Black Cumin Seed Extract as Copper Corrosion Inhibitor in H2SO4 1M: An Experimental and Theoretical Study

Authors

DOI:

10.29303/jppipa.v10i10.8739

Published:

2024-10-31

Issue:

Vol. 10 No. 10 (2024): October : In Progress

Keywords:

Black cumin seeds, Corrosion Inhibitor, Electrical impedance spectroscopy, Potentiodynamic Polarization, Density, Density Functional Theory, Molecular dynamics

Research Articles

Downloads

How to Cite

Elsa, P., Hamdiani, S., Yuanita, E., & Hadisaputra, S. (2024). Black Cumin Seed Extract as Copper Corrosion Inhibitor in H2SO4 1M: An Experimental and Theoretical Study. Jurnal Penelitian Pendidikan IPA, 10(10), 7765–7774. https://doi.org/10.29303/jppipa.v10i10.8739

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Experimental corrosion tests and theoretical calculation were conduct to investigate the corrosion inhibition mechanism of black cumin seed extract for copper in 1 M H2SO4 solution. Electrochemical testing using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) method showed that BCS adsorbed to form a protective layer on the copper surface with high inhibition efficiency at 500 ppm concentration (73,35%). Increasing the BCS concentration up to 500 ppm causes the charge transfer resistance increase in the EIS measurement, while the corrosion current density measured by PDP decreases. The values of charge transfer resistance and corrosion current density at 500 ppm BCS are respectively 3687 .cm2 and 2.86 μA.cm-2. The BCS is a mixed inhibitor (anodic and cathodic) that adsorbs physically on the copper surface and obey the Langmuir isothermal adsorption model. Quantum chemical calculation and molecular dynamic simulation show that the studied BCS molecules adsorb strongly on the copper surface with parallel orientation mode. The methyl linoleate (MLIN) molecules from BCS produce the most stable adsorption energy of the other studied compound molecules as a result of molecular dynamic simulation.

References

Al-Amiery, A. A., Al-Azzawi, W. K., & Isahak, W. N. R. W. (2022). Isatin Schiff base is an effective corrosion inhibitor for mild steel in hydrochloric acid solution: gravimetrical, electrochemical, and computational investigation. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22611-4

Alrashidi, M., Derawi, D., Salimon, J., & Yusoff, M. F. (2022). The effects of different extraction solvents on the yield and antioxidant properties of Nigella sativa oil from Saudi Arabia. Journal of Taibah University for Science, 16(1), 330–336. https://doi.org/10.1080/16583655.2022.2057673

Bilgic, S. (2018). The Methods for Prevention of Corrosion. Technology, Engineering & Mathematics (EPSTEM), 4. www.isres.org

BustosRivera-Bahena, G., Ramírez-Arteaga, A. M., Saldarriaga-Noreña, H. A., Larios-Gálvez, A. K., González-Rodríguez, J. G., Romero-Aguilar, M., & Sesenes, R. L. (2024). Hexane extract of Persea schiedeana Ness as green corrosion inhibitor for the brass immersed in 0.5 M HCl. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56793-w

Diki, N. Y. S., Coulibaly, N. H., Kambiré, O., & Trokourey, A. (2021). Experimental and Theoretical Investigations on Copper Corrosion Inhibition by Cefixime Drug in 1M HNO3 Solution. Journal of Materials Science and Chemical Engineering, 09(05), 11–28. https://doi.org/10.4236/msce.2021.95002

Emad, M., & AL-Rasheedi, M. (2015). Nigella Sativa and Natural Honey as Corrosion Inhibitors for Copper in Cooling Water Systems. J. Mater. Environ. Sci, 6(1), 201–206.

Fu, D., Tan, B., Lu, L., Qin, X., Chen, S., He, W., & Chen, J. (2018). Study on the corrosion inhibition effect of 2,3-Dimercapto-1- propanol on copper in 0.5mol/L H2SO4 solution. International Journal of Electrochemical Science, 13(9), 8561–8574. https://doi.org/10.20964/2018.09.16

Gapsari, F., Setyarini, P. H., Utaminingrum, F., Sulaiman, A. M., Haidar, M. F., & Julian, T. S. (2024). Melaleuca leaves extract as eco-friendly inhibitor for low carbon steel in sulfuric acid. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100657

Hadisaputra, S., Iskandar, Z., & Asnawati, D. (2019). Prediction of the corrosion inhibition efficiency of imidazole derivatives: A Quantum Chemical Study. Acta Chimica Asiana, 2(1), 88-94.

