Analyzing Students' Misconceptions Based on Submicroscopic Level Representation in Elements, Compounds, and Mixtures

Authors

DOI:

10.29303/jppipa.v11i2.10052

Published:

2025-02-25

Issue:

Vol. 11 No. 2 (2025): February

Keywords:

Compound and mixtures, Element, Misconceptions, Submicroscopic level

Research Articles

Downloads

How to Cite

Arini, A. D., Azizah, U., Sukarmin, Satriawan, M., & Saphira, H. V. (2025). Analyzing Students’ Misconceptions Based on Submicroscopic Level Representation in Elements, Compounds, and Mixtures. Jurnal Penelitian Pendidikan IPA, 11(2), 25–34. https://doi.org/10.29303/jppipa.v11i2.10052

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The aim of this study is to analyze misconceptions at the submicroscopic level as well as the causal factors of misconceptions in elemental, compound and mixture materials. This research was conducted using descriptive-quantitative method using three-tier diagnostic test and interview. The research subjects were grade IX with 41 students in a junior high school in Malang. The results of this study indicate that 31.0% of students experience misconceptions in determining the concept of atoms, especially for like and unlike atoms in determining elements, compounds and mixtures, 29.0% in the difference in material changes when viewed from the shape of atoms owned, and 27.0% in changes in the constituent particles of elements, compounds and mixtures. The factors causing this misconception are based on the way of learning, misconceptions from teachers, learning methods, initial abilities, and supporting books. The conclusion of this research is that students experience misconceptions that have an impact on their understanding of concepts, especially for the submicroscopic level. The ability to understand the submicroscopic level which is still low causes the need for efforts in reducing the misconceptions that occur.

References

Akaygun, S., Adadan, E., & Kelly, R. (2019). Capturing Preservice Chemistry Teachers’ Visual Representations of Redox Reactions Through Storyboards. Israel Journal of Chemistry, 59(6–7), 493–503. https://doi.org/10.1002/ijch.201800133

Alighiri, D., Drastisianti, A., & Susilaningsih, E. (2018). Pemahaman Konsep Siswa Materi Larutan Penyangga dalam Pembelajaran Multiple Representasi. Jurnal Inovasi Pendidikan Kimia, 12, 2192–2200. https://doi.org/10.15294/jipk.v12i2.15735

Allred, Z. D. R., & Bretz, S. L. (2019). University Chemistry Students’ Interpretations of Multiple Representations of the Helium Atom. Chemistry Education Research and Practice, 20(2), 358–368. https://doi.org/10.1039/C8RP00296G

Ayas, A., Özmen, H., & Çalik, M. (2010). Students’ Conceptions of The Particulate Nature of Matter at Secondary and Tertiary Level. International Journal of Science and Mathematics Education, 8(1), 165–184. https://doi.org/10.1007/s10763-009-9167-x

Bauer, S. E., Im, U., Mezuman, K., & Gao, C. Y. (2019). Desert Dust, Industrialization and Agricultural Fires: Health Impacts of Outdoor Air Pollution in Africa. J. Geophys. Res. Atmos., 124(7), 4104-4120, https://doi.org/10.1029/2018JD029336

Chang, R., & Overby, J. (2022). Chemistry (Fourteenth edition). McGrawHill.

Chophel, Y. (2022). Remediating Misconceptions Related to Particulate Nature of Matter Using Video Animation: An Action Research. International Research Journal of Science, Technology, Education, and Management, 2(1), 75-87. https://doi.org/10.5281/ZENODO.6496773

Damsi, M., & Suyanto, S. (2023). Systematic Literature Review: Multiple-Tier Diagnostic Instruments in Measuring Student Chemistry Misconceptions. Jurnal Penelitian Pendidikan IPA, 9(5), 8–21. https://doi.org/10.29303/jppipa.v9i5.2600

Davidowitz, B., Chittleborough, G. D., & Murray, E. (2010). Student-Generated Submicro Diagrams: A Useful Tool for Teaching and Learning Chemical Equations and Stoichiometry. Chemistry Education Research and Practice, 11(3), 154-164. https://doi.org/10.1039/C005464J

Deleña, R., & Marasigan, A. C. (2023). Understanding Students’ Misconceptions About Chemical Formula Writing and Naming Ionic Compounds. International Journal of Academic Studies in Technology and Education, 1(2), 156–173. https://doi.org/10.55549/ijaste.15

Derman, A., & Ebenezer, J. (2020). The Effect of Multiple Representations of Physical and Chemical Changes on the Development of Primary Pre-service Teachers Cognitive Structures. Research in Science Education, 50(4), 1575–1601. https://doi.org/10.1007/s11165-018-9744-5

Effendi, M., Muhardjito, M., & Koes, S. (2016). Pengaruh Model Pembelajaran ECIRR Terhadap Penguasaan Konsep Fisika pada Siswa SMK. Jurnal Pendidikan Sains, 4(3), 113–121. http://dx.doi.org/10.17977/jps.v4i3.8190

