Antifungal Activity of Ethanol Extract of Stem Bark And Fruit Flesh of Baccaurea Lanceolata Against Fungi Causing Skin Infections
DOI:
10.29303/jppipa.v11i5.10075Published:
2025-05-25Issue:
Vol. 11 No. 5 (2025): MayKeywords:
Antifungal, Baccaurea lanceolata, Disk diffusion, LempaungResearch Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Indonesia has a diversity of medicinal plants that are used by the community to treat various diseases. Indonesian people often experience skin problems caused by fungi. The high number of cases of fungal diseases is due to the high air humidity in the tropics, thus supporting the growth of fungi that cause skin infections. This study examines the phytochemical content and antifungal activity of Baccaurea lanceolata (lempaung) plants. The parts of lempaung used as samples are the stem bark and fruit flesh. Samples were taken in Bioa Sengok Village, Rimbo Pengadang District, Lebong Regency. Antifungal testing was conducted at the Chemistry Education Laboratory and Microbiology Laboratory of Bengkulu University (UNIB) from January to June 2022. Antifungal activity testing uses the disc diffusion method by immersing the disc into the ethanol extract of lempaung. The test fungi used were C. albicans, M. furfur, and T. mentagrophytes. The results of phytochemical tests showed that the stem bark and fruit flesh samples of lempaung contained alkaloids, flavonoids, tannins, saponins, steroids, and terpenoids. The antifungal activity test results showed that the samples had inhibition against C. albicans, M. furfur, and T. mentagrophytes.
References
Abdelfatah, A. M., Fawzy, M., El-Khouly, M. E., & Eltaweil, A. S. (2021). Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. Journal of Saudi Chemical Society, 25(12), 101365. https://doi.org/10.1016/j.jscs.2021.101365
Adeyi, O., Adeyi, A. J., Oke, E. O., Okolo, B. I., Olalere, O. A., Taiwo, A. E., Aremu, O. S., Qwebani-Ogunleye, T., Maphosa, Y., & Ogunsola, A. D. (2023). Heat-assisted extraction of phenolic-rich bioactive antioxidants from Enantia chlorantha stem bark: Multi-objective optimization, integrated process techno-economics and profitability risk assessment. SN Applied Sciences, 5(6), 153. https://doi.org/10.1007/s42452-023-05372-1
Ahmad, I., Hikmawan, B. D., Maharani, D. F., Nisrina, N., Arifianti, A. E., & Mun’im, A. (2023). Natural Deep Eutectic Solvent based Ultrasound-assisted extraction: A green approach for extraction of sulfhydryl and mimosine from Leucaena leucocephala (Lam) de Wit seeds. Heliyon, 9(10), e20480. https://doi.org/10.1016/j.heliyon.2023.e20480
Akpe, M. A., Enang, A. D., Patrick-Inezi, F. S., & Edodi, D. I. (2024). Phytochemical, Elemental Analysis and Antifungal Activity of Erigeron Floribundus (bilbao Fleabane) Leaf Extract Against Malassezia Furfur. Journal of Natural Products Discovery, 3(1). https://doi.org/10.24377/JNPD.ARTICLE871
Al Aboody, M. S., & Mickymaray, S. (2020). Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics, 9(2), 45. https://doi.org/10.3390/antibiotics9020045
Alemu, M., Lulekal, E., Asfaw, Z., Warkineh, B., Debella, A., Abebe, A., Degu, S., & Debebe, E. (2024). Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. Plos One, 19(3), e0300060. https://doi.org/10.1371/journal.pone.0300060