Hadisaputra, S., Purwoko, A. A., Hakim, A., Prasetyo, N., & Hamdiani, S. (2022). Corrosion Inhibition Properties of Phenyl Phthalimide Derivatives against Carbon Steel in the Acidic Medium: DFT, MP2, and Monte Carlo Simulation Studies. ACS Omega, 7(37), 33054–33066. https://doi.org/10.1021/acsomega.2c03091

Haris, N. I. N., Sobri, S., Yusof, Y. A., & Kassim, N. K. (2021). An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. In Metals (Vol. 11, Issue 1, pp. 1–22). MDPI AG. https://doi.org/10.3390/met11010046

Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K., & Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh andIndia.Heliyon,6(10). https://doi.org/10.1016/j.heliyon.2020.e05343

Li, H., Zhang, S., Tan, B., Qiang, Y., Li, W., Chen, S., & Guo, L. (2020). Investigation of Losartan Potassium as an eco-friendly corrosion inhibitor for copper in 0.5 M H2SO4. Journal of Molecular Liquids, 305. https://doi.org/10.1016/j.molliq.2020.112789

Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2019). A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil. In Food Reviews International (Vol. 35, Issue 4, pp. 342–362). Taylor and Francis Inc. https://doi.org/10.1080/87559129.2018.1563793

Mollaamin, F. (2023). Increasing corrosion resistance of binary Al-Alloy through implanting with some transition elements and heteroatom organic compounds. Acta Chimica Asiana, 6(2), 328-342.

Mzioud, K., Habsaoui, A., Ouakki, M., Galai, M., El Fartah, S., & Ebn Touhami, M. (2020). Inhibition of copper corrosion by the essential oil of Allium sativum in 0.5M H2SO4 solutions. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03393-8

Nivetha, K., & Prasanna, G. (2016). International Journal of Advanced Research in Biological Sciences GC-MS and FT-IR Analysis of Nigella sativa L. Seeds. Int. J. Adv. Res. Biol. Sci, 3(6), 45–54. http://s-o-i.org/1.15/ijarbs-2016-3-6-7

Orozco-Cruz, R., Ávila, E., Mejía, E., Pérez, T., Contreras, A., & Galván-Martínez, R. (2017). In situ corrosion study of copper and copper-alloys exposed to natural seawater of the Veracruz port (Gulf of Mexico). International Journal of Electrochemical Science, 12(4), 3133–3152. https://doi.org/10.20964/2017.04.27

Radi, M., Melian, R., Galai, M., Dkhirche, N., Makha, M., Verma, C., Fernandez, C., & EbnTouhami, M. (2021). Pumpkin seeds as an eco-friendly corrosion inhibitor for 7075-T6 alloy in 3.5% NaCl solution: Electrochemical, surface and computational studies. Journal of Molecular Liquids, 337. https://doi.org/10.1016/j.molliq.2021.116547

Rehioui, M., Abbout, S., Benzidia, B., Hammouch, H., Erramli, H., Daoud, N. A., Badrane, N., & Hajjaji, N. (2021). Corrosion inhibiting effect of a green formulation based on Opuntia Dillenii seed oil for iron in acid rain solution. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06674

Sait, N., Aliouane, N., Ait Ahmed, N., & Al-Noaimi, M. (2022). Electrochemical investigation of di-phosphonic acid on corrosion inhibition behavior of copper in hydrochloric acid medium. Journal of the Iranian Chemical Society, 19(2), 463–473. https://doi.org/10.1007/s13738-021-02322-9

Saleh, F. A., El-Darra, N., Raafat, K., & El Ghazzawi, I. (2018). Phytochemical analysis of Nigella sativa L. Utilizing GC-MS exploring its antimicrobial effects against multidrug-resistant bacteria. Pharmacognosy Journal, 10(1), 99–105. https://doi.org/10.5530/pj.2018.1.18

Sedik, A., Athmani, S., Saoudi, A., Ferkous, H., Ribouh, N., Lerari, D., Bachari, K., Djellali, S., Berredjem, M., Solmaz, R., Alam, M., Jeon, B. H., & Benguerba, Y. (2022). Experimental and theoretical insights into copper corrosion inhibition by protonated amino-acids. RSC Advances, 12(36), 23718–23735. https://doi.org/10.1039/d2ra03535a

Souli, R., Leila, D., Berçot, P., Rezrazi, M., & Triki, E. (2017). Effect of aqueous extract of Nigella sativa seeds on the mild steel corrosion in chloride media. In Journal of the Tunisian Chemical Society (Vol. 19).

