Recent Trends in Electrospun Polycaprolactone Nanofibers: A Five-Year Bibliometric Perspective from 2019 to 2023
DOI:
10.29303/jppipa.v11i2.10191Published:
2025-02-25Issue:
Vol. 11 No. 2 (2025): FebruaryKeywords:
Citation, Networks, Overview, Publication, ResearchReview
Downloads
How to Cite
Downloads
Metrics
Abstract
Nanofiber materials have emerged as a focal point of advanced research due to their exceptional properties. Polycaprolactone, a biodegradable and biocompatible polyester, has garnered particular interest for applications spanning tissue engineering, drug delivery, wound healing, and filtration. The electrospinning process facilitates precise control over PCL nanofiber morphology and functionality, enhancing its application potential. This investigation employs bibliometric analysis to elucidate global research trends in electrospun PCL nanofibers from 2019 to 2023. Utilizing the Scopus database, 255 relevant publications were identified through rigorous inclusion criteria, focusing on works that address PCL nanofibers, are published in English, and meet peer-reviewed standards. Quantitative tools, including VOSviewer and Harzing’s Publish or Perish, were utilized to analyze research trajectories, citation dynamics, and collaborative networks. Results underscore a predominant focus on biomedical applications, particularly drug delivery and tissue engineering. Geographically, research contributions are led by the Netherlands (28.63%), the United States (25.10%), and the United Kingdom (24.31%). The International Journal of Biological Macromolecules emerged as the most influential journal, contributing 22 articles (10%) and receiving 1,424 citations. Despite significant advancements, critical gaps remain, notably in scaling production processes and diversifying applications beyond the biomedical domain.
References
Abduh, A., Mulyanah, A., Darmawati, B., Zabadi, F., Sidik, U., Handoko, W., … Rosmaladewi, R. (2023). The Compleat Lextutor Application Tool for Academic and Technological Lexical Learning: Review and Bibliometric Approach. Indonesian Journal of Science and Technology, 8(3). https://doi.org/10.17509/ijost.v8i3.63539
ACS Applied Materials and Interfaces. (2024). ACS Applied Materials and Interfaces. Retrieved from https:// www.scopus.com/sourceid/19700171101
Acta Biomaterialia. (2024). Acta Biomaterialia. Retrieved from https://www.scopus.com/sourceid/3300147809
Adeli-Sardou, M., Yaghoobi, M. M., Torkzadeh-Mahani, M., & Dodel, M. (2019a). Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. International Journal of Biological Macromolecules, 124, 478–491. https://doi.org/10.1016/j.ijbiomac.2018.11.237
Adeli-Sardou, M., Yaghoobi, M. M., Torkzadeh-Mahani, M., & Dodel, M. (2019). Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. International Journal of Biological Macromolecules, 124, 478–491. https://doi.org/10.1016/j.ijbiomac.2018.11.237
Ajmal, G., Bonde, G. V., Mittal, P., Khan, G., Pandey, V. K., Bakade, B. V., & Mishra, B. (2019). Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. International Journal of Pharmaceutics, 567. https://doi.org/10.1016/j.ijpharm.2019.118480
Ajmal, G., Bonde, G. V., Mittal, P., Khan, G., Pandey, V. K., Bakade, B. V., & Mishra, B. (2019b). Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. International Journal of Pharmaceutics, 567, 118480. https://doi.org/10.1016/j.ijpharm.2019.118480
Alfawareh, F. S., & Al-Kofahi, M. (2024). Analysis of global research trends on FinTech: a bibliometric study. Journal of Internet and Digital Economics, 4(1). https://doi.org/10.1108/jide-06-2023-0014