Al-Hamdani, A., Jayasuriya, H., Pathare, P. B., & Al-Attabi, Z. (2022). Drying Characteristics and Quality Analysis of Medicinal Herbs Dried by an Indirect Solar Dryer. Foods, 11(24), 4103. https://doi.org/10.3390/foods11244103
Aljuhani, S., Rizwana, H., Aloufi, A. S., Alkahtani, S., Albasher, G., Almasoud, H., & Elsayim, R. (2024). Antifungal activity of Carica papaya fruit extract against Microsporum canis: In vitro and in vivo study. Frontiers in Microbiology, 15, 1399671. https://doi.org/10.3389/fmicb.2024.1399671
Almada, A. C., Mereles-Rodríguez, B., Chade, M., Belinchón-Romero, I., Deschutter, E.-J., & Ramos-Rincón, J.-M. (2025). Etiological Agents and Predisposing Factors of Superficial Fungal Infections in Northeastern Argentina. Journal of Fungi, 11(4), 245. https://doi.org/10.3390/jof11040245
Alsaud, N., & Farid, M. (2020). Insight into the Influence of Grinding on the Extraction Efficiency of Selected Bioactive Compounds from Various Plant Leaves. Applied Sciences, 10(18), 6362. https://doi.org/10.3390/app10186362
Al-Suwaytee, S. H. M., Ben Hadj Ayed, O., Chaâbane-Banaoues, R., Kosksi, T., Shleghm, M. R., Chekir-Ghedira, L., Babba, H., Sfar, S., & Lassoued, M. A. (2024). Exploring the Antifungal Effectiveness of a Topical Innovative Formulation Containing Voriconazole Combined with Pinus sylvestris L. Essential Oil for Onychomycosis. Colloids and Interfaces, 8(5), 56. https://doi.org/10.3390/colloids8050056
Alves, D. R., Maia De Morais, S., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Vasconcelos, F. R., Silva, I. N. G. D., Araujo De Sousa, H., Assolini, J. P., Conchon-Costa, I., Pavanelli, W. R., & Freire, F. D. C. O. (2017). Flavonoid Composition and Biological Activities of Ethanol Extracts of Caryocar coriaceum Wittm., a Native Plant from Caatinga Biome. Evidence-Based Complementary and Alternative Medicine, 2017(1), 6834218. https://doi.org/10.1155/2017/6834218
Arunachalam, N., Jayasankar, S., Rajendran, J., & Thamilarasan, R. (2024). Phytochemicals, Anti-microbial and Anti-oxidant Investigations on Cassia fistula Fruit Pulp Extracts. Biomedical and Pharmacology Journal, 17(4), 2515–2525. https://doi.org/10.13005/bpj/3044
Atwi-Ghaddar, S., Zerwette, L., Destandau, E., & Lesellier, E. (2023). Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier. Molecules, 28(14), 5485. https://doi.org/10.3390/molecules28145485
Bakar, M., Ahmad, N., Karim, F., & Saib, S. (2014). Phytochemicals and Antioxidative Properties of Borneo Indigenous Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) Fruits. Antioxidants, 3(3), 516–525. https://doi.org/10.3390/antiox3030516
Caputo, L., Amato, G., De Bartolomeis, P., De Martino, L., Manna, F., Nazzaro, F., De Feo, V., & Barba, A. A. (2022). Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Scientific Reports, 12(1), 3845. https://doi.org/10.1038/s41598-022-07841-w
Chanyachailert, P., Leeyaphan, C., & Bunyaratavej, S. (2023). Cutaneous Fungal Infections Caused by Dermatophytes and Non-Dermatophytes: An Updated Comprehensive Review of Epidemiology, Clinical Presentations, and Diagnostic Testing. Journal of Fungi, 9(6), 669. https://doi.org/10.3390/jof9060669
Chen, Y., Gao, Y., Yuan, M., Zheng, Z., & Yin, J. (2023). Anti-Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. International Journal of Molecular Sciences, 24(11), 9350. https://doi.org/10.3390/ijms24119350
