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Abstract: One of the most intriguing results related to angle trisectors in 
convex quadrilaterals is Morley's Theorem, which several authors have 

subsequently extended to non-convex quadrilaterals. Numerous studies have 
explored the side lengths of angle bisectors, angle trisectors, and the area 

ratios formed by angle trisectors in both convex and non-convex 
quadrilaterals. However, no research has discussed the problem of angle 
trisectors in butterfly quadrilaterals. Therefore, this paper aims to extend the 

concept of angle trisectors to butterfly quadrilaterals. Various other 
quadrilaterals will be formed from the construction of these angle trisectors. 
By employing the concept of concyclic, we will demonstrate the existence of 

several concyclic quadrilaterals arising from this trisector construction. 
Triangle angles in butterfly quadrilaterals in geometry play an important role 

in physics. Geometry provides a visual and mathematical language that 
allows us to describe, analyze, and understand various physical phenomena.   
 
Keywords: Angle trisector; Butterfly quadrilateral; Cyclic quadrilateral 

  

Introduction  

 
In a planar geometric shape, various types of 

bisectors can be identified, including angular divider 
lines. These angular divider lines are classified into two 
types: the angle bisector and the angle trisector. An angle 
bisector is a line that divides an angle into two equal 
parts. An angle trisector, on the other hand, consists of 
two lines that divide an angle into three equal parts. The 
discussion on angle trisectors has been examined in 
several papers (Florio, 2023). In general, the discourse on 
angle trisectors is categorized into two types: angle 
trisectors in triangles and angle trisectors in 
quadrilaterals. One of the discussions on angle trisectors 
in triangles is presented in (Dergiades & Hung, 2020). 
This paper discusses methods for determining the length 
of the angle trisector line in a triangle and the area ratios 
of triangles formed by the angle trisectors. To determine 
the length of an angle trisector in a triangle, an altitude 
line is utilized (Jumianti et al., 2021). This altitude line is 
then combined with trigonometry, allowing the length 
of the angle trisector to be determined based on the area 

of the original triangle. Furthermore, for the area ratio, 
the sine rule is applied. Additionally, discusses a 
theorem that applies angle trisectors to the three 
arbitrary angles of a triangle, namely Morley's Theorem.  

In Morley's Theorem, inner angle trisectors of the 
triangle are used, where their intersections form an 
equilateral triangle. However, in this study, outer angle 
trisectors and extended angles of the triangle are 
employed, resulting in intersections that also form an 
equilateral triangle. Subsequently, explores further 
development of Morley's Theorem from  (Brailas, 2024; 
Büchi, 2024; Trinh et al., 2024; Volpe et al., 2023). In that 
article, the angle trisectors are combined with cyclicity to 
produce an equilateral triangle. Then, Blåsjö (2022) and 
Carrignon et al. (2020), discusses a development of 
Morley's Theorem, namely the use of angle trisectors in 
right triangles. This paper explains that, to obtain an 
equilateral triangle, inner and outer angle trisectors are 
used on the non-right angles. What distinguishes this 
work from other discussions is the use of supplementary 
angle trisectors on non-right angles, resulting in a 
parallelogram. The discussion of angle trisectors in 

https://doi.org/10.29303/jppipa.v11i2.9909
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quadrilaterals is found in (Csiba et al., 2024). Article 
Barton (2024) examines angle trisectors applied to 
specific types of quadrilaterals, where intersections of 
the angle trisectors also form special quadrilaterals. For 
example, in the case of a rectangle, angle trisectors at all 
four vertices intersect to form a rhombus. Another paper 
discussing angle trisectors in quadrilaterals is presented 
in (Kegel & Schmäschke, 2024). 

This study discusses methods for determining the 
length of the angle trisectors and the area ratios of 
triangles formed in both convex and non-convex 
quadrilaterals. To determine the length of the angle 
trisectors and their area ratios, the sine rule is used. In 
determining the length of the angle trisectors, several 
conditions are considered (Gu et al., 2021; Chen et al., 
2020): both angle trisectors intersecting on the same side 
of the quadrilateral, both trisectors intersecting on two 
different sides of the quadrilateral, and one trisector 
passing through one of the quadrilateral's original 
vertices. In this paper, butterfly quadrilaterals will be 
discussed, with angle trisectors applied at each of their 
vertices. Since two of the four angles of the butterfly 
quadrilateral measure more than 180°, the angle 
trisectors will be applied to the complementary angles of 
these two vertices. Subsequently, these angle trisectors 
will intersect the sides of the butterfly quadrilateral. 
From the points of intersection, four distinct cyclic 
quadrilaterals are formed. 
 

