In Silico Investigation of Phytochemical Inhibitors of STAT3 to Address Drug Resistance in Triple-Negative Breast Cancer

Authors

Dewi Hambar Sari , Sri Suciati Ningsih , Suryadi Islami

DOI:

10.29303/jppipa.v10i12.9174

Published:

2024-12-26

Issue:

Vol. 10 No. 12 (2024): December

Keywords:

Bioactive compounds, STAT3 inhibition, Drug resistance TNBC, In silico screening

Research Articles

Downloads

How to Cite

Sari, D. H., Ningsih, S. S., & Islami, S. (2024). In Silico Investigation of Phytochemical Inhibitors of STAT3 to Address Drug Resistance in Triple-Negative Breast Cancer. Jurnal Penelitian Pendidikan IPA, 10(12), 10608–10617. https://doi.org/10.29303/jppipa.v10i12.9174

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Breast cancer is the most common cancer among women and a major cause of cancer-related death worldwide, including Indonesia. Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, characterized by high mortality and resistance to standard treatments. Cancer stem cells (CSCs) is known to be a key factor of drug resistance in TNBC, mediated by the signal tranducer and activator of transcription factor 3 (STAT3). This study aims to explore the bioactive compounds from Indonesian’s natural product which potentially target CSCs by inhibiting STAT3. We used in silico methods, consist of literature review, followed by selection of promising compounds, ADMET analysis and selection using Lipinski’s rules, and molecular docking simulation. Our results found curcumin, quercetin, α-mangostin, gingerol, and rocalglamide as the bioactive candidates which target CSCs. ADMET testing showed that only curcumin, quercetin, and gingerol meet the Lipinski’s criteria. The molecular docking results showed that quercetin exhibited the strongest binding affinity (-8.3 kcal/mol) compared to curcumin (-6.9 kcal/mol) and gingerol (-5.9 kcal/mol). The results indicate that quercetin binds effectively at the active site of STAT3. The findings suggest that quercetin has potential as a STAT3 inhibitor. Further research is needed to determine the significant efficacy and potential as an anticancer.

References

Amalina, N. D., Suzery, M., Cahyono, B., & Bima, D. N. (2020). Mengungkap Potensi Metabolit Sekunder Tanaman Herbal Indonesia untuk Menghentikan Metastasis Kanker Payudara: Pendekatan in-silico. Indonesian Journal of Chemical Science, 9(3).

Biswas, P., Dey, D., Biswas, P. K., Rahaman, T. I., Saha, S., Parvez, A., Khan, D. A., Lily, N. J., Saha, K., Sohel, M., Hasan, M. M., Al Azad, S., Bibi, S., Hasan, M. N., Rahmatullah, M., Chun, J., Rahman, M. A., & Kim, B. (2022). A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. In International Journal of Molecular Sciences, 23 (19). https://doi.org/10.3390/ijms231911746

Cao, L., Yang, Y., Ye, Z., Lin, B., Zeng, J., Li, C., Liang, T., Zhou, K., & Li, J. (2018). Quercetin-3-methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. International Journal of Molecular Medicine, 42(3). https://doi.org/10.3892/ijmm.2018.3741

Chandra Boinpelly, V., Verma, R. K., Srivastav, S., Srivastava, R. K., & Shankar, S. (2020). α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. Journal of Cellular and Molecular Medicine, 24(19). https://doi.org/10.1111/jcmm.15731

Chiorean, R., Braicu, C., & Berindan-Neagoe, I. (2013). Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? In Breast 22 (6). https://doi.org/10.1016/j.breast.2013.08.007

dos Santos, I. V. F., Borges, R. S., Silva, G. M., de Lima, L. R., Bastos, R. S., Ramos, R. S., Silva, L. B., da Silva, C. H. T. P., & dos Santos, C. B. R. (2022). Hierarchical Virtual Screening Based on Rocaglamide Derivatives to Discover New Potential Anti-Skin Cancer Agents. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.836572

Duan, Z., Duan, Y., Lamendola, D. E., Yusuf, R. Z., Naeem, R., Penson, R. T., & Seiden, M. v. (2003). Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicinresistant human cancer cell lines. Clinical Cancer Research, 9 (7).