Das, B. K., Al‑Amin, M. M., Russel, S. M., Kabir, S., Bhattacherjee, R., & Hannan, J. M. A. (2014). Phytochemical Screening and Evaluation of Analgesic Activity of Oroxylum indicum. Retrieved from https://pubmed.ncbi.nlm.nih.gov/25593396/
Fang, H.-Y., Wei, Y.-Q., Zhang, M.-L., & Liu, W. (2020). A Novel Green Extraction Technique for Extracting Flavonoids from Folium nelumbinis by Changing Osmosis Pressure. Materials, 13(18), 4192. https://doi.org/10.3390/ma13184192
Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, J., Borges, A., & Teixeira, A. R. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8(5), 677–700. https://doi.org/10.1111/j.1364-3703.2007.00419.x
Gakuubi, M. M., Ching, K. C., Munusamy, M., Wibowo, M., Liang, Z.-X., Kanagasundaram, Y., & Ng, S. B. (2022). Enhancing the Discovery of Bioactive Secondary Metabolites From Fungal Endophytes Using Chemical Elicitation and Variation of Fermentation Media. Frontiers in Microbiology, 13, 898976. https://doi.org/10.3389/fmicb.2022.898976
Garg, A., Sharma, G. S., Goyal, A. K., Ghosh, G., Si, S. C., & Rath, G. (2020). Recent advances in topical carriers of anti-fungal agents. Heliyon, 6(8), e04663. https://doi.org/10.1016/j.heliyon.2020.e04663
Gnat, S., Łagowski, D., Nowakiewicz, A., Osińska, M., & Kopiński, Ł. (2020). Population differentiation, antifungal susceptibility, and host range of Trichophyton mentagrophytes isolates causing recalcitrant infections in humans and animals. European Journal of Clinical Microbiology & Infectious Diseases, 39(11), 2099–2113. https://doi.org/10.1007/s10096-020-03952-2
Gupta, A. K., Susmita, S., C. Nguyen, H., Liddy, A., Economopoulos, V., & Wang, T. (2025). Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics, 14(471), 1–18. Retrieved from https://www.mdpi.com/2079-6382/14/5/472
Gupta, A. K., Wang, T., Mann, A., Piguet, V., Chowdhary, A., & Bakotic, W. L. (2025). Mechanisms of resistance against allylamine and azole antifungals in Trichophyton: A renewed call for innovative molecular diagnostics in susceptibility testing. PLOS Pathogens, 21(2), e1012913. https://doi.org/10.1371/journal.ppat.1012913
Haido, M. H., Matti, A. H., & Taher, S. M. (2024). Optimization of Extraction Conditions of Bioactive Compounds From Kurdistan Species Urtica dioica. Cureus. https://doi.org/10.7759/cureus.61146
Hassanain, M., Abdel-Ghafar, H. M., Hamouda, H. I., El-Hosiny, F. I., & Ewais, E. M. M. (2024). Enhanced antimicrobial efficacy of hydroxyapatite-based composites for healthcare applications. Scientific Reports, 14(1), 26426. https://doi.org/10.1038/s41598-024-76088-4
Henri, H., Sari, D. P., & Hakim, L. (2022). Medicinal Plants for Traditional Treatment Used by the Malays in South Bangka Regency, Indonesia. Biosaintifika: Journal of Biology & Biology Education, 14(1), 125–134. https://doi.org/10.15294/biosaintifika.v14i1.34455
Horablaga, N. M., Cozma, A., Alexa, E., Obistioiu, D., Cocan, I., Poiana, M.-A., Lalescu, D., Pop, G., Imbrea, I. M., & Buzna, C. (2023). Influence of Sample Preparation/Extraction Method on the Phytochemical Profile and Antimicrobial Activities of 12 Commonly Consumed Medicinal Plants in Romania. Applied Sciences, 13(4), 2530. https://doi.org/10.3390/app13042530
Iqbal-Hussain. (2011). Phytochemical, physiochemical and anti-fungal activity of Eclipta alba. African Journal of Pharmacy and Pharmacology, 5(19). https://doi.org/10.5897/AJPP11.453