Method  
 

Before delving into the core discussion, there are 
several topics that need to be understood. These topics 
include the definitions and theorems related to angle 
trisectors, the sine rule (the method that will be 
employed in the proofs), and the theorem concerning 
cyclic quadrilaterals. 
 
Angle Trisector 

The discourse presented in this paper is 
fundamentally linked to the concept of the angle 
trisector. An angle trisector is a type of line that divides 
an angle in a planar figure. In Son (2023), the definition 
of an angle trisector is stated as follows: 

Definition 2.1.1. Angle trisector has two dividing 
lines that divide the angle into three equal parts. In 
Figure 1, it can be observed that in any ∆𝐴𝐵𝐶 with 𝐵𝐶 =
𝑎, 𝐴𝐶 = 𝑏, 𝐴𝐵 = 𝑐, ∠𝐵𝐴𝐶 = 𝛼, ∠𝐴𝐵𝐶 = 𝛽, and ∠𝐵𝐶𝐴 = 𝛾, 
there are lines 𝐴𝐴1 and 𝐴𝐴2 drawn from ∠𝐵𝐴𝐶. The lines 
𝐴𝐴1 and 𝐴𝐴2 are referred to as angle trisectors if 

∠𝐵𝐴𝐴1 = ∠𝐴1𝐴𝐴2 = ∠𝐴2𝐴𝐶 =
3

𝛼
. Furthermore, in a 

theorem is discussed to determine the length of the 
trisector line in a triangle. The area of the triangle is 
utilized to ascertain the length of its angle trisector. The 
theorem is as follows: 

 
Figure 1. The angle trisectors at ∠𝐵𝐴𝐶 in ∆𝐴𝐵𝐶 

 
Theorem 2.1.1. In ∆𝐴𝐵𝐶, the angle trisectors 𝐴𝐴1 

and 𝐴𝐴2 that divide angle 𝐴 with 𝐵𝐶 = 𝑎, 𝐴𝐶 = 𝑏, 𝐴𝐵 =
𝑐, and ∠𝐴 = 𝛼, ∠𝐵 = 𝛽, and ∠𝐶 = 𝛾, have lengths given 
by: 
 

𝐴𝐴1 =
2𝐿

𝑎 sin(
𝛼
3

+𝛽)
,                                                                    (1) 

and 

𝐴𝐴2 =
2𝐿

𝑎 sin(
𝛼

3
+𝛾)

.                                                                    (2) 

 

 
Figure 2. The angle trisectors and altitudes in ∆ABC proof. see  

 
Sine Rule 

The sine rule is one of the fundamental theorems in 
trigonometry that illustrates the relationship between 
the lengths of the sides of a triangle and the sine 
functions of the corresponding angles. In the context of 
any triangle, the sine rule involves three ratios that 
connect the lengths of the sides with the opposite angles. 
When information regarding the angles and lengths of 
sides is provided, the length of the remaining side can be 
determined using the sine rule. For instance, if the 
lengths of two sides and one angle of a triangle are 
known, the sine rule facilitates the calculation of the 
length of the third side. Furthermore, the sine rule is also 
associated with the circumradius of the triangle, which 
demonstrates the relationship between the lengths of the 
sides and the circumradius. By comprehending the sine 
rule, geometric problems involving triangles can be 
effectively solved. Mathematically, the sine rule is 
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presented in (Guo, 2022). Figure Theorem 2.2.1. Let 𝑎, 𝑏, 
and 𝑐 be the lengths of the sides in∆𝐴𝐵𝐶, then the 
following holds: 
 

𝑎

sin ∠𝐴
=

𝑏

sin ∠𝐵
=

𝑐

sin∠𝐶
= 2𝑅                                                 (3)                                                                                         

