Optimizing Anionic Polyacrylamide as Precipitating Agent for Effective Copper Ion Removal in Educational Laboratory Wastewater Treatment

Authors

Munadia Insani , Indang Dewata , Jon Efendi , Eri Barlian , Nurhasan Syah

DOI:

10.29303/jppipa.v11i3.10546

Published:

2025-03-25

Issue:

Vol. 11 No. 3 (2025): March

Keywords:

Anionic polyacrylamide, Coagulation, Educational laboratories, Wastewater

Research Articles

Downloads

How to Cite

Insani, M., Dewata, I., Efendi, J., Barlian, E., & Syah, N. (2025). Optimizing Anionic Polyacrylamide as Precipitating Agent for Effective Copper Ion Removal in Educational Laboratory Wastewater Treatment. Jurnal Penelitian Pendidikan IPA, 11(3), 1070–1078. https://doi.org/10.29303/jppipa.v11i3.10546

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This research highlights the potential of anionic polyacrylamide as a main treatment agent for liquid waste from educational laboratories, particularly in the removal of copper ions. This study using experiment with varies the concentration of anionic polyacrylamide with 3, 5, and 7% weight per weight. The initial concentration of copper in liquid waste was very high ranging between 600 mg/L. The findings indicate that the application of anionic polyacrylamide in wastewater treatment significantly reduces the concentration of copper ions, especially in wastewater from educational laboratories. Specifically, anionic polyacrylamide, at a concentration of 3% w/w, effectively removed almost all copper ions from the wastewater found in analytical chemistry laboratory and also achieved the quality standard of treated wastewater for copper parameter. The pH of the treated wastewater is critical in determining the overall effectiveness of the treatment, with a higher pH resulting in more effective coagulation of copper ions. The effectiveness of the treatment is influenced by the pH of the wastewater and the concentration of the polyacrylamide used. Further studies are needed on other types of heavy metals that can be coagulated using this method in order to gain a more comprehensive understanding.

References

Ali, Z. A., & Werner, J. M. (2024). Optimization of Copper-Ammonia-Sulfate Electrolyte for Maximizing Cu(I):Cu(II) Ratio Using pH and Copper Solubility. Waste, 2(4), 397-413. https://doi.org/10.3390/waste2040022

Al-Massaedh, A. A., & Khalili, F. I. (2021). Removal of Heavy Metal Ions from Aqueous Solution by Anionic Polyacrylamide-Based Monolith: Equilibrium, Kinetic and Thermodynamicstudies. Desalination and Water Treatment, 228, 297–311. https://doi.org/10.5004/dwt.2021.27339

Amalia, A., Zumaidar, Z., & Amalia, A. (2023). Contamination Levels of Pb Heavy Metals and Availability of Phytoremediation Plants in the Gampong Jawa Landfill Area, Banda Aceh City. Jurnal Penelitian Pendidikan IPA, 9(9), 6780–6786. https://doi.org/10.29303/jppipa.v9i9.4474

Amoatey, P., & Bani, R. (2011). Wastewater Management. In F. S. Garca Einschlag (Ed.), Waste Water—Evaluation and Management. InTech. https://doi.org/10.5772/16158

Asiminicesei, D. M., Fertu, D. I., & Gavrilescu, M. (2024). Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. Plants, 13(6), 1–47. https://doi.org/10.3390/plants13060913

Asmarany, A. I., Djunaedi, D., Hakim, A. A., Saefudin, A., & Judijanto, L. (2024). Effective Laboratory Management: Efforts to Improve Science Education Management in Islamic Boarding Schools. Jurnal Penelitian Pendidikan IPA, 10(8), 5673–5680. https://doi.org/10.29303/jppipa.v10i8.8250

Bashir, M., Mohammed, S. Y., Atiku, M. K., Bello, A. U., & Yakasai, H. A. (2022). Heavy Metals Content in Laboratory Wastewater: A Case Study of Selected Units of Bayero University, Kano-Nigeria. Bayero Journal of Pure and Applied Sciences, 14(2), 174–177. https://doi.org/10.4314/bajopas.v14i2.20