Swathi, P. N., Rasheeda, K., Samshuddin, S., & Alva, V. D. P. (2017). Fatty Acids and its Derivatives as Corrosion Inhibitors for Mild Steel - An Overview. Journal of Asian Scientific Research, 7(8), 301–308. https://doi.org/10.18488/journal.2.2017.78.301.308

Tan, B., Zhang, S., Qiang, Y., Guo, L., Feng, L., Liao, C., Xu, Y., & Chen, S. (2018). A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid. Journal of Colloid and Interface Science, 526, 268–280. https://doi.org/10.1016/j.jcis.2018.04.092

Tan, B., Zhang, S., Qiang, Y., Li, W., Li, H., Feng, L., Guo, L., Xu, C., Chen, S., & Zhang, G. (2020). Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium. Journal of Molecular Liquids, 298. https://doi.org/10.1016/j.molliq.2019.111975

Toghan, A., Alhussain, H., Attia, A., Alduaij, O. K., Fawzy, A., Eldesoky, A. M., & Farag, A. A. (2024). Corrosion inhibition performance of copper using N-benzylhydrazinecarbothioamide in a 3.5 % NaCl solution. Journal of Electrochemical Science and Engineering, 14(2), 231–245. https://doi.org/10.5599/jese.2181

Tüzün, B., & Bhawsar, J. (2021). Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arabian Journal of Chemistry, 14(2). https://doi.org/10.1016/j.arabjc.2020.102927

Vaghefinazari, B., Wierzbicka, E., Visser, P., Posner, R., Arrabal, R., Matykina, E., Mohedano, M., Blawert, C., Zheludkevich, M. L., & Lamaka, S. V. (2022). Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part III—Corrosion Inhibitors and Combining Them with Other Protection Strategies. In Materials (Vol. 15, Issue 23). MDPI. https://doi.org/10.3390/ma15238489

Vargas, I. T., Fischer, D. A., Alsina, M. A., Pavissich, J. P., Pablo, P., & Pizarro, G. E. (2017). Copper corrosion and biocorrosion events in premise plumbing. In Materials (Vol. 10, Issue 9). MDPI AG. https://doi.org/10.3390/ma10091036

Verma, C., Lgaz, H., Verma, D. K., Ebenso, E. E., Bahadur, I., & Quraishi, M. A. (2018). Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. In Journal of Molecular Liquids (Vol. 260, pp. 99–120). Elsevier B.V. https://doi.org/10.1016/j.molliq.2018.03.045

Xu, P., Fu, Q., & Zhao, M. (2023). The influence of calcium on copper corrosion and its by-product release in drinking water. RSC Advances, 13(26), 17842–17855. https://doi.org/10.1039/d3ra01696j

Zhang, J., & Li, H. (2020). 2-(2-chlorophenyl)-1H-benzimidazole as a new corrosion inhibitor for copper in sulfuric acid. International Journal of Electrochemical Science, 15, 5362–5372. https://doi.org/10.20964/2020.06.63

Zomorodian, A., & Behnood, A. (2023). Review of Corrosion Inhibitors in Reinforced Concrete: Conventional and Green Materials. In Buildings (Vol. 13, Issue 5). MDPI. https://doi.org/10.3390/buildings13051170

Author Biographies

Putri Elsa, University of Mataram

Saprini Hamdiani, University of Mataram

Emmy Yuanita, University of Mataram

Saprizal Hadisaputra, Chemistry Education Division, Faculty of Teacher Training and Education, University of Mataram

License

Copyright (c) 2024 Putri Elsa, Saprini Hamdiani, Emmy Yuanita, Saprizal Hadisaputra

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).