Evaluation of the Effectiveness of Organic Matter Biodegradation by a Bacterial Consortium in Vannamei Shrimp Farming Wastewater

Authors

A. Fahmi Nada , Surya Rachman Susilowati , Asus Maizar Suryanto Hertika , Maftuch

DOI:

10.29303/jppipa.v11i2.9983

Published:

2025-02-25

Issue:

Vol. 11 No. 2 (2025): February

Keywords:

Bacterial consortium, Biodegradation, Organic waste, Shrimp farming wastewater, Water quality

Research Articles

Downloads

How to Cite

Nada, A. F., Susilowati, S. R., Hertika, A. M. S., & Maftuch. (2025). Evaluation of the Effectiveness of Organic Matter Biodegradation by a Bacterial Consortium in Vannamei Shrimp Farming Wastewater. Jurnal Penelitian Pendidikan IPA, 11(2), 172–183. https://doi.org/10.29303/jppipa.v11i2.9983

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This study evaluated the effectiveness of a bacterial consortium for biodegrading organic waste in vaname shrimp (Litopenaeus vannamei) farming wastewater. A completely randomized design with four treatments (1, 2, and 3 ppm, plus a control) and three replicates per treatment was used. The consortium, consisting of Lactobacillus casei, Bacillus subtilis, Bifidobacterium sp., Nitrosomonas sp., and Nitrobacter sp., was cultured in a medium containing molasses, rice bran, brown sugar, and whole milk. Over a 5-day incubation period, key parameters (TOM, BOD, ammonia, nitrite, nitrate, and bacterial viability) were measured. The 3 ppm treatment achieved the highest reductions TOM by 61.4%, BOD by 69.57%, ammonia by 68.92%, nitrite by 67.59%, and nitrate by 62.02% with bacterial viability increasing by 165% compared to the control. These results demonstrate that the optimal dose significantly enhances biodegradation under conditions of 24.3–28.9°C, pH 7.8–8.5, and DO 3.5–6.8 mg/L. In conclusion, applying the bacterial consortium at 3 ppm offers an eco-friendly and effective strategy to improve water quality in intensive shrimp aquaculture, supporting national food security and Blue Economy initiatives.

References

Akinnawo, S. O. (2023). Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environmental Challenges, 12, 100733. https://doi.org/10.1016/j.envc.2023.100733

Anwar, R., Rahman, A., Rusmini, R., Daryono, D., & Suparno, S. (2024). Physical and Chemical Characteristics of Liquid Organic Fertilizer from Shrimp Shell Waste and Old Coconut Water. International Journal of Life Science and Agriculture Research, 03(03). https://doi.org/10.55677/ijlsar/V03I3Y2024-01

APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association.

Arifan, F., Winarni, S., Wahyuningsih, W., Pudjihastuti, I., & Broto, RTD. W. (2019). Total Plate Count (TPC) Analysis of Processed Ginger on Tlogowungu Village. Proceedings of the International Conference on Maritime and Archipelago (ICoMA 2018), 377-379. https://doi.org/10.2991/icoma-18.2019.80

Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of Environmental Wastes: The Role of Microorganisms. Frontiers in Agronomy, 5, 1183691. https://doi.org/10.3389/fagro.2023.1183691

Çelebi, H., Bahadır, T., Şimşek, İ., & Tulun, Ş. (2023). Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses. ECM 2023, 4. https://doi.org/10.3390/ECM2023-16457

Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent Advances Biodegradation and Biosorption of Organic Compounds from Wastewater: Microalgae-Bacteria Consortium - A Review. Bioresource Technology, 344, 126159. https://doi.org/10.1016/j.biortech.2021.126159

Djumanto, D., Ustadi, U., Rustadi, R., & Triyatmo, B. (2018). Utilization of Wastewater from Vannamei Shrimp Pond for Rearing Milkfish in Keburuhan Coast Purworejo Sub-District. Aquacultura Indonesiana, 19(1), 38. https://doi.org/10.21534/ai.v19i1.48

Elumalai, P., Parthipan, P., Huang, M., Muthukumar, B., Cheng, L., Govarthanan, M., & Rajasekar, A. (2021). Enhanced Biodegradation of Hydrophobic Organic Pollutants by the Bacterial Consortium: Impact of Enzymes and Biosurfactants. Environmental Pollution, 289, 117956. https://doi.org/10.1016/j.envpol.2021.117956