Al-Khoury, A., Hussein, S. A., Abdulwhab, M., Aljuboori, Z. M., Haddad, H., Ali, M. A., & Flayyih, H. H. (2022). Intellectual Capital History and Trends: A Bibliometric Analysis Using Scopus Database. Sustainability (Switzerland), 14(18). https://doi.org/10.3390/su141811615
Anand, S., Pandey, P., Begum, M. Y., Chidambaram, K., Arya, D. K., Gupta, R. K., & Rajinikanth, P. S. (2022). Electrospun Biomimetic Multifunctional Nanofibers Loaded with Ferulic Acid for Enhanced Antimicrobial and Wound-Healing Activities in STZ-Induced Diabetic Rats. Pharmaceuticals, 15(3). https://doi.org/10.3390/ph15030302
Arampatzis, A. S., Kontogiannopoulos, K. N., Theodoridis, K., Aggelidou, E., Rat, A., Willems, A., & Assimopoulou, A. N. (2021). Electrospun wound dressings containing bioactive natural products: physico-chemical characterization and biological assessment. Biomaterials Research, 25(1). https://doi.org/10.1186/s40824-021-00223-9
Bandatang, N., Pongsomboon, S. amnart, Jumpapaeng, P., Suwanakood, P., & Saengsuwan, S. (2021). Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. International Journal of Biological Macromolecules, 190, 585–600. https://doi.org/10.1016/j.ijbiomac.2021.08.209
Beikzadeh, S., Hosseini, S. M., Mofid, V., Ramezani, S., Ghorbani, M., Ehsani, A., & Mortazavian, A. M. (2021). Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. International Journal of Biological Macromolecules, 191, 457–464. https://doi.org/10.1016/j.ijbiomac.2021.09.065
Bhattarai, D. P., Tiwari, A. P., Maharjan, B., Tumurbaatar, B., Park, C. H., & Kim, C. S. (2019). Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy. Journal of Colloid and Interface Science, 534, 447–458. https://doi.org/10.1016/j.jcis.2018.09.047
Chen, F., Xu, L., Tian, Y., Caratenuto, A., Liu, X., & Zheng, Y. (2021). Electrospun Polycaprolactone Nanofiber Composites with Embedded Carbon Nanotubes/Nanoparticles for Photothermal Absorption. ACS Applied Nano Materials, 4(5), 5230–5239. https://doi.org/10.1021/acsanm.1c00623
Cui, C., Sun, S., Li, X., Chen, S., Wu, S., Zhou, F., & Ma, J. (2022). Optimizing the chitosan-PCL based membranes with random/aligned fiber structure for controlled ciprofloxacin delivery and wound healing. International Journal of Biological Macromolecules, 205, 500–510. https://doi.org/10.1016/j.ijbiomac.2022.02.118
Daelemans, L., Verschatse, O., Heirman, L., Van Paepegem, W., & De Clerck, K. (2021). Toughening mechanisms responsible for excellent crack resistance in thermoplastic nanofiber reinforced epoxies through in-situ optical and scanning electron microscopy. Composites Science and Technology, 201. https://doi.org/10.1016/j.compscitech.2020.108504
Danzon, P. M., & Ketcham, J. D. (2004). Reference pricing of pharmaceuticals for Medicare: evidence from Germany, The Netherlands, and New Zealand. Frontiers in Health Policy Research / National Bureau of Economic Research https://doi.org/10.2202/1558-9544.1050
Do Pham, D. D., Jenčová, V., Kaňuchová, M., Bayram, J., Grossová, I., Šuca, H., & Gál, P. (2021). Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96980-7
Duplančić Leder, T., Baučić, M., Leder, N., & Gilić, F. (2023). Optical Satellite-Derived Bathymetry: An Overview and WoS and Scopus Bibliometric Analysis. Remote Sensing. https://doi.org/10.3390/rs15051294
El-Naggar, M. E., shalaby, E. S., Abd-Al-Aleem, A. H., Abu-Saied, M. A., & Youssef, A. M. (2021). Synthesis of environmentally benign antimicrobial dressing nanofibers based on polycaprolactone blended with gold nanoparticles and spearmint oil nanoemulsion. Journal of Materials Research and Technology, 15, 3447–3460. https://doi.org/10.1016/j.jmrt.2021.09.136
Eren Boncu, T., & Ozdemir, N. (2022). Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(9), 669–676. https://doi.org/10.1080/00914037.2021.1876057
Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Amini Baghbadorani, M., Navid, S., & Ghahremani, F. (2020). A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59931-2
Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Amini Baghbadorani, M., Navid, S., & Ghahremani, F. (2020b). A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold. Scientific Reports, 10(1), 3063. https://doi.org/10.1038/s41598-020-59931-2
Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M., & Ganji, A. (2021a). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate Polymers, 259. https://doi.org/10.1016/j.carbpol.2021.117640
Fahimirad, S., Satei, P., Ganji, A., & Abtahi, H. (2023). Wound healing performance of PVA/PCL based electrospun nanofiber incorporated green synthetized CuNPs and Quercus infectoria extracts. Journal of Biomaterials Science, Polymer Edition, 34(3), 277–301. https://doi.org/10.1080/09205063.2022.2116209
Farzaei, M. H., Derayat, P., Pourmanouchehri, Z., Kahrarian, M., Samimi, Z., Hajialyani, M., & Behbood, L. (2023). Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. Journal of Drug Delivery Science and Technology, 81. https://doi.org/10.1016/j.jddst.2023.104182
Gao, Y., & Callanan, A. (2021). Influence of surface topography on PCL electrospun scaffolds for liver tissue engineering. Journal of Materials Chemistry B, 9(38), 8081–8093. https://doi.org/10.1039/d1tb00789k
Ghomi, E. R., Lakshminarayanan, R., Chellappan, V., Verma, N. K., Chinnappan, A., Neisiany, R. E., & Ramakrishna, S. (2023). Electrospun Aligned PCL/Gelatin Scaffolds Mimicking the Skin ECM for Effective Antimicrobial Wound Dressings. Advanced Fiber Materials, 5(1), 235–251. https://doi.org/10.1007/s42765-022-00216-w
Guignard, E., & Bugnon, O. (2006). Pharmaceutical care in community pharmacies: Practice and research in Switzerland. Annals of Pharmacotherapy, 40(3). https://doi.org/10.1345/aph.1G199
Güneş Çimen, C., Dündar, M. A., Demirel Kars, M., & Avcl, A. (2022). Enhancement of PCL/PLA Electrospun Nanocomposite Fibers Comprising Silver Nanoparticles Encapsulated with Thymus Vulgaris L. Molecules for Antibacterial and Anticancer Activities. ACS Biomaterials Science and Engineering, 8(9), 3717–3732. https://doi.org/10.1021/acsbiomaterials.2c00611
Hasanpour Ardekani-Zadeh, A., & Hosseini, S. F. (2019a). Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115108
Hasanpour Ardekani-Zadeh, A., & Hosseini, S. F. (2019b). Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115108
Hassan, A. A., Radwan, H. A., Abdelaal, S. A., Al-Radadi, N. S., Ahmed, M. K., Shoueir, K. R., & Hady, M. A. (2021). Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity. International Journal of Pharmaceutics, 593. https://doi.org/10.1016/j.ijpharm.2020.120143
Herrero-Herrero, M., Alberdi-Torres, S., González-Fernández, M. L., Vilariño-Feltrer, G., Rodríguez-Hernández, J. C., Vallés-Lluch, A., & Villar-Suárez, V. (2021). Influence of chemistry and fiber diameter of electrospun PLA, PCL and their blend membranes, intended as cell supports, on their biological behavior. Polymer Testing, 103. https://doi.org/10.1016/j.polymertesting.2021.107364
Hussain, Z., Ullah, S., Yan, J., Wang, Z., Ullah, I., Ahmad, Z., & Pei, R. (2022). Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.135810
Hwang, T. I., Kim, J. I., Joshi, M. K., Park, C. H., & Kim, C. S. (2019). Simultaneous regeneration of calcium lactate and cellulose into PCL nanofiber for biomedical application. Carbohydrate Polymers, 212, 21–29. https://doi.org/10.1016/j.carbpol.2019.01.085
Jin, X., Geng, X., Jia, L., Xu, Z., Ye, L., Gu, Y., & Feng, Z. G. (2019). Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model. Macromolecular Bioscience, 19(8). https://doi.org/10.1002/mabi.201900114