 

 
Figure 3. ∆ABC and circumcircle of the triangle proof. see  

 
Cyclic Quadrilateral 

One of the discussions to be addressed in this paper 
is the cyclic quadrilateral, or the quadrilateral formed by 
chords of a circle. As the name suggests, this 
quadrilateral has sides that are formed by the chords of 
a single circle. In, the definition of a cyclic quadrilateral 
is stated as follows (Uygan & Bozkurt, 2021; Unger, 
2023): Definition 2.3.1. A cyclic quadrilateral is a 
quadrilateral whose four vertices lie on a single circle. 
Definition 2.3.1 is illustrated in Figure 5. In the figure, it 
can be seen that line segment AB is a chord of a circle. 
This chord spans points A and B, each of which lies on 
the circumference of the circle. The same applies to line 
segments BC, CD, and DA, which are also chords of the 
same circle. Since all the chords are interconnected, they 
form a cyclic quadrilateral. A theorem discussing cyclic 
quadrilaterals is presented. The theorem is as follows: 
Theorem 2.3.1. Let 𝐴𝐵𝐶𝐷 be a convex quadrilateral. The 
following statements are equivalent: 𝐴𝐵𝐶𝐷 is a cyclic 
quadrilateral; ∠𝐵𝐴𝐶 = ∠𝐵𝐷𝐶; ∠𝐴 + ∠𝐶 = 180° ; ∠𝐴𝐵𝐸 =
∠𝐷. 

 

 
Figure 4. A cyclic quadrilateral proof. see  

 
 

Result and Discussion  
 

Let us consider a butterfly quadrilateral ABCD with 
𝐴𝐵 = 𝑎, 𝐵𝐶 = 𝑏, 𝐶𝐷 = 𝑐, 𝐴𝐷 = 𝑑, and ∠𝐷𝐴𝐵 = 𝛼, 
∠𝐴𝐵𝐶 = 𝛽, ∠𝐵𝐶𝐷 = 𝛾 ∗, also ∠𝐶𝐷𝐴 = 𝛿∗. In this 
quadrilateral, 𝐴𝐴1 and 𝐴𝐴2 are constructed as angle 
trisectors at ∠𝐴, 𝐵𝐵1 and 𝐵𝐵2  are constructed as angle 
trisectors at ∠𝐵, 𝐶𝐶1 and 𝐶𝐶2 are constructed as angle 
trisectors for the complement angle at ∠𝐶, and 𝐷𝐷1 and 
𝐷𝐷2 are constructed as angle trisectors for the 
complement angle at ∠𝐷. From the angle trisectors at the 
four angles of this butterfly quadrilateral, four cyclic 
quadrilaterals are obtained as described in the following 
theorem. Theorem 3.2.1. In the butterfly quadrilateral 
𝐴𝐵𝐶𝐷 with 𝐴𝐵 = 𝑎, 𝐵𝐶 = 𝑏, 𝐶𝐷 = 𝑐, 𝐴𝐷 = 𝑑, and 
∠𝐷𝐴𝐵 = 𝛼, ∠𝐴𝐵𝐶 = 𝛽, ∠𝐵𝐶𝐷 = 𝛾 ∗, also ∠𝐶𝐷𝐴 = 𝛿∗, 
given the angle trisectors at angles 𝛼, 𝛽, 𝛾 = 360° − 𝛾∗, 
and 𝛿 = 360° − 𝛿∗, four cyclic quadrilaterals can be 
formed, namely 𝐴1𝐵1𝐷1𝐶1, 𝐴1𝐵1𝐷2𝐶2, 𝐴2𝐵2𝐷1𝐶1, and 
𝐴2𝐵2𝐷2𝐶2. Proof. Theorem 3.2.1 is illustrated in Figure 5. 