Duo, J., Ying, G. G., Wang, G. W., & Zhang, L. (2012). Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Molecular Medicine Reports, 5(6). https://doi.org/10.3892/mmr.2012.845

Durojaye, O. A., Nwanguma, B. C., Joshua, P. E., Ogidigo, J. O., Cosmas, S., Asomadu, R. O., & Obeta, J. N. (2019). Evaluation of 6-gingerol and its modified analogues as therapeutic candidates against schistosoma mansoni phosphofructokinase. VacciMonitor, 28(1).

Guan, X., Yang, J., Wang, W., Zhao, B., Hu, S., Yu, D., Yuan, L., Shi, Y., Xu, J., Dong, J., Wang, J., Cheng, X. D., & Qin, J. J. (2023). Dual inhibition of MYC and SLC39A10 by a novel natural product STAT3 inhibitor derived from Chaetomium globosum suppresses tumor growth and metastasis in gastric cancer. Pharmacological Research, 189. https://doi.org/10.1016/j.phrs.2023.106703

Gupta, P. K., Saraff, M., Gahtori, R., Negi, N., Tripathi, S. K., Kumar, J., Kumar, S., Aldhayan, S. H., Dhanasekaran, S., Abomughaid, M. M., Dua, K., Gundamaraju, R., Ojha, S., Ruokolainen, J., Jha, N. K., & Kesari, K. K. (2021). Phytomedicines targeting cancer stem cells: Therapeutic opportunities and prospects for pharmaceutical development. In Pharmaceuticals, 14(7). https://doi.org/10.3390/ph14070676

Hajimoradi, M., Hassan, Z. M., Ebrahimi, M., Soleimani, M., Bakhshi, M., Firouzi, J., & Samani, F. S. (2016). STAT3 is overactivated in gastric cancer stem-like cells. Cell Journal, 17(4).

Hasan, M. M., Khan, Z., Chowdhury, M. S., Khan, M. A., Moni, M. A., & Rahman, M. H. (2022). In silico molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases. Informatics in Medicine Unlocked, 29. https://doi.org/10.1016/j.imu.2022.100894

Hu, C., Li, M., Guo, T., Wang, S., Huang, W., Yang, K., Liao, Z., Wang, J., Zhang, F., & Wang, H. (2019). Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 58. https://doi.org/10.1016/j.phymed.2018.11.001

Hu, Y., Dong, Z., & Liu, K. (2024). Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. In Journal of Experimental and Clinical Cancer Research 43(1). https://doi.org/10.1186/s13046-024-02949-5

International Agency dor Research on Cancer WHO. (2022, June 14). Glocal Cancer Observatory. Https://Gco.Iarc.Fr/.

Iriti, M., Kubina, R., Cochis, A., Sorrentino, R., Varoni, E. M., Kabała-Dzik, A., Azzimonti, B., Dziedzic, A., Rimondini, L., & Wojtyczka, R. D. (2017). Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells. Phytotherapy Research, 31(10). https://doi.org/10.1002/ptr.5878

Jing, D., Wu, W., Chen, X., Xiao, H., Zhang, Z., Chen, F., Zhang, Z., Liu, J., Shao, Z., & Pu, F. (2022). Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 Via the JAK2-STAT3-PDL1. Pharmacological Research, 182. https://doi.org/10.1016/j.phrs.2022.106287

Jo, M. K., Moon, C. M., Kim, E. J., Kwon, J. H., Fei, X., Kim, S. E., Jung, S. A., Kim, M., Mun, Y. C., Ahn, Y. H., Seo, S. Y., & Kim, T. Il. (2022). Suppressive effect of α-mangostin for cancer stem cells in colorectal cancer via the Notch pathway. BMC Cancer, 22(1). https://doi.org/10.1186/s12885-022-09414-6