Ivanov, M., Ćirić, A., & Stojković, D. (2022). Emerging Antifungal Targets and Strategies. International Journal of Molecular Sciences, 23(5), 2756. https://doi.org/10.3390/ijms23052756
Jha, D. K., Panda, L., Lavanya, P., Ramaiah, S., & Anbarasu, A. (2012). Detection and Confirmation of Alkaloids in Leaves of Justicia adhatoda and Bioinformatics Approach to Elicit Its Anti-tuberculosis Activity. Applied Biochemistry and Biotechnology, 168(5), 980–990. https://doi.org/10.1007/s12010-012-9834-1
Kaur, J., & Nobile, C. J. (2023). Antifungal drug-resistance mechanisms in Candida biofilms. Current Opinion in Microbiology, 71, 102237. https://doi.org/10.1016/j.mib.2022.102237
Keller, K. A., Durante, K., Foltin, E., & Cerreta, A. J. (2023). Nannizziopsis guarroi has prolonged environmental persistence on clinically relevant substrates. Journal of the American Veterinary Medical Association, 261(S1), S109–S113. https://doi.org/10.2460/javma.22.12.0575
Kottferová, L., & Čonková, E. (2023). In Vitro Antifungal Activity of Selected Essential Oils Against Trichophyton mentagrophytes. Folia Veterinaria, 67(2), 33–41. https://doi.org/10.2478/fv-2023-0015
Kruithoff, C., Gamal, A., McCormick, T. S., & Ghannoum, M. A. (2023). Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life, 14(1), 1. https://doi.org/10.3390/life14010001
Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules, 28(2), 887. https://doi.org/10.3390/molecules28020887
Li, L., He, Y., Zou, Q., Chen, W., Liu, Y., He, H., & Zhang, J. (2024). In vitro and in vivo synergistic inhibition of Malassezia furfur targeting cell membranes by Rosa rugosa Thunb. And Coptidis Rhizoma extracts. Frontiers in Microbiology, 15, 1456240. https://doi.org/10.3389/fmicb.2024.1456240
Li, L., Wei, M., Yu, H., Xie, Y., Guo, Y., Cheng, Y., & Yao, W. (2023). Antifungal activity of Sapindus saponins against Candida albicans: Interruption of biofilm formation. Journal of Herbal Medicine, 42, 100776. https://doi.org/10.1016/j.hermed.2023.100776
Lima, S. L., Colombo, A. L., & De Almeida Junior, J. N. (2019). Fungal Cell Wall: Emerging Antifungals and Drug Resistance. Frontiers in Microbiology, 10, 2573. https://doi.org/10.3389/fmicb.2019.02573
Lysakova, V., Krasnopolskaya, L., Yarina, M., & Ziangirova, M. (2024). Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review. Antibiotics, 13(11), 1026. https://doi.org/10.3390/antibiotics13111026
Maurya, V. K., Kachhwaha, D., Bora, A., Khatri, P. K., & Rathore, L. (2019). Determination of antifungal minimum inhibitory concentration and its clinical correlation among treatment failure cases of dermatophytosis. Journal of Family Medicine and Primary Care, 8(8), 2577–2581. https://10.4103/jfmpc.jfmpc_483_19
Mendoza-León, J. C., Fuertes Ruitón, C. M., & Jahuira-Arias, M. H. (2022). Análisis fitoquímico preliminar y actividad antifúngica In vitro del extracto etanólico de las hojas de Solanum hispidum pers. Colectadas en la localidad Obraje—Perú. Revista Peruana de Medicina Experimental y Salud Pública, 321–327. https://doi.org/10.17843/rpmesp.2022.393.11381
Nawaz, M., Pan, J., Liu, H., Umer, M. J., Liu, J., Yang, W., Lv, Z., Zhang, Q., & Jiao, Z. (2025). Integrated evaluation of antifungal activity of pomegranate peel polyphenols against a diverse range of postharvest fruit pathogens. Bioresources and Bioprocessing, 12(1), 34. https://doi.org/10.1186/s40643-025-00874-9