 

 
Figure 5. The cyclic quadrilateral on the angle trisectors of a 

butterfly quadrilateral 

 
Cyclic Quadrilateral 𝐴1𝐵1𝐷1𝐶1 

 

 
Figure 6. Cyclic quadrilateral 𝐴1𝐵1𝐷1𝐶1. 
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In ∆𝐶𝐷1𝐷 we obtain ∠𝐶𝐷1𝐷 = 180° − (
𝛿

3
+ 𝛾). Since 

∠𝐴1𝐷1𝐷 and ∠𝐶𝐷1𝐷 are supplementary, it follows that 
 
∠𝐴1𝐷1𝐷 + ∠𝐶𝐷1𝐷 = 180°                                                   (4) 

∠𝐴1𝐷1𝐷 = 180° − ∠𝐶𝐷1𝐷 

∠𝐴1𝐷1𝐷 =
𝛿

3
+ 𝛾                                      (5) 

Next, by letting ∠𝐷𝐷1𝐶1 = 𝑥, it is obtained that 
∠𝐶1𝐷1𝐴1 + ∠𝐷𝐷1𝐶1 = ∠𝐴1𝐷1𝐷 
∠𝐶1𝐷1𝐴1 = ∠𝐴1𝐷1𝐷 − ∠𝐷𝐷1𝐶1 

 ∠𝐶1𝐷1𝐴1 =
𝛿

3
+ 𝛾 − 𝑥.                                                        (6) 

Then, in ∆𝐶𝑂𝐷, since ∠𝑂𝐶𝐷 = 𝛾 and ∠𝑂𝐷𝐶 = 𝛿 it is 
obtained that 
∠𝐶𝑂𝐷 = 180° − (𝛾 + 𝛿).                                       (7) 
From equation (2) and equation (3) in ∆𝑂𝐶1𝐷1 it is 
optained that 
∠𝐶𝑂𝐷 + ∠𝐶1𝐷1𝐴1 + ∠𝐵1𝐶1𝐷1 = 180° 

∠𝐵1𝐶1𝐷1 =
2𝛿

3
+ 𝑥.       (8) 

Next, ∠𝐵1𝐶1𝐷1 and ∠𝐵1𝐴1𝐷1 subtend the same chord, 

𝐵1𝐷1, so we obtain ∠𝐵1𝐴1𝐷1 =
2𝛿

3
+ 𝑥. Then, by letting 

∠𝐷1𝐵1𝐶1 = 𝑦, since ∠𝐷1𝐵1𝐶1 and ∠𝐷1𝐴1𝐶1 subtend the 
same chord, it is obtained that ∠𝐷1𝐵1𝐶1 = ∠𝐷1𝐴1𝐶1 = 𝑦. 
Next, in ∆𝑂𝐵1𝐷1 it is obtained that 
∠𝐵1𝑂𝐷1 + ∠𝑂𝐷1𝐵1 + ∠𝑂𝐵1𝐷1 = 180° 
𝛾 + 𝛿 + ∠𝑂𝐷1𝐵1 + 𝑦 = 180° 
∠𝑂𝐷1𝐵1 = ∠𝐴1𝐷1𝐵1 = 180° − (𝛾 + 𝛿 + 𝑦).                     (9) 
From the obtained angles, it follows that 
∠𝐵1𝐷1𝐶1 + ∠𝐵1𝐴1𝐶1

= ∠𝐵1𝐷1𝐴1 + ∠𝐶1𝐷1𝐴1 + ∠𝐵1𝐴1𝐷1

+ ∠𝐷1𝐴1𝐶1 
∠𝐵1𝐷1𝐶1 + ∠𝐵1𝐴1𝐶1

= 180° − (𝛾 + 𝛿 + 𝑦) + 𝛾 +
𝛿

3
− 𝑥 +

2𝛿

3
+ 𝑥 + 𝑦 

∠𝐵1𝐷1𝐶1 + ∠𝐵1𝐴1𝐶1 = 180°.                                   (10) 
Thus, Theorem 3.2.1 for the cyclic quadrilateral 
𝐴1𝐵1𝐷1𝐶1 is prooven. □ 
 
Cyclic Quadrilateral 𝐴1𝐵1𝐷2𝐶2 

 

  
Figure 7. Cyclic quadrilateral 𝐴1𝐵1𝐷2𝐶2 

 