Bibi, M., Samiullah, S., Behlil, F., Afzal, S., & Sahifa, S. (2023). Essential and Non-Essential Heavy Metals Sources and Impacts on Human Health and Plants. Pure and Applied Biology (PAB), 12(2), 835–847. Retrieved from http://www.thepab.org/files/2023/June-2023/PAB-MS-2212-123.pdf

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon, 6(9), 1–26. https://doi.org/10.1016/j.heliyon.2020.e04691

Cheng, Y.-C., Wang, C.-P., Liu, K.-Y., & Pan, S.-Y. (2024). Towards Sustainable Management of Polyacrylamide in Soil-Water Environment: Occurrence, Degradation, and Risk. Science of The Total Environment, 926, 171587. https://doi.org/10.1016/j.scitotenv.2024.171587

Czerwińska, K., Wierońska-Wiśniewska, F., Bytnar, K., Mikusińska, J., Śliz, M., & Wilk, M. (2024). The Effect of an Acidic Environment During the Hydrothermal Carbonization of Sewage Sludge on Solid and Liquid Products: The Fate of Heavy Metals, Phosphorus and Other Compounds. Journal of Environmental Management, 365, 121637. https://doi.org/10.1016/j.jenvman.2024.121637

Dhenkula, S. P., Shende, A. D., Deshpande, L., & Pophali, G. R. (2024). An Overview of Heavy Metals Treatment & Management for Laboratory Waste Liquid (LWL). Journal of Environmental Chemical Engineering, 12(4), 113165. https://doi.org/10.1016/j.jece.2024.113165

Doble, M., & Kumar, A. (2005). CHAPTER 9—Degradation of Polymers. In M. Doble & A. Kumar (Eds.), Biotreatment of Industrial Effluents (pp. 101–110). Butterworth-Heinemann. https://doi.org/10.1016/B978-075067838-4/50010-5

Dong, X., Wang, Y., Li, X., Yu, Y., & Zhang, M. (2014). Process Simulation of Laboratory Wastewater Treatment Via Supercritical Water Oxidation. Industrial & Engineering Chemistry Research, 53(18), 7723–7729. https://doi.org/10.1021/ie4044339

Englande, A. J., Krenkel, P., & Shamas, J. (2015). Wastewater Treatment &Water Reclamation. In Reference Module in Earth Systems and Environmental Sciences (p. B9780124095489095087). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09508-7

Erizal, E. (2010). Synthesis and Characterization of Crosslinked Polyacrylamide (PAAM)-Carrageenan Hydrogels Superbasorbent Prepared by Gamma Radiation. Indonesian Journal of Chemistry, 10(1), Article 1. https://doi.org/10.22146/ijc.21474

Fijałkowska, G., Szewczuk-Karpisz, K., & Wiśniewska, M. (2020). Anionic Polyacrylamide as a Substance Strengthening the Pb(II) Immobilization on the Kaolinite Surface. International Journal of Environmental Science and Technology, 17(2), 1101–1112. https://doi.org/10.1007/s13762-019-02546-6

Fitri, K. N., Musa, M., & Yanuhar, U. (2024). The Impact of Heavy Metal Fe, Zn, and Cu in Water and Sediment on the Histopathology of Gills and Liver of Mullet Fish (Crenimugil seheli) at Kamal Beach, Madura Strait. Jurnal Penelitian Pendidikan IPA, 10(12), 9904–9914. https://doi.org/10.29303/jppipa.v10i12.8196

Gelardi, G., Mantellato, S., Marchon, D., Palacios, M., Eberhardt, A. B., & Flatt, R. J. (2016). 9—Chemistry of Chemical Admixtures. In P.-C. Aïtcin & R. J. Flatt (Eds.), Science and Technology of Concrete Admixtures (pp. 149–218). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100693-1.00009-6

Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski, A., & Mishra, P. K. (2021). A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials, 14(16), 1–45. https://doi.org/10.3390/ma14164702