Joshi, H., Gupta, D. S., Kaur, G., Singh, T., Ramniwas, S., Sak, K., Aggarwal, D., Chhabra, R. S., Gupta, M., Saini, A. K., & Tuli, H. S. (2023). Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. In Naunyn-Schmiedeberg’s Archives of Pharmacology 396 (12). https://doi.org/10.1007/s00210-023-02625-z

Kalungi, F., Nsubuga, A., & Anywar, G. (2023). Network analysis and molecular docking studies of quercetin as a potential treatment for prostate cancer. In Silico Pharmacology, 11(1). https://doi.org/10.1007/s40203-023-00162-4

Khan, A. Q., Ahmed, E. I., Elareer, N., Fathima, H., Prabhu, K. S., Siveen, K. S., Kulinski, M., Azizi, F., Dermime, S., Ahmad, A., Steinhoff, M., & Uddin, S. (2020). Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020438

Khan, S. U., Fatima, K., Aisha, S., & Malik, F. (2024). Unveiling the mechanisms and challenges of cancer drug resistance. In Cell Communication and Signaling 22 (1). https://doi.org/10.1186/s12964-023-01302-1

Khaw, K. Y., Chong, C. W., & Murugaiyah, V. (2020). LC-QTOF-MS analysis of xanthone content in different parts of Garcinia mangostana and its influence on cholinesterase inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1). https://doi.org/10.1080/14756366.2020.1786819

Liao, W., Zhang, L., Chen, X., Xiang, J., Zheng, Q., Chen, N., Zhao, M., Zhang, G., Xiao, X., Zhou, G., Zeng, J., & Tang, J. (2023). Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. In Phytomedicine, 108. https://doi.org/10.1016/j.phymed.2022.154524

Li, N., Song, J., & Li, D. (2022). Synthesis and Antiproliferative Activity of Ester Derivatives of Mogrol through JAK2/STAT3 Pathway. Chemistry and Biodiversity, 19(1). https://doi.org/10.1002/cbdv.202100742

Luan, Z., He, Y., He, F., & Chen, Z. (2015). Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation. Molecular Medicine Reports, 11(1). https://doi.org/10.3892/mmr.2014.2718

McKenna, M. T., Weis, J. A., Barnes, S. L., Tyson, D. R., Miga, M. I., Quaranta, V., & Yankeelov, T. E. (2017). A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05902-z

Moetlediwa, M. T., Jack, B. U., Mazibuko-Mbeje, S. E., Pheiffer, C., Titinchi, S. J. J., Salifu, E. Y., & Ramharack, P. (2024). Evaluating the Therapeutic Potential of Curcumin and Synthetic Derivatives: A Computational Approach to Anti-Obesity Treatments. International Journal of Molecular Sciences, 25(5). https://doi.org/10.3390/ijms25052603

Moreira, M. P., da Conceição Braga, L., Cassali, G. D., & Silva, L. M. (2018). STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Experimental Cell Research, 363(2). https://doi.org/10.1016/j.yexcr.2018.01.018

Naing, S., Sandech, N., Maiuthed, A., Chongruchiroj, S., Pratuangdejkul, J., & Lomarat, P. (2023). Garcinia mangostana L. Pericarp Extract and Its Active Compound α-Mangostin as Potential Inhibitors of Immune Checkpoint Programmed Death Ligand-1. Molecules, 28(19). https://doi.org/10.3390/molecules28196991

Nalli, A. D., Brown, L. E., Thomas, C. L., Sayers, T. J., Porco, J. A., & Henrich, C. J. (2018). Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-35908-0

Ouyang, S., Li, H., Lou, L., Huang, Q., Zhang, Z., Mo, J., Li, M., Lu, J., Zhu, K., Chu, Y., Ding, W., Zhu, J., Lin, Z., Zhong, L., Wang, J., Yue, P., Turkson, J., Liu, P., Wang, Y., & Zhang, X. (2022). Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology, 52. https://doi.org/10.1016/j.redox.2022.102317

