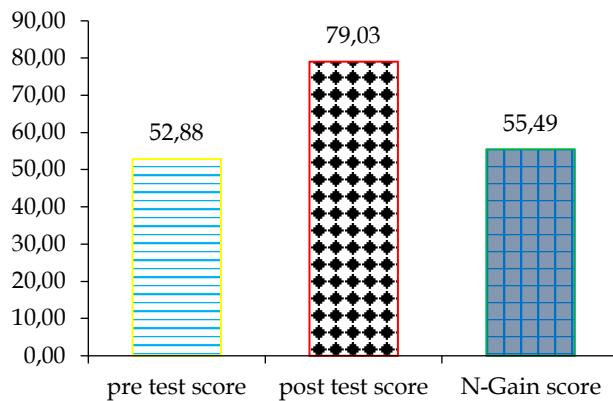

Score N-gain	Categoric interpretation
0.70 ≤ g ≤ 1.00	High
0.30 ≤ g ≤ 0.70	Moderate
0.00 < g < 0.30	Low
g = 0.00	No increase
-1.00 ≤ g < 0.00	Decline

Result and Discussion

The objective of this research is to develop an ESS-EcoP module that is effective in improving environmental literacy and creative thinking skills. The pre-test and post-test scores, along with the n-gain scores after the lecture with the developed ESS-EcoP module, are presented in Figure 2 and 3.

As illustrated in Figure 2, there was a notable enhancement in environmental literacy following the lecture that employed the ESS-EcoP module, with a 65.05% increase observed. Modul are an important component in the learning process, functioning as a tool to achieve predetermined learning objectives (Fiel'ardh et al., 2023; Mashudi et al., 2024; Simmons, 2019). In general, module include material content, delivery

strategies, and evaluations that aim to help students understand the concepts taught (Olitas, 2023; Susilawati et al., 2020). Effective strategies can help students understand and internalize the material better. For example, the use of project-based or problem-based learning (PBL) models has been shown to improve students' critical thinking and collaborative skills. The development of Eco-pedagogy-based teaching materials is able to raise students' awareness of global environmental issues, as this method connects theory with real actions in daily life relevant to ecological issues (Amaliati et al., 2024; Asli et al., 2024; Kotaman et al., 2022; Sovanreach, 2024; Sukma et al., 2020).


Figure 2. Pre-test, post-test, and N-Gain value of environmental literacy

The development of effective modules must align with learning objectives and adapt to students' characteristics and needs to encourage active learning (Mashudi et al., 2024). Quality modules enhance material understanding and support competency achievement (Brown et al., 2024; Enke et al., 2015; Putri et al., 2023; Uzorka et al., 2024). Similarly, the ESS-EcoP module integrates eco-pedagogy to deepen material comprehension and its environmental applications, promoting students' eco-literacy (Amaliati et al., 2024; Fadjarajani & As'ari, 2021).

Based on Figure 3, it was found that students' creative thinking skills increased by 55.49% (moderate category) after using the ESS-EcoP learning module. This finding is consistent with the results obtained in prior study (Pratiwi et al., 2024; Taimur & Sattar, 2020; Yevira et al., 2023).

The availability of module is one of the things that students need in the digital era where access to online literature is very large. However, the presence of learning modules in printed form provides more opportunities for learning in various situations including situations of limited devices and internet networks (Doyan et al., 2024). This situation was experienced by the respondents of this study.

The percentage score of students' creative thinking skills in the ESS course based on the indicators is illustrated in Table 4.

Figure 3. Pre-test, post-test, and N-Gain value of creative thinking skills

Table 4. The N-gain score creative thinking skills

Indicators	N-gain score (%)
Flexibility	61.47
Originality	50.32
Elaboration	54.84
Mean score (%)	55.54

Table 4 illustrates that the most substantial growth in students' creative thinking abilities is observed in the flexibility indicator (61.47%), while the least significant increase is noted in originality (50.32%). These results were obtained from an assessment of students' ability to view problems and provide solution ideas in problem-solving contexts. The module presented a variety of potential solutions to mitigate the impact of climate change, which students were able to develop into creative ideas. However, the creative ideas for solutions to environmental problems still imitate existing ideas that students find through internet searches. This is the reason why the originality indicator has a smaller increase (Jumanto et al., 2024).