Khunová, V., Kováčová, M., Olejniková, P., Ondreáš, F., Špitalský, Z., Ghosal, K., & Berkeš, D. (2022). Antibacterial Electrospun Polycaprolactone Nanofibers Reinforced by Halloysite Nanotubes for Tissue Engineering. Polymers, 14(4). https://doi.org/10.3390/polym14040746
Kwiek, M. (2021). What large-scale publication and citation data tell us about international research collaboration in Europe: changing national patterns in global contexts. Studies in Higher Education, 46(12). https://doi.org/10.1080/03075079.2020.1749254
Lanno, G. M., Ramos, C., Preem, L., Putrins, M., Laidmaë, I., Tenson, T., & Kogermann, K. (2020). Antibacterial porous electrospun fibers as skin scaffolds for wound healing applications. ACS Omega, 5(46), 30011–30022. https://doi.org/10.1021/acsomega.0c04402
Li, X., Cho, B., Martin, R., Seu, M., Zhang, C., Zhou, Z., & Mao, H. Q. (2019a). Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Science Translational Medicine, 11(490). https://doi.org/10.1126/scitranslmed.aau6210
Li, X., Cho, B., Martin, R., Seu, M., Zhang, C., Zhou, Z., & Mao, H.-Q. (2019b). Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Science Translational Medicine, 11(490). https://doi.org/10.1126/scitranslmed.aau6210
Li, Y., Liu, Y., Xun, X., Zhang, W., Xu, Y., & Gu, D. (2019). Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Applied Materials and Interfaces, 11(40), 36359–36370. https://doi.org/10.1021/acsami.9b12206
Liang, R., Zhao, J., Li, B., Cai, P., Loh, X. J., Xu, C., & Zheng, L. (2020a). Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials, 230, 119601. https://doi.org/10.1016/j.biomaterials.2019.119601
Liang, R., Zhao, J., Li, B., Cai, P., Loh, X. J., Xu, C., … Zheng, L. (2020b). Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials, 230. https://doi.org/10.1016/j.biomaterials.2019.119601
Lim, W. M., & Kumar, S. (2024). Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Global Business and Organizational Excellence, 43(2). https://doi.org/10.1002/joe.22229
Ma, Lan, Yu, Y., Liu, H., Sun, W., Lin, Z., Liu, C., & Miao, L. (2021). Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79734-9
Ma, Liang, Shi, X., Zhang, X., & Li, L. (2019). Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583. https://doi.org/10.1016/j.colsurfa.2019.123956
Mashayekhi, S., Rasoulpoor, S., Shabani, S., Esmaeilizadeh, N., Serati-Nouri, H., Sheervalilou, R., & Pilehvar-Soltanahmadi, Y. (2020). Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells. International Journal of Pharmaceutics, 587. https://doi.org/10.1016/j.ijpharm.2020.119656
Mohandesnezhad, S., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Goodarzi, A., Davaran, S., Khatamian, M., … Akbarzadeh, A. (2020). In vitro evaluation of Zeolite-nHA blended PCL/PLA nanofibers for dental tissue engineering. Materials Chemistry and Physics, 252. https://doi.org/10.1016/j.matchemphys.2020.123152
Munir, F., Yani, Y. M., Nizmi, Y. E., & Suyastri, C. (2022). State of The Art Para-Diplomacy: A Systematic Mapping Studies and a Bibliometric Analysis VOS Viewer in Scopus Database. Academic Journal of Interdisciplinary Studies, 11(2). https://doi.org/10.36941/ajis-2022-0040
Nierse, C. J., Schipper, K., van Zadelhoff, E., van de Griendt, J., & Abma, T. A. (2012). Collaboration and co-ownership in research: Dynamics and dialogues between patient research partners and professional researchers in a research team. Health Expectations, 15(3). https://doi.org/10.1111/j.1369-7625.2011.00661.x
Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: an overview and a framework proposal. Review of Managerial Science. https://doi.org/10.1007/s11846-024-00738-0