Purwanto, I., Dwiprahasto, I., Aryandono, T., & Mubarika, S. (2020). Treatment options for Indonesian triple negative breast cancer patients: a literature review of current state and potentials for future improvement. Journal of Thee Medical Sciences (Berkala Ilmu Kedokteran), 52(01). https://doi.org/10.19106/jmedsci005201202009

Qin, J. J., Yan, L., Zhang, J., & Zhang, W. D. (2019). STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. In Journal of Experimental and Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1206-z

Salari, Z., Khosravi, A., Pourkhandani, E., Molaakbari, E., Salarkia, E., Keyhani, A., Sharifi, I., Tavakkoli, H., Sohbati, S., Dabiri, S., Ren, G., & Shafie’ei, M. (2023). The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1098429

Sethi, G., Rath, P., Chauhan, A., Ranjan, A., Choudhary, R., Ramniwas, S., Sak, K., Aggarwal, D., Rani, I., & Tuli, H. S. (2023). Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements. In Pharmaceutics, 15(2). https://doi.org/10.3390/ pharmaceutics15020712

Shen, X., Si, Y., Wang, Z., Wang, J., Guo, Y., & Zhang, X. (2016). Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. International Journal of Molecular Medicine, 38(2). https://doi.org/10.3892/ijmm.2016.2625

Song, S., Wen, F., Gu, S., Gu, P., Huang, W., Ruan, S., Chen, X., Zhou, J., Li, Y., Liu, J., & Shu, P. (2022). Network Pharmacology Study and Experimental Validation of Yiqi Huayu Decoction Inducing Ferroptosis in Gastric Cancer. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.820059

Sp, N., Kang, D. Y., Jo, E. S., Lee, J. M., Bae, S. W., & Jang, K. J. (2021). Pivotal Role of Iron Homeostasis in the Induction of Mitochondrial Apoptosis by 6-Gingerol Through PTEN Regulated PD-L1 Expression in Embryonic Cancer Cells. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.781720

Sridharan, S., Robeson, M., Bastihalli-Tukaramrao, D., Howard, C. M., Subramaniyan, B., Tilley, A. M. C., Tiwari, A. K., & Raman, D. (2019). Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.01311

Srinivasan, A., Thangavel, C., Liu, Y., Shoyele, S., Den, R. B., Selvakumar, P., & Lakshmikuttyamma, A. (2016). Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Molecular Carcinogenesis, 55(5). https://doi.org/10.1002/mc.22318

Wanandi, S. I., Limanto, A., Yunita, E., Syahrani, R. A., Louisa, M., Wibowo, A. E., & Arumsari, S. (2020). In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS ONE, 15(11 November). https://doi.org/10.1371/journal.pone.0240020

Wang, Y., Ying, X., Xu, H., Yan, H., Li, X., & Tang, H. (2017). The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. International Journal of Nanomedicine, 12. https://doi.org/10.2147/IJN.S124276

Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J., & Deng, X. (2017). Triple-negative breast cancer: Is there a treatment on the horizon? In Oncotarget, 8(1). https://doi.org/10.18632/oncotarget.12284

Zhao, D., Pan, C., Sun, J., Gilbert, C., Drews-Elger, K., Azzam, D. J., Picon-Ruiz, M., Kim, M., Ullmer, W., El-Ashry, D., Creighton, C. J., & Slingerland, J. M. (2015). VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 34(24). https://doi.org/10.1038/onc.2014.257

Zhou, Q., Ye, M., Lu, Y., Zhang, H., Chen, Q., Huang, S., & Su, S. (2015). Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136694

Author Biography

Dewi Hambar Sari, Biotechnology Study Program, Universitas Islam Negeri Raden Mas Said Surakarta

License

Copyright (c) 2024 Dewi Hambar Sari, Sri Suciati Ningsih, Suryadi Islami

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).