In ∆𝐶𝐷2𝐷 we obtain ∠𝐶𝐷2𝐷 = 180° − (
2𝛿

3
+ 𝛾). Since 

∠𝐴1𝐷2𝐷 and ∠𝐶𝐷2𝐷 are supplementary, it follows that 
∠𝐴1𝐷2𝐷 + ∠𝐶𝐷2𝐷 = 180° 
∠𝐴1𝐷2𝐷 = 180° − ∠𝐶𝐷2𝐷 

∠𝐴1𝐷2𝐷 =
𝛿

3
+ 𝛾                                                                (11) 

Next, by letting ∠𝐷𝐷2𝐶2 = 𝑥, it is obtained that 
∠𝐶2𝐷2𝐴1 + ∠𝐷𝐷2𝐶2 = ∠𝐴1𝐷2𝐷 
∠𝐶2𝐷2𝐴1 = ∠𝐴1𝐷2𝐷 − ∠𝐷𝐷2𝐶2  

 ∠𝐶2𝐷2𝐴1 =
2𝛿

3
+ 𝛾 − 𝑥.                                                    (12) 

Then, in ∆𝐶𝑂𝐷, since ∠𝑂𝐶𝐷 = 𝛾 and ∠𝑂𝐷𝐶 = 𝛿 it is 
obtained that 
∠𝐶𝑂𝐷 = 180° − (𝛾 + 𝛿).                                       (9) 

From equation (8) and equation (9) in ∆𝑂𝐶2𝐷2 it is 
obtained that 
∠𝐶𝑂𝐷 + ∠𝐶2𝐷2𝐴1 + ∠𝐵1𝐶2𝐷2 = 180° 

∠𝐵1𝐶2𝐷2 =
𝛿

3
+ 𝑥.                                     (13) 

Next, ∠𝐵1𝐶2𝐷2 and ∠𝐵1𝐴1𝐷2 subtend the same chord, 

𝐵1𝐷2, so we obtain ∠𝐵1𝐴1𝐷2 =
𝛿

3
+ 𝑥. Then, by letting 

∠𝐷2𝐵1𝐶2 = 𝑦, since ∠𝐷2𝐵1𝐶2 and ∠𝐷2𝐴1𝐶2 subtend the 
same chord, it is obtained that ∠𝐷2𝐵1𝐶2 = ∠𝐷2𝐴1𝐶2 = 𝑦. 
Next, in ∆𝑂𝐵1𝐷2 it is obtained that 
∠𝐵1𝑂𝐷2 + ∠𝑂𝐷2𝐵1 + ∠𝑂𝐵1𝐷2 = 180° 
𝛾 + 𝛿 + ∠𝑂𝐷2𝐵1 + 𝑦 = 180° 
∠𝑂𝐷2𝐵1 = ∠𝐴1𝐷2𝐵1 = 180° − (𝛾 + 𝛿 + 𝑦).                    14) 
From the obtained angles, it follows that 
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∠𝐵1𝐷2𝐶2 + ∠𝐵1𝐴1𝐶2

= ∠𝐵1𝐷2𝐴1 + ∠𝐶2𝐷2𝐴1 + ∠𝐵1𝐴1𝐷2

+ ∠𝐷2𝐴1𝐶2 
∠𝐵1𝐷2𝐶2 + ∠𝐵1𝐴1𝐶2

= 180° − (𝛾 + 𝛿 + 𝑦) + 𝛾 +
2𝛿

3
− 𝑥 +

𝛿

3
+ 𝑥 + 𝑦 

∠𝐵1𝐷2𝐶2 + ∠𝐵1𝐴1𝐶2 = 180°.                                    (15) 
Thus, Theorem 3.2.1 for the cyclic quadrilateral 

𝐴1𝐵1𝐷2𝐶2 is proven. □ 
 

Cyclic Quadrilateral 𝐴2𝐵2𝐷1𝐶1. 
 