Oikeh, E. I., Omoregie, E. S., Oviasogie, F. E., & Oriakhi, K. (2016). Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates. Food Science & Nutrition, 4(1), 103–109. https://doi.org/10.1002/fsn3.268
Osuagwu, G. G. E., & Eme, C. F. (2013). The Phytochemical Composition and Antimicrobial Activity of Dialium Guineense, Vitex Doniana and Dennettia Tripetala Leaves. Applied Sciences, 2(3). https://doi.org/10.1007/s40071-016-0146-x
Otero-Guzman, N., & Andrade-Pizarro, R. (2025). Bioactive compounds from tropical fruit by-products: Extraction, characterization and therapeutic potential. Journal of Agriculture and Food Research, 21, 101983. https://doi.org/10.1016/j.jafr.2025.101983
Prakoeswa, F. R. S., Pramuningtyas, R., & Dimawan, R. S. A. (2022). The Epidemiologic and Sociodemographic Features of Superficial Fungal Infection Among Children in East Java Suburban Public Hospital. Berkala Ilmu Kesehatan Kulit Dan Kelamin, 34(2), 120–124. https://doi.org/10.20473/bikk.V34.2.2022.120-124
Rajakulasooriya, R. S. R., Fernando, S. S. N., & Kumarasinghe, U. R. (2025). In vivo toxicological evaluation of 3-benzylideneindolin-2-one: Antifungal activity against clinical isolates of dermatophytes. 26(16), 1–11. https://doi.org/10.1186/s40360-025-00850-1
Ramírez-Sotelo, U., Gómez-Gaviria, M., & Mora-Montes, H. M. (2025). Signaling Pathways Regulating Dimorphism in Medically Relevant Fungal Species. Phatogens, 14(350), 1–28. https://doi.org/10.20944/preprints202502.1154.v1
Rhimi, W., Theelen, B., Boekhout, T., Otranto, D., & Cafarchia, C. (2020). Malassezia spp. Yeasts of Emerging Concern in Fungemia. Frontiers in Cellular and Infection Microbiology, 10, 370. https://doi.org/10.3389/fcimb.2020.00370
Rodríguez, B., Pacheco, L., Bernal, I., & Piña, M. (2023). Mechanisms of Action of Flavonoids: Antioxidant, Antibacterial and Antifungal Properties. Ciencia, Ambiente y Clima, 6(2), 33–66. https://doi.org/10.22206/cac.2023.v6i2.3021
Salhi, N., Mohammed Saghir, S. A., Terzi, V., Brahmi, I., Ghedairi, N., & Bissati, S. (2017). Antifungal Activity of Aqueous Extracts of Some Dominant Algerian Medicinal Plants. BioMed Research International, 2017, 1–6. https://doi.org/10.1155/2017/7526291
Santos, T. R. J., & Santana, L. C. L. D. A. (2022). Conventional and emerging techniques for extraction of bioactive compounds from fruit waste. Brazilian Journal of Food Technology, 25, e2021130. https://doi.org/10.1590/1981-6723.13021
Saptarini, N. M., Mustarichie, R., Hasanuddin, S., & Corpuz, M. J.-A. T. (2024). Cassia alata L.: A Study of Antifungal Activity against Malassezia furfur, Identification of Major Compounds, and Molecular Docking to Lanosterol 14-Alpha Demethylase. Pharmaceuticals, 17(3), 380. https://doi.org/10.3390/ph17030380
Sari, M., Leny, Parhan, & Mahara, R. (2024). Antifungal Activity of Bilimbi Leaves (Averrhoa bilimbi l.) Ethanol Extract on the Growht of Aspergillus flavus and Trichophyton mentagrophytes. Bioeduscience, 8(1), 95–103. https://doi.org/10.22236/jbes/11118
Siregar, S. S., Adella, C. A., & Enitan, S. S. (2024). Antifungal activity of Durio zibethinus Murray peel extract against Candida albicans: A preliminary study. Narra J, 4(1), e429. https://doi.org/10.52225/narra.v4i1.429
Soll, D. R. (2024). White-opaque switching in Candida albicans: Cell biology, regulation, and function. Microbiology and Molecular Biology Reviews, 88(2), e00043-22. https://doi.org/10.1128/mmbr.00043-22