Hamid, N. H. A., Tahir, M. I. H. B. M., Chowdhury, A., Nordin, A. H., Alshaikh, A. A., Suid, M. A., Nazaruddin, N. ‘I., Nozaizeli, N. D., Sharma, S., & Rushdan, A. I. (2022). The Current State-Of-Art of Copper Removal from Wastewater: A Review. Water, 14(19), 3086. https://doi.org/10.3390/w14193086

Heiderscheidt, E., & Leiviskä, T. (2018). Evaluating the Influence of pH Adjustment on Chemical Purification Efficiency and the Suitability of Industrial by-Products as Alkaline Agents. Journal of Environmental Management, 213, 180–188. https://doi.org/10.1016/j.jenvman.2018.02.067

Lailiani, N., Razie, F., Biyatmoko, D., & Lilimantik, E. (2023). Kajian Flokulan Polimer Anionik dengan Metode Jar Test untuk Pemanfaatan Lumpur Cair PT Air Minum Bandarmasih (Perseroda). EnviroScienteae, 19(3), 64–75. https://doi.org/10.20527/es.v19i3.17264

Liu, Y., Wang, H., Cui, Y., & Chen, N. (2023). Removal of Copper Ions from Wastewater: A Review. International Journal of Environmental Research and Public Health, 20(5), 1–23. https://doi.org/10.3390/ijerph20053885

Magriotis, Z. M., Saczk, A. A., Salgado, H. M. R., & Rosa, I. A. (2021). Chemical Waste Mangement in Educational Institutions. Journal of Environmental Science and Sustainable Development, 4(1). https://doi.org/10.7454/jessd.v4i1.1064

Mazur, L. P., Cechinel, M. A. P., Souza, S. M. A. G. U. D., Boaventura, R. A. R., & Vilar, V. J. P. (2018). Brown Marine Macroalgae as Natural Cation Exchangers for Toxic Metal Removal from Industrial Wastewaters: A Review. Journal of Environmental Management, 223, 215–253. https://doi.org/10.1016/j.jenvman.2018.05.086

Mehrpour, P., Mirbagheri, S. A., Kavianimalayeri, M., Sayyahzadeh, A. H., & Ehteshami, M. (2023). Experimental pH Adjustment for Different Concentrations of Industrial Wastewater and Modeling by Artificial Neural Network. Environmental Technology & Innovation, 31, 103212. https://doi.org/10.1016/j.eti.2023.103212

Mohzana, M., Murcahyanto, H., Fahrurrozi, M., & Supriadi, Y. N. (2023). Optimization of Management of Laboratory Facilities in the Process of Learning Science at High School. Jurnal Penelitian Pendidikan IPA, 9(10), 8226–8234. https://doi.org/10.29303/jppipa.v9i10.5249

Putra, R. S., Trahadinata, G. A., Latif, A., & Solehudin, M. (2017). Wastewater Treatment of Chemical Laboratory Using. International Conference on Chemistry, Chemical Process and Engineering (IC3PE). https://doi.org/10.1063/1.4978150

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. NPJ Clean Water, 4(1), 1–15. https://doi.org/10.1038/s41545-021-00127-0

Rai, R. (2023). Copper-Based Laboratory Waste: Its Application as a Catalyst and Recovery. Journal of Cleaner Production, 432, 139775. https://doi.org/10.1016/j.jclepro.2023.139775

Ramadani, E., & Efendi, J. (2023). Pengaruh Variasi Komposisi Campuran Tanah Liat (Clay) dan Poliakrilamida Terhadap Kuat Tekan Stabilisasi/Solidifikasi Logam Cd(II). Jurnal Kimia Universitas Riau, 8(2), 120–124. http://dx.doi.org/10.33578/jpk-unri.v8i2.7862

Sabok-khiz, Z., Nasiri, A., & Daraei, H. (2024). Ceftriaxone photodegradation in Wastewater Using AgCuFe2O4/ZnO Almond-Like Heterogeneous Nanocatalyst Anchored on Multi Walled Carbon Nanotubes: Synthesis, Characterization, Mechanism Study, and Bioassay Effluent. Environmental Technology & Innovation, 36. https://doi.org/10.1016/j.eti.2024.103759