Gilbert, J. K., & Treagust, D. F. (2009). Towards a Coherent Model for Macro, Submicro and Symbolic Representations in Chemical Education. In J. K. Gilbert & D. Treagust (Eds.), Multiple Representations in Chemical Education (Vol. 4, pp. 333–350). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8872-8_15

Gulacar, O., Milkey, A., & McLane, S. (2019). Exploring the Effect of Prior Knowledge and Gender on Undergraduate Students’ Knowledge Structures in Chemistry. EURASIA Journal of Mathematics, Science and Technology Education, 15(8). https://doi.org/10.29333/ejmste/106231

Gurcay, D., & Gulbas, E. (2018). Determination of Factors Related to Students’ Understandings of Heat, Temperature and Internal Energy Concepts. Journal of Education and Training Studies, 6(2), 65. https://doi.org/10.11114/jets.v6i2.2854

Gurel, D., Eryilmaz, A., & McDermott, L. C. (2015). A Review and Comparison of Diagnostic Instruments to Identify Students’ Misconceptions in Science. EURASIA Journal of Mathematics, Science and Technology Education, 11(5). https://doi.org/10.12973/eurasia.2015.1369a

Harrison, A. G., & Treagust, D. F. (2003). The Particulate Nature of Matter: Challenges in Understanding the Submicroscopic World. In J. K. Gilbert, O. Jong, R. Justi, D. F. Treagust, & J. H. Driel (Eds.), Chemical Education: Towards Research-based Practice (Vol. 17, pp. 189–212). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47977-X_9

Hulyadi, H., Muhali, M., & Gargazi, G. (2023). Reducing Student Misconceptions Through Problem-Based Learning with a Computational Chemistry-Assisted Question Map Approach. Jurnal Penelitian Pendidikan IPA, 9(12), 11207–11217. https://doi.org/10.29303/jppipa.v9i12.5936

Isnaini, M., & Ningrum, W. P. (2018). Hubungan Keterampilan Representasi Terhadap Pemahaman Konsep Kimia Organik. Orbital: Jurnal Pendidikan Kimia, 2(2), 12-25. Retrieved from https://jurnal.radenfatah.ac.id/index.php/orbital/article/view/2637/1931

Johnstone, A. H. (1991). Why is Science Difficult to Learn? Things Are Seldom What They Seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x

Kay, C. C., & Yiin, H. K. (2010). Misconceptions in the Teaching of Chemistry in Secondary Schools in Singapore & Malaysia. Proceedings of the Sunway Academic Conference 2010. Retrieved from https://core.ac.uk/download/pdf/148366362.pdf

Latifah, U., Wakhyudin, H., & Cahyadi, F. (2020). Miskonsepsi Penyelesaian Soal Cerita Matematika Materi FPB dan KPK Sekolah Dasar. Jurnal Riset Pendidikan, 3(2), 181–195. https://doi.org/10.26618/jrpd.v3i2.4078

Lestari, L. A., Subandi, S., & Habiddin, H. (2021). Identifikasi Miskonsepsi Siswa pada Materi Laju Reaksi dan Perbaikannya Menggunakan Model Pembelajaran Learning Cycle 5E dengan Strategi Konflik Kognitif. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 6(6), 888. https://doi.org/10.17977/jptpp.v6i6.14876

Mardiyyaningsih, A. N., Erlina, E., Ulfah, M., & Wafiq, A. F. (2023). Validity and Reliability of the Two-tier Diagnostic Test to Identify Students’ Alternative Conceptions of Intermolecular Forces. Jurnal Penelitian Pendidikan IPA, 9(6), 4375–4381. https://doi.org/10.29303/jppipa.v9i6.2797

Ma’rufah, D. M., Effendy, E., & Wonorahardjo, S. (2022). Identification of Intermolecular Force Misconceptions in Students with Different Scientific Thinking Skills and the Improvement Efforts Using Conceptual Change Text. In S. Wonorahardjo, Habiddin, & S. Karmina, Improving Assessment and Evaluation Strategies on Online Learning (1st ed., pp. 123–128). Routledge. https://doi.org/10.1201/9781003261346-19

Mukti, W., Puspita, Y., & Anggraeni, Z. (2020). Media Pembelajaran Fisika Berbasis Web Menggunakan Google Sites pada Materi Listrik Statis. Prosiding Webinar Pendidikan Fisika, 5(1), 51-59. Retrieved from https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/21703

Ningrum, L. S., Drastisianti, A., Setiowati, H., & Pratiwi, R. (2022). Effectiveness of Cognitive Conflict-Based Chemistry Learning in Reducing Students’ Misconceptions of Acid-Base Materials. Jurnal Penelitian Pendidikan IPA, 8(4), 2425–2429. https://doi.org/10.29303/jppipa.v8i4.2092

Rahayu, I,. W., Widhiyanti, T., & Mulyani, S. (2024). Analysis of Misconceptions on the Factors that Affect the Reaction Rate. KnE Social Sciences, 9(13). https://doi.org/10.18502/kss.v9i13.15914