Sri Rahayu, M., Mellaratna, W. P., & Najah, N. (2024). The preliminary study on the antifungal effect of Kaffir lime (Citrus hystrix DC) peel extract against Malassezia furfur. International Journal of Secondary Metabolite, 11(3), 486–493. https://doi.org/10.21448/ijsm.1395562
Supriyadi, D., Damayanti, D., Veigel, S., Hansmann, C., & Gindl-Altmutter, W. (2025). Unlocking the potential of tree bark: Review of approaches from extractives to materials for higher-added value products. Materials Today Sustainability, 29, 101074. https://doi.org/10.1016/j.mtsust.2025.101074
Syamsuardi. (2024). Phylogenetic Analysis of Potential Wild fruits of Baccaurea spp. (Phyllanthaceae) Indigenous to West sumatra, indonesia. SABRAO Journal of Breeding and Genetics, 56(4), 1400–1409. https://doi.org/10.54910/sabrao2024.56.4.7
Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309
Thawabteh, A. M., Ghanem, A. W., AbuMadi, S., Thaher, D., Jaghama, W., Karaman, R., Scrano, L., & Bufo, S. A. (2024). Antibacterial Activity and Antifungal Activity of Monomeric Alkaloids. Toxins, 16(11), 489. https://doi.org/10.3390/toxins16110489
Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes, 8(10), 1222. https://doi.org/10.3390/pr8101222
Ulpah, R., Nashihah, S., & Zamzani, I. (2024). Antibacterial activity of ethanol extract of limpasu (Baccaurea lanceolata) pericarpium with the ultrasound assisted extraction method against Propionibacterium acne. Acta Pharmaciae Indonesia : Acta Pharm Indo, 11(1), 6393. https://doi.org/10.20884/1.api.2023.11.1.6393
Umi Nurlila, R., La Fua, J., Andriani, R., Armayani, Saranani, S., & Rahmawati, A. A. (2024). Analysis of Fiber Content and Antioxidant Activity of Bamboo Shoots (Dendrocalamus asper) to Support Functional Foods. International Journal of Advancement in Life Sciences Research, 07(02), 92–103. https://doi.org/10.31632/ijalsr.2024.v07i02.007
Wahyuningsih, R., Adawiyah, R., Sjam, R., Prihartono, J., Ayu Tri Wulandari, E., Rozaliyani, A., Ronny, R., Imran, D., Tugiran, M., Siagian, F. E., & Denning, D. W. (2021). Serious fungal disease incidence and prevalence in Indonesia. Mycoses, 64(10), 1203–1212. https://doi.org/10.1111/myc.13304
Xu, Y., Lu, H., Zhu, S., Li, W.-Q., Jiang, Y., Berman, J., & Yang, F. (2021). Multifactorial Mechanisms of Tolerance to Ketoconazole in. ASM Microbe, 9(1), 1–10. https://doi.org/10.1128/spectrum.00321-21
Youl, O., Moné-Bassavé, B. R. H., Yougbaré, S., Yaro, B., Traoré, T. K., Boly, R., Yaméogo, J. B. G., Koala, M., Ouedraogo, N., Kabré, E., Tinto, H., Traoré-Coulibaly, M., & Hilou, A. (2023). Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Applied Biosciences, 2(3), 493–512. https://doi.org/10.3390/applbiosci2030031
Zong, J.-F., Hong, Z.-B., Hu, Z.-H., & Hou, R.-Y. (2025). Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers. International Journal of Molecular Sciences, 26(3), 1147. https://doi.org/10.3390/ijms26031147
Author Biographies
Media Sasmita, Universitas Negeri Semarang
Putut Marwoto, Universitas Negeri Semarang
Sunyoto Eko Nugroho, Universitas Negeri Semarang
Woro Sumarni, Universitas Negeri Semarang
License
Copyright (c) 2025 Media Sasmita, Putut Marwoto, Sunyoto Eko Nugroho, Woro Sumarni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).