Environmental literacy involves an understanding of earth and space systems, an awareness of environmental issues, and the skills to mitigate environmental degradation. It is acknowledged as an urgent skill for the 21st century, as it is crucial to sustainable living (Fang et al., 2023; Noorhalida et al., 2024). Environmental literacy significantly influences the formation of environmentally conscious attitudes and behaviors, particularly among students. Research indicates that individuals with a strong foundation in environmental literacy are more likely to develop positive attitudes toward environmental stewardship, which translates into sustainable practices in their daily

lives (Debrah et al., 2021; Maurer & Bogner, 2020). For instance, a systematic literature review conducted from 2018 to April 2023 highlights the increasing trend of publications focusing on environmental literacy in education, emphasizing its role in promoting conscious lifestyle changes among students (Rofiqi, 2024). The findings suggest that as students engage with environmental education, they become more aware of ecological issues, leading to enhanced critical thinking and responsible decision-making regarding their environmental impact (Fawehinmi et al., 2020; Kamil et al., 2020). On the other hand, students have an ecological awareness as a character trait for sustainable living (Kabir et al., 2023; Napitupulu & Walanda, 2024; Napitupulu et al., 2023; Napitupulu, 2022; Shivanna, 2022).

Furthermore, the correlation between environmental literacy and natural disaster mitigation is one that merits particular attention. A bibliometric analysis spanning from 2001 to 2022 indicates that understanding local ecosystems and environmental conditions can empower individuals to take proactive measures in disaster preparedness and risk reduction (Dwiputra et al., 2024). This includes developing emergency plans that consider local hazards and engaging in community resilience efforts. The increased awareness fostered by environmental literacy initiatives encourages individuals to advocate for sustainable policies and practices that enhance community preparedness against natural disasters. It is imperative to enhance environmental literacy in order to cultivate a generation that is not only aware of environmental issues but also equipped to address them effectively.

As evidenced by recent studies, integrating environmental education into curricula can result in notable behavioral changes among students, promoting sustainable practices and community engagement (Rofiqi, 2024). By prioritizing environmental literacy in educational settings, we can foster a culture of sustainability that prepares individuals to address ecological challenges and contribute constructively to their communities. Therefore, environmental literacy must be developed in students so that they can think creatively in developing various alternative solutions to environmental phenomena (Dewi et al., 2024; Sigit et al., 2024). Based on research findings that indicates a positive correlation between ecological literacy and creative thinking abilities (Sigit et al., 2023). In addition to fostering creative thinking learning modules, whether in the form of e-modules or textbooks, have been demonstrated to enhance a range of skills, including creative thinking, generic science abilities, critical thinking, and conceptual comprehension as

discovered by Doyan et al. (2024) and Miftahurrahmi et al. (2024).

Conclusion

The validated ESS-EcoP module has been demonstrated to be an effective tool for improving 65.05% students' environmental literacy and 55.49% students' creative thinking skills.

Acknowledgments

We thank those who helped with this research. Thanks to the LPPM Tadulako University for their feedback and guidance. Thanks to members of the BLU Funds of the Faculty of Teacher Training and Education, Tadulako University Fiscal Year 2024. Thanks to three physics education students who were involved in this research.

Author Contributions

Conceptualization, N.D.N. and M.; methodology, formal analysis, writing – review and editing, supervision, N.D.N. and S.; software, visualization, M.Z. and A.S.; validation, funding acquisition, N.D.N., M., and M.Z.; investigation, data curation, writing – original draft preparation, M., R.C.A.T., and M.Z.; resources, N.D.N., S., and M.Z.; project administration, M., R.C.A.T., and A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by BLU Funds of the Faculty of Teacher Training and Education, Tadulako University Fiscal Year 2024 In accordance with the Research Program Implementation Assignment Agreement Number: 2659/UN28/KU/2024, Dated May 22, 2024.

Conflicts of Interest

The authors declare no conflict of interest in this study.