Rosyidah, K., Lutfi, A., Sanjaya, I. G. M., & Astutik, J. (2024). Identification of Students’ Misconceptions and Understanding on Thermochemistry Material with Four-Tier Multiple-Choice Tests. Jurnal Pendidikan Sains Indonesia, 12(1), 155–171. https://doi.org/10.24815/jpsi.v12i1.34899

Santos, V., & Arroio, A. (2016). The Representational Levels: Influences and Contributions to Research in Chemical Education. Journal of Turkish Science Education, 13(1), 3–18. https://doi.org/10.12973/tused.10153a

Sari, D. R., Fikroh, R. A., Rahayu, R., & Ridzaniyanto, P. (2022). Pengembangan Media Pembelajaran Google Sites pada Materi Hidrolisis Garam Berbasis Pendekatan Konstektual. Lantanida Journal, 10(2), 109. https://doi.org/10.22373/lj.v10i2.14497

Shiddiqi, M. H. A., Arthamena, V. D., Ayyubi, M., Manarisip, A. J., & Aznam, N. (2024). Systematic Literature Review: Analysis of Misconception Problems and Diagnostic Instruments for Learning Chemistry. Jurnal Penelitian Pendidikan IPA, 10(4), 168–179. https://doi.org/10.29303/jppipa.v10i4.5189

Singer, J. E., Tal, R. (Tali), & Wu, H. (2003). Students’ Understanding of the Particulate Nature of Matter. School Science and Mathematics, 103(1), 28–44. https://doi.org/10.1111/j.1949-8594.2003.tb18111.x

Slapničar, M., Devetak, I., Glažar, S. A., & Pavlin, J. (2017). Identification of the Understanding of The States of Matter of Water and Air Among Slovenian Students Ages 12, 14, and 16 years Through Solving Authentic. Journal of Baltic Science Education, 16(3), 308–323. https://doi.org/10.33225/jbse/17.16.308

Stains, M., & Talanquer, V. (2007). Classification of Chemical Substances Using Particulate Representations of Matter: An Analysis of Student Thinking. International Journal of Science Education, 29(5), 643–661. https://doi.org/10.1080/09500690600931129

Stojanovska, M. I., Soptrajanov, B. T., & Petrusevski, V. M. (2012). Addressing Misconceptions About the Particulate Nature of Matter among Secondary-School and High-School Students in the Republic of Macedonia. Creative Education, 03(05), 619–631. https://doi.org/10.4236/ce.2012.35091

Sugiarti, D. R., & Munfaridah, N. (2024). Pengembangan LKPD Berbasis Discovery Learning Menggunakan Triple Representation pada Materi Unsur, Senyawa, dan Campuran untuk Melatih Kemampuan Berpikir Kritis Peserta Didik. Jurnal Pembelajaran, Bimbingan, dan Pengelolaan Pendidikan, 4(6), 17. https://doi.org/10.17977/um065.v4.i6.2024.17

Treagust, D. F., Duit, R., & Fischer, H. E. (Eds.). (2017). Multiple Representations in Physics Education (Vol. 10). Springer International Publishing. https://doi.org/10.1007/978-3-319-58914-5

Tsitsipis, G., Stamovlasis, D., & Papageorgiou, G. (2012). A Probabilistic Model for Students Errors and Misconception on The Structure Matter in Relation to Three Cognitive Variables. International Journal of Science and Mathematics Education, 10(4), 777–802. https://doi.org/10.1007/s10763-011-9288-x

Warsito, J., Subandi, S., & Parlan, P. (2021). Identifikasi Miskonsepsi Siswa pada Topik Ikatan Kimia serta Perbaikannya dengan Pembelajaran Model ECIRR (Elicit, Confront, Identify, Resolve, Reinforce). Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 5(11), 1563. https://doi.org/10.17977/jptpp.v5i11.14158

Wenning, C. (2008). Dealing More Effectively with Alternative Conceptions in Science. Journal of Physics Teacher Education Online, 5, 11–19.

Winarni, S., & Syahrial, S. (2022). Revealing Chemical Misconceptions Through the Microteaching Process in The Era of The Covid-19 Pandemic. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(1), 50. https://doi.org/10.20961/jkpk.v7i1.55587

Yaman, F. (2020). Pre-Service Science Teachers’ Development and Use of Multiple Levels of Representation and Written Arguments in General Chemistry Laboratory Courses. Research in Science Education, 50(6), 2331–2362. https://doi.org/10.1007/s11165-018-9781-0

Author Biographies

Arum Dwisetyo Arini, State University of Surabaya

Utiya Azizah, State University of Surabaya

Sukarmin, State University of Surabaya

Muhammad Satriawan, State University of Surabaya

Hanandita Veda Saphira, University of Wollongong

License

Copyright (c) 2025 Arum Dwisetyo Arini, Utiya Azizah, Sukarmin, Muhammad Satriawan, Hanandita Veda Saphira

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).