Fakhriyah, F., Marwoto, P., Cahyono, E., & Iswari, R. S. (2022). Developing PTS Device (pH, TDS, and Salinity) to Determine the Water Quality for Cultivating Milkfish (Chanos chanos Forsk) in Pati District. Jurnal Penelitian Pendidikan IPA, 8(1), 362–370. https://doi.org/10.29303/jppipa.v8i1.1043

Garrido-Amador, P., Kniaziuk, M., Vekeman, B., & Kartal, B. (2021). Learning from Microorganisms: Using New Insights in Microbial Physiology for Sustainable Nitrogen Management. Current Opinion in Biotechnology, 67, 42–48. https://doi.org/10.1016/j.copbio.2020.12.017

Ghaly, A. E., & Ramakrishnan V. V. (2015). Nitrogen Sources and Cycling in the Ecosystem and its Role in Air, Water and Soil Pollution: A Critical Review. Journal of Pollution Effects & Control, 03(02). https://doi.org/10.4172/2375-4397.1000136

Gupta, S. S. (2021). An Exploration of Bioremediation and Its Implementation in Processing of Aquaculture Waste. International Journal of Innovative Research in Engineering and Management, 8(6), 255-259. https://doi.org/10.55524/ijirem.2021.8.6.52

Iber, B. T., & Kasan, N. A. (2021). Recent Advances in Shrimp Aquaculture Wastewater Management. Heliyon, 7(11), e08283. https://doi.org/10.1016/j.heliyon.2021.e08283

Inayah, Z. N., Musa, M., & Arfiati, D. (2023). Growth of Vannamei Shrimp (Litopenaeus vannamei) in Intensive Cultivation Systems. Jurnal Penelitian Pendidikan IPA, 9(10), 8821–8829. https://doi.org/10.29303/jppipa.v9i10.4278

Irdawati, I., Fahra, F., Putri, D. H., Handayani, D., & Yusrizal, Y. (2023). Effect of the Thermophilic Bacterial Biculture Consortium from Mudiak Sapan Hot Springs on Biofuel Production. Jurnal Penelitian Pendidikan IPA, 9(10), 9032–9037. https://doi.org/10.29303/jppipa.v9i10.3597

Jannah, R. F., Ratnawati, R., Sunaryo, S., & Widiasa, I. N. (2024). Performance of an Aerated Wastewater Stabilization Pond for the Treatment of Cultivation Wastewater of Pacific White Shrimp (Litopenaeus vannamei) Grow-out Ponds. Reaktor, 23(3), 108–115. https://doi.org/10.14710/reaktor.23.3.105-115

John, E. M., Krishnapriya, K., & Sankar, T. V. (2020). Treatment of Ammonia and Nitrite in Aquaculture Wastewater by an Assembled Bacterial Consortium. Aquaculture, 526, 735390. https://doi.org/10.1016/j.aquaculture.2020.735390

Khastini, R. O., Zahranie, L. R., Rozma, R. A., & Saputri, Y. A. (2022). Review: Peranan Bakteri Pendegradasi Senyawa Pencemar Lingkungan Melalui Proses Bioremediasi. Bioscientist: Jurnal Ilmiah Biologi, 10(1), 345. https://doi.org/10.33394/bioscientist.v10i1.4836

Khoa, T. N. D., Tao, C. T., Khanh, L. V., & Hai, T. N. (2020). Super-Intensive Culture of White Leg Shrimp (Litopenaeus vannamei) in Outdoor Biofloc Systems with Different Sunlight Exposure Levels: Emphasis on Commercial Applications. Aquaculture, 524, 735277. https://doi.org/10.1016/j.aquaculture.2020.735277

Kumari, P., & Kumar, A. (2023). Advanced Oxidation Process: A Remediation Technique for Organic and Non-Biodegradable Pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122

Kunjiraman, S., Singh, I. S. B., Sarasan, M., & Puthumana, J. (2024). Immobilized Microbial Consortia: An Eco-Friendly and Sustainable Solution for Aquaculture Waste Management. The Microbe, 4, 100100. https://doi.org/10.1016/j.microb.2024.100100

Kwoji, I. D., Aiyegoro, O. A., Okpeku, M., & Adeleke, M. A. (2021). Multi-Strain Probiotics: Synergy Among Isolates Enhances Biological Activities. Biology, 10(4), 322. https://doi.org/10.3390/biology10040322

Latupeirissa, A. N., & Latupeirissa, J. (2022). Analysis of Physical and Chemical Quality of PDAM Water in Teluk Ambon Baguala Sub-District. Jurnal Penelitian Pendidikan IPA, 8(3), 1314–1319. https://doi.org/10.29303/jppipa.v8i3.1535