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. *Environmental Science and Pollution Research*, 29(28), 42539–42559. <https://doi.org/10.1007/s11356-022-19718-6>

Abrunhosa, M. L., Paz, M., & Vasconcelos, C. (2020). The Hands-on Science Network Hands-on Science Science Education Discovering and Understanding the Wonders of Nature. In *The Hands- on Science Network* (Ed.), *Hands-on Science Network*, (Issue July, pp. 228–234). Retrieved from <http://www.hsci.info/>

Aikowe, J. M. L. D. (2022). Pro-Environmental Awareness of University Students - Assessment Through Sustainability Literacy Test. *International Journal of Sustainability in Higher Education*, 23(3), 719–741. <https://doi.org/10.1108/IJSHE-06-2021-0219>

Amaliati, S., Rusydiyah, E. F., & Bakar, M. Y. A. (2024). Ecopedagogy and Environmental Literacy in Research Trends in Indonesia. *Qalamuna: Jurnal Pendidikan, Sosial, dan Agama*, 16(2), 1083–1100. <https://doi.org/10.37680/qalamuna.v16i2.5359>

Asli, S., Abu-Alhiga, R., Teti, T., Almgmal, S., Hofstein, A., Shehadeh-Nasser, A., & Hugerat, M. (2024). How Participation in a Teachers' Eco-Pedagogy Workshop Affects the Promotion of Teachers' Environmental Education and Organizational Concepts. *European Journal of Educational Research*, 13(1), 341–352. <https://doi.org/10.12973/eujer.13.1.341>

Azizah, H. N., Bahrissalim, B., & Shidiq, S. (2024). Analisis Ekopedagogi dalam Buku Teks Pendidikan Agama Islam Tingkat SMA. *Journal Education and Development*, 12(3), 406–419. <https://doi.org/10.37081/ed.v12i3.6027>

Biswas, A. (2020). A Nexus between Environmental Literacy, Environmental Attitude and Healthy Living. *Environmental Science and Pollution Research*, 27(6), 5922–5931. <https://doi.org/10.1007/s11356-019-07290-5>

Brown, S. G., Savage, A. L., & Horrocks, A. J. (2024). Developing an Inquiry-Based Learning Module with Consideration of Quality by Design Principles for Biomedical Science Students. *Journal of Biological Education*, 00(00), 1–9. <https://doi.org/10.1080/00219266.2024.2399518>

Campbell, M. O. (2023). Earth Systems Science (ESS) and Systems Ecology. In *Biogeochemistry and the Environment* (pp. 113–166). Springer, Cham. https://doi.org/10.1007/978-3-031-47017-2_3

Chumakov, A. N. (2023). The Origins of Geospheric Thinking and Its Significance for Understanding the Global World. *Journal of Globalization Studies*, 14(2), 27–39. <https://doi.org/10.30884/jogs/2023.02.02>

Debrah, J. K., Vidal, D. G., & Dinis, M. A. P. (2021). Raising Awareness on Solid Waste Management Through Formal Education for Sustainability: A Developing Countries Evidence Review. *Recycling*, 6(1), 1–21. <https://doi.org/10.3390/recycling6010006>

Dewi, Y., Farida, F., Fadila, A., & Risqa, A. J. L. (2024). Analysis of Students' Creative Thinking Skills from the Perspective of Environmental Literacy and Digital Literacy Influence. *E3S Web of Conferences*, 482. <https://doi.org/10.1051/e3sconf/202448204002>

Doyan, A., Wahyudi, W., Ayub, S., Harjono, A., & Susilawati, S. (2024). Effectiveness of Thermodynamics Textbooks Assisted by Heyzine

Flipbook to Improve Students' Generic Science, Critical Thinking and Conceptual Understanding. *Jurnal Penelitian Pendidikan IPA*, 10(10), 7839-7844. <https://doi.org/10.29303/jppipa.v10i10.9091>

Dwiputra, D. F. K., Maryani, E., & Susanti, S. (2024). Analyzing The Evolution of Environmental Literacy Research in 21st Education: A Bibliometric Analysis from 2001 to 2022. *Indonesian Journal of Educational Research and Review*, 7(1), 61-72. <https://doi.org/10.23887/ijerr.v7i1.67512>