 
Figure 8. Cyclic quadrilateral 𝐴2𝐵2𝐷2𝐶2 

 

In ∆𝐶𝐷2𝐷 we obtain ∠𝐶𝐷2𝐷 = 180° − (
2𝛿

3
+ 𝛾). Since 

∠𝐴2𝐷2𝐷 and ∠𝐶𝐷2𝐷 are supplementary, it follows that 
∠𝐴2𝐷2𝐷 + ∠𝐶𝐷2𝐷 = 180° 
∠𝐴2𝐷2𝐷 = 180° − ∠𝐶𝐷2𝐷 
 

∠𝐴2𝐷2𝐷 =
2𝛿

3
+ 𝛾                                    (16) 

Next, by letting ∠𝐷𝐷2𝐶2 = 𝑥, it is obtained that 
∠𝐶2𝐷2𝐴2 + ∠𝐷𝐷2𝐶2 = ∠𝐴2𝐷2𝐷 
∠𝐶2𝐷2𝐴2 = ∠𝐴2𝐷2𝐷 − ∠𝐷𝐷2𝐶2 

 ∠𝐶2𝐷2𝐴2 =
2𝛿

3
+ 𝛾 − 𝑥                                                     (17) 

Then, in ∆𝐶𝑂𝐷, since ∠𝑂𝐶𝐷 = 𝛾 and ∠𝑂𝐷𝐶 = 𝛿 it is 
obtained that 
∠𝐶𝑂𝐷 = 180° − (𝛾 + 𝛿).                                     (18) 
From equation (20) and equation (21) in ∆𝑂𝐶2𝐷2 it is 
obtained that 
∠𝐶𝑂𝐷 + ∠𝐶2𝐷2𝐴2 + ∠𝐵2𝐶2𝐷2 = 180° 

 ∠𝐵2𝐶2𝐷2 =
𝛿

3
+ 𝑥.                                                   (19) 

 
Next, ∠𝐵2𝐶2𝐷2 and ∠𝐵2𝐴2𝐷2 subtend the same 

chord, 𝐵2𝐷2, so we obtain ∠𝐵2𝐴2𝐷2 =
𝛿

3
+ 𝑥. Then, by 

letting ∠𝐷2𝐵2𝐶2 = 𝑦, since ∠𝐷2𝐵2𝐶2 and ∠𝐷2𝐴2𝐶2 
subtend the same chord, it is obtained that ∠𝐷2𝐵2𝐶2 =
∠𝐷2𝐴2𝐶2 = 𝑦. Next, in ∆𝑂𝐵2𝐷2 it is obtained that 
∠𝐵2𝑂𝐷2 + ∠𝑂𝐷2𝐵2 + ∠𝑂𝐵2𝐷2 = 180° 

𝛾 + 𝛿 + ∠𝑂𝐷1𝐵2 + 𝑦 = 180° 
∠𝑂𝐷2𝐵2 = ∠𝐴2𝐷2𝐵2 = 180° − (𝛾 + 𝛿 + 𝑦).                  (20) 
From the obtained angles, it follows that 
∠𝐵2𝐷2𝐶2 + ∠𝐵2𝐴2𝐶2

= ∠𝐵2𝐷2𝐴2 + ∠𝐶2𝐷2𝐴2 + ∠𝐵2𝐴2𝐷2

+ ∠𝐷2𝐴2𝐶2 
∠𝐵2𝐷2𝐶2 + ∠𝐵2𝐴2𝐶2

= 180° − (𝛾 + 𝛿 + 𝑦) + 𝛾 +
2𝛿

3
− 𝑥 +

𝛿

3
+ 𝑥 + 𝑦 

∠𝐵2𝐷2𝐶2 + ∠𝐵2𝐴2𝐶2 = 180°.                                    (21) 
Thus, Theorem 3.2.1 for the cyclic quadrilateral 
𝐴2𝐵2𝐷2𝐶2 is proven. 

Constructing trisectors within a triangle efficiently 
illustrates the notion of concyclic quadrilaterals, 
resulting in diverse configurations that exhibit concyclic 
characteristics (Ida et al., 2015). This construction 
demonstrates the formation of several quadrilaterals, 
each displaying cyclic properties. Construction of 
trisections and cyclic quadrilaterals (Lupenko, 2024). 
The intersection points of the trisectors of a triangle can 
function as vertices for various quadrilaterals (Andrica 
& Bagdasar, 2024). These points originate from the 
triangle's angles, resulting in distinct configurations that 
preserve cyclic features (Shen et al., 2023; Ma et al., 2021; 
Zhao et al., 2023). Cyclic Properties: By confirming that 
opposite angles are supplementary, a necessary 
condition for cyclicity, we can show that the 
quadrilaterals formed from these intersections are cyclic 
(Golewski, 2023; Lu et al., 2023; Morseletto, 2020).  