Maysabila, A., Heryanti, R., Permana, R., & Hasan, Z. (2023). Bioremediation of Shrimp Pond Wastewater Using Effective Microorganism-4 (EM4). Aceh Journal of Animal Science, 8(3), 72–77. https://doi.org/10.13170/ajas.8.3.28971

Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., & Giovannelli, D. (2019). Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 10, 780. https://doi.org/10.3389/fmicb.2019.00780

Mohanty, R. K., Ambast, S. K., Panigrahi, P., & Mandal, K. G. (2018). Water Quality Suitability and Water Use Indices: Useful Management Tools in Coastal Aquaculture of Litopenaeus vannamei. Aquaculture, 485, 210–219. https://doi.org/10.1016/j.aquaculture.2017.11.048

Muthu, C. M. M., Vickram, A. S., Sowndharya, B. B., Saravanan, A., Kamalesh, R., & Dinakarkumar, Y. (2024). A Comprehensive Review on the Utilization of Probiotics in Aquaculture Towards Sustainable Shrimp Farming. Fish & Shellfish Immunology, 147, 109459. https://doi.org/10.1016/j.fsi.2024.109459

Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I. U., Qi, S., & Du, D. (2022). The Soil pH and Heavy Metals Revealed Their Impact on Soil Microbial Community. Journal of Environmental Management, 321, 115770. https://doi.org/10.1016/j.jenvman.2022.115770

Ngabito, P. A., Bialangi, N., & Kunusa, W. R. (2024). Analisis Kualitas Air Limbah Tambak Udang di Kecamatan Mananggu Menggunakan Spektrofotometer Uv-Vis. Dalton: Jurnal Pendidikan Kimia dan Ilmu Kimia, 7(3), 229. https://doi.org/10.31602/dl.v7i3.16657

Nguyen, T. A. T., Nguyen, K. A. T., & Jolly, C. (2019). Is Super-Intensification the Solution to Shrimp Production and Export Sustainability? Sustainability, 11(19), 5277. https://doi.org/10.3390/su11195277

Octovianus, O., Ghanim, M. R., Lestari, A. T., & Islamy, R. A. (2023). Analysis of Traffic Volume and Frequency of Vannamei Shrimp (Litopenaeus vannamei) Shipments Based on a Certification Approach. Jurnal Penelitian Pendidikan IPA, 9(6), 4777–4782. https://doi.org/10.29303/jppipa.v9i6.3812

Paena, M., Syamsuddin, R., Rani, C., & Tandipayuk, H. (2020). Estimasi Beban Limbah Organik dari Tambak Udang Superintensif yang Terbuang di Perairan Teluk Labuange. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2), 509–518. https://doi.org/10.29244/jitkt.v12i2.27738

Prasetyawan, I. B., Maslukah, L., & Rifai, A. (2017). Pengukuran Sistem Karbon Dioksida (CO2) sebagai Data Dasar Penentuan Fluks Karbon di Perairan Jepara. Buletin Oseanografi Marina, 6(1), 9. https://doi.org/10.14710/buloma.v6i1.15736

Pratiwi, R. K., Mahmudi, M., Faqih, A. R., & Arfiati, D. (2023). Dynamics of Water Quality for Vannamei Shrimp Cultivation in Intensive Ponds in Coastal Areas. Jurnal Penelitian Pendidikan IPA, 9(10), 8656–8664. https://doi.org/10.29303/jppipa.v9i10.4322

Rahmi, I., Arfiati, D., Musa, M., & Karimah, K. (2023). Dynamics of Physics and Chemistry of Vanamei Shrimp (Litopenaeus vannamei) Pond Water with Semi Biofloc System. Jurnal Penelitian Pendidikan IPA, 9(1), 249–256. https://doi.org/10.29303/jppipa.v9i1.2528

Shahzad, S., Mehdi, S. E. H., Sharma, A., Hussain, F., Gurung, A., Kang, W., Jang, M., & Oh, S. E. (2025). Characterization of Nitrifying Bacteria and Exploring a Novel Approach for Toxicity Monitoring in Water. Environmental Chemistry and Ecotoxicology, 7, 106–116. https://doi.org/10.1016/j.enceco.2024.10.005