Punj, N., Ahmi, A., Tanwar, A., & Abdul Rahim, S. (2023). Mapping the field of green manufacturing: A bibliometric review of the literature and research frontiers. Journal of Cleaner Production, Vol. 423. https://doi.org/10.1016/j.jclepro.2023.138729
Raj Preeth, D., Saravanan, S., Shairam, M., Selvakumar, N., Selestin Raja, I., Dhanasekaran, A., & Rajalakshmi, S. (2021). Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. European Journal of Pharmaceutical Sciences, 160. https://doi.org/10.1016/j.ejps.2021.105768
Sadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022
Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2020). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology, 191(2), 567–578. https://doi.org/10.1007/s12010-019-03192-x
Santoso, B., Hikmawan, T., & Imaniyati, N. (2022). Management Information Systems: Bibliometric Analysis and Its Effect on Decision Making. Indonesian Journal of Science and Technology, 7(3). https://doi.org/10.17509/ijost.v7i3.56368
Setiyo, M., Yuvenda, D., & Samue, O. D. (2021). The concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: literature review and bibliometric analysis. Indonesian Journal of Science and Technology, 6. https://doi.org/10.17509/ijost.v6i3.38430
Tian, G., Huang, Z., Wang, H., Cui, C., & Zhang, Y. (2022). Polycaprolactone nanofiber membrane modified with halloysite and ZnO for anti-bacterial and air filtration. Applied Clay Science, 223. https://doi.org/10.1016/j.clay.2022.106512
Ullah, A., Sun, L., Wang, F. fei, Nawaz, H., Yamashita, K., Cai, Y., & Kim, I. S. (2023). Eco-friendly bioactive β-caryophyllene/halloysite nanotubes loaded nanofibrous sheets for active food packaging. Food Packaging and Shelf Life, 35. https://doi.org/10.1016/j.fpsl.2023.101028
Venugopal, E., Sahanand, K. S., Bhattacharyya, A., & Rajendran, S. (2019). Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 21. https://doi.org/10.1016/j.nano.2019.102044
Wang, L., Wu, Y., Hu, T., Ma, P. X., & Guo, B. (2019). Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomaterialia, 96, 175–187. https://doi.org/10.1016/j.actbio.2019.06.035
Xu, H., Zhang, F., Wang, M., Lv, H., Yu, D. G., Liu, X., & Shen, H. (2022). Electrospun hierarchical structural films for effective wound healing. Biomaterials Advances, 136. https://doi.org/10.1016/j.bioadv.2022.212795
Yalcinkaya, F. (2019). Preparation of various nanofiber layers using wire electrospinning system. Arabian Journal of Chemistry, 12(8), 5162–5172. https://doi.org/10.1016/j.arabjc.2016.12.012
Zaidi, H., & Azmi, F. T. (2024). Workplace pro-environmental behaviour: a review and bibliometric analysis. International Journal of Productivity and Performance Management, 73. https://doi.org/10.1108/IJPPM-09-2021-0507
Zakaria, R., Ahmi, A., Ahmad, A. H., & Othman, Z. (2021). Worldwide melatonin research: a bibliometric analysis of the published literature between 2015 and 2019. Chronobiology International, 38. https://doi.org/10.1080/07420528.2020.1838534
Zhang, Y., Wang, T., Li, J., Cui, X., Jiang, M., Zhang, M., & Liu, Z. (2021). Bilayer Membrane Composed of Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nanofiber Promotes Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.684335
Zou, Y., Zhang, C., Wang, P., Zhang, Y., & Zhang, H. (2020). Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydrate Polymers, 247. https://doi.org/10.1016/j.carbpol.2020.116711
Author Biographies
Muhammad Rama Almafie, Universitas Sriwijaya
Rahma Dani, Universitas Sriwijaya
Idha Royani, Universitas Sriwijaya
Ida Sriyanti, Universitas Sriwijaya
License
Copyright (c) 2025 Muhammad Rama Almafie, Rahma Dani, Idha Royani, Ida Sriyanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).