Enke, J., Kraft, K., & Metternich, J. (2015). Competency-Oriented Design of Learning Modules. *Procedia CIRP*, 32(Cl), 7-12. <https://doi.org/10.1016/j.procir.2015.02.211>

Fadjarajani, S., & As'ari, R. (2021). Ecopedagogy Based Learning as an Effort to Increase Student Ecoliteracy and the Development of Environmental Care Characters. *IOP Conference Series: Earth and Environmental Science*, 683(1). <https://doi.org/10.1088/1755-1315/683/1/012046>

Fang, W., Hassan, A., & Lepage, B. A. (2023). *The Living Environmental Education*. Springer Nature Singapore Pte Ltd. <https://doi.org/10.1007/978-981-19-4234-1>

Fawehinmi, O., Yusliza, M. Y., Mohamad, Z., Faezah, J. N., & Muhammad, Z. (2020). Assessing the Green Behaviour of Academics: The Role of Green Human Resource Management and Environmental Knowledge. *International Journal of Manpower*, 41(7), 879-900. <https://doi.org/10.1108/IJM-07-2019-0347>

Fiel'ardh, K., Fardhani, I., & Fujii, H. (2023). Integrating Perspectives from Education for Sustainable Development to Foster Plant Awareness among Trainee Science Teachers: A Mixed Methods Study. *Sustainability (Switzerland)*, 15(9). <https://doi.org/10.3390/su15097395>

Hake, R. R. (1998). Interactive-Engagement Versus Traditional Methods: A Six-Thousandstudent Survey of Mechanics Test Data for Introductory Physics Courses. *American Journal of Physics*, 66(64). <https://doi.org/doi: 10.1119/1.18809>

Hidayanti, N., Abidin, Z., & Husna, A. (2018). Implementasi Pendidikan Lingkungan Hidup sebagai Kurikulum Muatan Lokal Ekopedagogi dalam Membangun Karakter Siswa di SDN Lowokwaru 2 Malang. *JINOTEP (Jurnal Inovasi dan Teknologi Pembelajaran)*, 4(2), 106-112. <https://doi.org/10.17977/um031v4i22018p106>

Huggett, R. (2023). Soil as Part of the Earth System. *Progress in Physical Geography*, 47(3), 454-466. <https://doi.org/10.1177/03091333221147655>

Johnson, D. R., & Ruzek, M. K. M. (2000). Earth System Science and the Internet. *Computers & Geosciences*, 26(6), 669-676. [https://doi.org/10.1016/S0098-3004\(99\)00102-8](https://doi.org/10.1016/S0098-3004(99)00102-8)

Jumanto, J., Sa'Ud, U. S., & Sopandi, W. (2024). Development of IPAS Teaching Materials with the RADEC Model Based on Metacognitive Strategies to Enhance Critical and Creative Thinking Skills of Elementary School Students. *Jurnal Penelitian Pendidikan IPA*, 10(3), 1000-1008. <https://doi.org/10.29303/jppipa.v10i3.7010>

Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Rios-Escalante, P. R. D. L., Farooqi, Z. U. R., & Ali, L. (2023). Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century: A Mini Review. *Journal of King Saud University - Science*, 35(5), 102693. <https://doi.org/10.1016/j.jksus.2023.102693>

Kamil, P. A., Putri, E., Ridha, S., Utaya, S., Sumarmi, S., & Utomo, D. H. (2020). Promoting Environmental Literacy Through a Green Project: A Case Study at Adiwiyat School in Banda Aceh City. *IOP Conference Series: Earth and Environmental Science*, 485(1). <https://doi.org/10.1088/1755-1315/485/1/012035>

Kotaman, H., Karaboga, İ., Bilgin, S. P., & Tuğrul, B. (2022). Impact of In-Service Environmental Education on Early Childhood Teachers' Environmental Attitude. *Discourse and Communication for Sustainable Education*, 13(2), 26-39. <https://doi.org/10.2478/dcse-2022-0016>

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate Change and Ecosystems: Threats, Opportunities and Solutions. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 375(1794). <https://doi.org/10.1098/rstb.2019.0104>