Diagonal relationships three diagonal 
configurations: For any cyclic quadrilateral, three 
unique configurations arise from the arrangement of its 
sides. Different arrangements create different diagonal 
lengths, which shows that the quadrilaterals made by 
the intersections of the trisectors are cyclical (Vízek et al., 
2023). Geometric Inequalities: By articulating the 
connections between the sides and diagonals of these 
quadrilaterals, geometric inequalities reinforce their 
cyclic properties (Cybulski et al., 2024). Triangle angles 
in butterfly quadrilaterals in geometry play an 
important role in physics. Geometry provides a visual 
and mathematical language that allows us to describe, 
analyze, and understand various physical phenomena. 
Here are some examples of applications of geometry in 
physics: 

 
Mechanics 

Kinematics: Studying the motion of objects without 
considering the cause. Concepts such as distance, 
displacement, velocity, and acceleration are visualized 
and calculated using geometry. 
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Dynamics 
Studying the relationship between force and 

motion. Force diagrams, which are visual 
representations of the forces acting on an object, use 
geometric concepts to determine the resultant force 
(Leite et al., 2021; Lamanepa et al., 2022). 

 
Optics 

Optical geometry: Studying the properties of light 
such as reflection and refraction. Concepts such as angle 
of incidence, angle of reflection, and the formation of 
images by mirrors and lenses use geometric principles. 

 
Electromagnetism 

Electric and magnetic fields: Electric and magnetic 
field lines that describe the direction and strength of the 
field, are described using geometric concepts. 

 
Electric potential 

The concept of electric potential related to electric 
potential energy is visualized using equipotential 
surfaces which are geometric surfaces. 

 
Quantum mechanics 

Wave function: The wave function that describes 
the state of a particle in quantum mechanics, often 
visualized in three-dimensional space (Figueiras et al., 
2019). 

 
Relativity 

Space-time geometry: Einstein's general theory of 
relativity uses non-Euclidean geometry to describe 
gravity as the curvature of space-time. In addition, 
geometry is also used in (Cabral et al., 2020). 

 
Particle physics 

To describe the interactions between subatomic 
particles. Cosmology (Addazi et al., 2022; Moghaddasi 
& Yousefnia, 2024; Kousar, 2020): To study the structure 
and evolution of the universe; Condensed matter 
physics: To study the properties of matter at the atomic 
scale. In general, geometry provides a powerful 
framework for: Visualizing physical phenomena:  
Making physical models easier to understand (Kim, 
2019; Oughton et al., 2024).  Analyzing physical 
problems: Using mathematical tools based on geometry 
to solve equations and find solutions; Formulating 
physical theories: Developing new theories that are 
consistent with experimental data. So, geometry is not 
just a branch of mathematics, but also a very important 
tool in understanding the physical world around us 
(Kupczynski, 2024; Tong et al., 2024). 

 
 

Conclusion  
 

From the elaboration above, two conditions can be 
drawn. First, in the butterfly quadrilateral 𝐴𝐵𝐶𝐷 with 
𝐴𝐵 = 𝑎, 𝐵𝐶 = 𝑏, 𝐶𝐷 = 𝑐, 𝐴𝐷 = 𝑑, and ∠𝐷𝐴𝐵 = 𝛼, 
∠𝐴𝐵𝐶 = 𝛽, ∠𝐵𝐶𝐷 = 𝛾 ∗, also ∠𝐶𝐷𝐴 = 𝛿∗, when the angle 
trisectors are drawn for angles 𝛼, 𝛽, 𝛾 = 360° − 𝛾 ∗, and 
𝛿 = 360° − 𝛿∗, the intersections of the angle trisectors 
can form four cyclic quadrilaterals: 𝐴1𝐵1𝐷1𝐶1, 𝐴1𝐵1𝐷2𝐶2, 
𝐴2𝐵2𝐷1𝐶1, and 𝐴2𝐵2𝐷2𝐶2. 
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