Saifuddin, M. F., Istiqomah, M. N., Jannah, N., Purwanti, P., Rahmawati, N., & Puspitasari, E. D. (2023). Waste Management of High School Biology Laboratory in Yogyakarta City. Indonesian Journal of Biology Education, 6(1), 41–45. https://doi.org/10.31002/ijobe.v6i1.639

Saravanathamizhan, R., & Perarasu, V. T. (2021). Improvement of Biodegradability Index of Industrial Wastewater Using Different Pretreatment Techniques. In Wastewater Treatment (pp. 103–136). Elsevier. https://doi.org/10.1016/B978-0-12-821881-5.00006-4

Shetty, S. S., D, D., S, H., Sonkusare, S., Naik, P. B., Kumari N, S., & Madhyastha, H. (2023). Environmental Pollutants and Their Effects on Human Health. Heliyon, 9(9), e19496. https://doi.org/10.1016/j.heliyon.2023.e19496

Sk, M. M., Yue, C. Y., Ghosh, K., & Jena, R. K. (2016). Review on Advances in Porous Nanostructured Nickel Oxides and Their Composite Electrodes for High-Performance Supercapacitors. Journal of Power Sources, 308, 121–140. https://doi.org/10.1016/j.jpowsour.2016.01.056

Tahraoui, H., Toumi, S., Boudoukhani, M., Touzout, N., Sid, A. N. E. H., Amrane, A., Belhadj, A.-E., Hadjadj, M., Laichi, Y., Aboumustapha, M., Kebir, M., Bouguettoucha, A., Chebli, D., Assadi, A. A., & Zhang, J. (2024). Evaluating the Effectiveness of Coagulation–Flocculation Treatment Using Aluminum Sulfate on a Polluted Surface Water Source: A Year-Long Study. Water, 16(3), 400. https://doi.org/10.3390/w16030400

USEPA. (2015). Defining Hazardous Waste: Listed, Characteristic and Mixed Radiological Wastes [Overviews and Factsheets]. Retrieved from https://www.epa.gov/hw/defining-hazardous-waste-listed-characteristic-and-mixed-radiological-wastes

Wiśniewska, M., Fijałkowska, G., Szewczuk-Karpisz, K., Herda, K., & Chibowski, S. (2022). Ionic Polyacrylamides as Stability-Modifying Substances of Soil Mineral Suspensions Containing Heavy Metal Impurities. Processes, 10(8), 1473. https://doi.org/10.3390/pr10081473

Wu, L., Li, M., Li, M., Sun, Q., & Zhang, C. (2020). Preparation of RGO and Anionic Polyacrylamide Composites for Removal of Pb(II) in Aqueous Solution. Polymers, 12(6), 1426. https://doi.org/10.3390/polym12061426

Xu, R., Zou, W., Wang, T., Huang, J., Zhang, Z., & Xu, C. (2022). Adsorption and Interaction Mechanisms of Chi-g-P(AM-DMDAAC) Assisted Settling of Kaolinite in a Two-Step Flocculation Process. Science of The Total Environment, 816, 151576. https://doi.org/10.1016/j.scitotenv.2021.151576

Yuanyuan, Z. (2023). Chemical Precipitation: A Fundamental Process in Water Treatment and Environmental Remediation. Journal of Chemical Engineering & Process Technology, 14(3), 1–2. https://doi.org/10.35248/2157-7048.23.14.475

Yusrizal, Y., Abdillah, N., & Hendrizal, A. (2024). Evaluation of Environmental Risk from Heavy Metals in Sediments in Port Areas. Jurnal Penelitian Pendidikan IPA, 10(10), 7931–7935. https://doi.org/10.29303/jppipa.v10i10.8760

Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environmental Science & Technology, 50(14), 7290–7304. https://doi.org/10.1021/acs.est.6b01897

Author Biographies

Munadia Insani, Universitas Negeri Padang

Indang Dewata, Universitas Negeri Padang

Jon Efendi, Universitas Negeri Padang

Eri Barlian, Universitas Negeri Padang

Nurhasan Syah, Universitas Negeri Padang

License

Copyright (c) 2025 Munadia Insani, Indang Dewata, Jon Efendi, Eri Barlian, Nurhasan Syah

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).