Masalimova, A. R., Krokhina, J. A., Sokolova, N. L., Melnik, M. V., Kutepova, O. S., & Duran, M. (2023). Trends in Environmental Education: A Systematic Review. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(2). <https://doi.org/10.29333/ejmste/12952>

Mashudi, M., Raharjo, T. J., & Kusmawan, U. (2024). Development of a Science Learning Module using the Guided Discovery Method to Increase Learning Independence and Scientific Literacy Ability. *Jurnal Penelitian Pendidikan IPA*, 10(2), 982-987. <https://doi.org/10.29303/jppipa.v10i2.6244>

Maurer, M., & Bogner, F. X. (2020). Modelling Environmental Literacy with Environmental Knowledge, Values and (Reported) Behaviour. *Studies in Educational Evaluation*, 65(January 2019), 100863. <https://doi.org/10.1016/j.stueduc.2020.100863>

Maximillian, J., Brusseau, M. L., Glenn, E. P., & Matthias, A. D. (2019). Pollution and Environmental Perturbations in the Global System. In *Environmental and Pollution Science* (3rd ed.). Elsevier Inc. <https://doi.org/10.1016/b978-0-12-814719-1.00025-2>

Miftahurrahmi, M., Rahim, F. R., Gusnedi, G., & Sari, S. Y. (2024). An Investigation into the Assessment of Critical Thinking Skills in Physics Textbooks for Grade X Semester II at Senior High Schools. *Berkala Ilmiah Pendidikan Fisika*, 12(1), 49. <https://doi.org/10.20527/bipf.v12i1.15852>

Napitupulu, N. D. (2022). The Urgency of the Multi-Model Approach in Learning Environmental Physics to Achieve Learning Goals. *World Journal of Advanced Research and Reviews*, 13(3), 431-437. <https://doi.org/10.30574/wjarr.2022.13.3.0247>

Napitupulu, N. D., & Walanda, R. M. (2024). Ecological Framework: Awareness Transformation Towards Sustainable Health in Climate Change. *IOP Conference Series: Earth and Environmental Science*, 1355, 012045. <https://doi.org/10.1088/1755-1315/1355/1/012045>

Napitupulu, N. D., Walanda, R. M., & Pratama, S. A. (2023). Pembelajaran Berdiferensiasi Berbasis Flipped Classroom pada Klh untuk Meningkatkan Kesadaran Ekologis Terintegrasi Nilai-nilai Pancasila. *Paedagoria: Jurnal Kajian, Penelitian dan Pengembangan Kependidikan*, 14(4), 423-428. <https://doi.org/10.31764/paedagoria.v14i4.16711>

Noorhalida, N., Santiani, S., & Annovasho, J. (2024). Enhancing Students' Creative Thinking Skills in Equilibrium and Rotational Dynamics Through The Implementation of Project Based Learning Modules. *Radiasi: Jurnal Berkala Pendidikan Fisika*, 17(1), 49-57. <https://doi.org/10.37729/radiasi.v17i1.4323>

Olipas, C. N. P. (2023). Students' Evaluation of the Instructional Learning Modules for Application Development and Emerging Technologies Course. *Puissant – A Multidisciplinary Journal*, 4, 1074-1089. Retrieved from <https://puissant.stepacademic.net>

Pratiwi, S. N., Cari, C., & Aminah, N. S. (2019). Pembelajaran IPA Abad 21 dengan Literasi Sains Siswa. *Jurnal Materi dan Pembelajaran*, 9, 34-42. Retrieved from <https://jurnal.uns.ac.id/jmpf/article/view/31612>

Pratiwi, A. S., Maryani, M., & Nuraini, L. (2024). Analysis of the Effect of PBL Model Assisted by e-Worksheet Wizer.Me on Critical Thinking Skills and Learning Outcomes of Physics Student. *Pillar of Physics Education*, 28(1), 28-35. Retrieved from <https://ejournal.unp.ac.id/students/index.php/pfis/article/viewFile/15591/6165>

Putri, D. A. H., Asrizal, A., & Festiyed, F. (2023). The Effects of Science Teaching Materials on Students' 21st-Century Skills: A Meta-Analysis. *Jurnal Penelitian Pembelajaran Fisika*, 9(1), 104. <https://doi.org/10.24036/jppf.v9i1.120546>