Supardiono, S., Rahayu, R. N., Isrowati, I., & Ernawati, E. (2023). Analysis of Water Quality in The Srigangga River Flow, Central Lombok. Jurnal Penelitian Pendidikan IPA, 9(SpecialIssue), 254–259. https://doi.org/10.29303/jppipa.v9iSpecialIssue.6394

Sutanto, A., Sari, K., Santoso, H., Widowati, H., Fidiastuti, H. R., & Rukayadi, Y. (2024). Pumakkal Formula for Making Shrimp Pond Waste Fertiliser. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 212–230. https://doi.org/10.22437/jiituj.v8i1.32094

Suwartha, N., & Pujiastuti, D. R. (2017). Enhancing Removal Efficiency of Ammonia and Nitrate in Shrimp Farm Wastewater Using Biofloc Technology and Effective Microorganisms 4 (EM4). International Journal of Technology, 8(6), 1021. https://doi.org/10.14716/ijtech.v8i6.685

Tangguda, S., & Prasetia, I. N. D. (2019). Produksi Chlorella sp. dengan Perlakuan Limbah Cair Tambak Udang Vaname (Litopenaeus vannamei) Steril (Production of Chlorella sp. With Steril White Shrimp (Litopenaeus vannamei) Liquid Waste Treatment). SAINTEK PERIKANAN: Indonesian Journal of Fisheries Science and Technology, 14(2), 96. https://doi.org/10.14710/ijfst.14.2.96-99

Turista, D. D. R. (2017). Biodegradation of Organic Liquid Waste by Using Consortium Bacteria as Material Preparation of Environmental Pollution Course Textbook. JPBI (Jurnal Pendidikan Biologi Indonesia), 3(2), 95–102. https://doi.org/10.22219/jpbi.v3i2.4322

Ulfah, M., Sari, O. D. P., & Hayat, M. S. (2024). Bioremediation of Nitrate and Nitrite on the Rehabilitation of Contaminated Jatibarang Landfill and the Application of Calla Lily. Jurnal Penelitian Pendidikan IPA, 10(7), 4172–4178. https://doi.org/10.29303/jppipa.v10i7.8095

Visser, P. M., Verspagen, J. M. H., Sandrini, G., Stal, L. J., Matthijs, H. C. P., Davis, T. W., Paerl, H. W., & Huisman, J. (2016). How Rising CO2 and Global Warming May Stimulate Harmful Cyanobacterial Blooms. Harmful Algae, 54, 145–159. https://doi.org/10.1016/j.hal.2015.12.006

Widowati, L. L., Prayitno, S. B., Rejeki, S., Elfitasari, T., Purnomo, P. W., Ariyati, R. W., & Bosma, R. H. (2021). Organic Matter Reduction Using Four Densities of Seaweed (Gracilaria verucosa) and Green Mussel (Perna viridis) to Improve Water Quality for Aquaculture in Java, Indonesia. Aquatic Living Resources, 34, 5. https://doi.org/10.1051/alr/2021002

Yanqoritha, N., Kuswandi, K., & Sulhatun, S. (2022). Evaluation of Kinetic Parameters of Nitrification Process in Biofilter System to Efluent Liquid Waste of Tofu Industry. Jurnal Penelitian Pendidikan IPA, 8(6), 2744–2751. https://doi.org/10.29303/jppipa.v8i6.2453

Yuka, R. A., Setyawan, A., & Supono, S. (2021). Identifikasi Bakteri Bioremediasi Pendegradasi Total Ammonia Nitrogen (TAN). Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(1), 20–29. https://doi.org/10.21107/jk.v14i1.8499

Yusoff, F. M., Umi, W. A. D., Ramli, N. M., & Harun, R. (2024). Water Quality Management in Aquaculture. Cambridge Prisms: Water, 2, e8. https://doi.org/10.1017/wat.2024.6

Zheng, T., Wang, P., Hu, B., Bao, T., & Qin, X. (2024). Mass Variations and Transfer Process of Shrimp Farming Pollutants in Aquaculture Drainage Systems: Effects of DOM Features and Physicochemical Properties. Journal of Hazardous Materials, 469, 133978. https://doi.org/10.1016/j.jhazmat.2024.133978

Author Biographies

A. Fahmi Nada, University of Brawijaya

Surya Rachman Susilowati, University of Brawijaya

Asus Maizar Suryanto Hertika, University of Brawijaya

Maftuch, University of Brawijaya

License

Copyright (c) 2025 A. Fahmi Nada, Surya Rachman Susilowati, Asus Maizar Suryanto Hertika, Maftuch

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).