Rofiqi, A. (2024). Environmental Literacy Research Trends in Education: A Systematic Literature Review. *Assimilation: Indonesian Journal of Biology Education*, 7(2), 81-94. Retrieved from <https://ejournal.upi.edu/index.php/asimilas>

Shivanna, K. R. (2022). Climate Change and Its Impact on Biodiversity and Human Welfare. *Proceedings of the Indian National Science Academy*, 88(2), 160-171. <https://doi.org/10.1007/s43538-022-00073-6>

Sigit, D. V., Ristanto, R. H., Komala, R., Nurrismawati, A., Prastowo, P., & Katili, A. S. (2024). Analysis of Ecological Literacy Level and Creative Thinking Skills of College Students. *International Journal of Evaluation and Research in Education*, 13(3), 1434-1443. <https://doi.org/10.11591/ijere.v13i3.25573>

Sigit, D. V., Ristanto, R. H., Nurrismawati, A., Komala, R., Prastowo, P., & Katili, A. S. (2023). Ecoliteracy's Contribution to Creative Thinking: A Study of Senior High School Students. *Journal of Turkish Science Education*, 20(2), 356-368. <https://doi.org/10.36681/tused.2023.020>

Simmons, B. (2019). *Eco-Pedagogy: Education for a Sustainable Future*. Green Earth Publishing.

Sovanreach, S. (2024). The Influence of An Ecopedagogical Approach in Social Studies Learning on Students' Ecological Intelligence. *IJGSME: International Journal of Geography, Social, and Multicultural Education*, 2(1), 38-48. <https://doi.org/10.26740/ijgsme.v2n1>

Sukma, E., Ramadhan, S., & Indriyani, V. (2020). Integration of Environmental Education in Elementary Schools. *Journal of Physics: Conference Series*, 1481(1). <https://doi.org/10.1088/1742-6596/1481/1/012136>

Susilawati, S., Nurfina, N., & Paidi, A. (2020). Instructional Design on the Environmental Pollution Theme in the Higher Education. *IOP Conference Series: Earth and Environmental Science*, 485(1). <https://doi.org/10.1088/1755-1315/485/1/012054>

Taimur, S., & Sattar, H. (2020). Education for Sustainable Development and Critical Thinking Competency. In *Quality Education. Encyclopedia of the UN Sustainable Development Goals* (pp. 238-248). Springer, Cham. https://doi.org/10.1007/978-3-319-95870-5_64

Upadhyay, R. K. (2020). Markers for Global Climate Change and Its Impact on Social, Biological and

Ecological Systems: A Review. *American Journal of Climate Change*, 09(03), 159–203.
<https://doi.org/10.4236/ajcc.2020.93012>

Uzorka, A., Akiyode, O., & Isa, S. M. (2024). Strategies for Engaging Students in Sustainability Initiatives and Fostering a Sense of Ownership and Responsibility Towards Sustainable Development. *Discover Sustainability*, 5(1).
<https://doi.org/10.1007/s43621-024-00505-x>

Widyastuti, E., & Susiana, S. (2019). Using the ADDIE Model to Develop Learning Material for Actuarial Mathematics. *Journal of Physics: Conference Series*, 1188(1). <https://doi.org/10.1088/1742-6596/1188/1/012052>

Yadav, M., Gosai, H. G., Singh, G., Singh, A., Singh, A. K., Singh, R. P., & Jadeja, R. N. (2023). Major Impact of Global Climate Change in Atmospheric, Hydrospheric and Lithospheric Context. In *Global Climate Change and Environmental Refugees* (pp. 35–55). Springer, Cham. https://doi.org/10.1007/978-3-031-24833-7_3

Yevira, R., Yustina, Y., & Yennita, Y. (2023). Development of SETS (Science Environment Technology and Society) Based E-Modules on Environmental Pollution Materials to Increase Learning Interest and Critical Thinking Ability. *Jurnal Penelitian Pendidikan IPA*, 9(8), 6306–6313.
<https://doi.org/10.29303/jppipa.v9i8.4229>