Vol. 11 No. 5 (2025): May
Open Access
Peer Reviewed

Simple Magnetohydrodynamics (MHD) System Optimization for Fluid Flow Applications

Authors

DOI:

10.29303/jppipa.v11i5.10598

Published:

2025-05-25

Downloads

Abstract

Magnetohydrodynamics (MHD) studies the relationship between electromagnetism and fluid mechanics, a concept with various practical applications, including marine propulsion systems and electromagnetic pumps. This study aims to optimize a simple MHD system to improve the performance of fluid rate measurement based on electromagnetic principles. Optimization is carried out through the analysis of the influence of variations in several system characteristics, namely the given electrical voltage, the distance between electrodes, the length of the electrode, and the salinity of the saltwater. The method employed is experimental, utilizing a simple MHD system design that enables the quantitative observation of changes in the speed of saltwater resulting from the interaction between magnetic and electric fields. The speed of saltwater is measured using a visual approach with the Tracker analysis application. The results showed that increasing the voltage and salinity of the saltwater, as well as decreasing the electrode length or the distance between electrodes, all contribute to increasing the speed of saltwater flow. In other words, each parameter makes a significant contribution to fluid dynamics, thereby allowing for the optimal configuration of the MHD system. The findings in this study are expected to serve as the basis for the development of simple MHD-based fluid rate measurement instruments that are efficient and applicable, enabling a concrete illustration of electromagnetic theory and fluid dynamics.

Keywords:

Fluid flow, Lorentz force, Magnetohydrodynamic

References

Abbaszadeh, M., Bayat, M., & Dehghan, M. (2022). Numerical investigation of the magnetic properties and behavior of electrically conducting fluids via the local weak form method. Applied Mathematics and Computation, 433, 1–19. https://doi.org/10.1016/j.amc.2022.127293

Akinola, E. I., Salawu, S. O., Alao, S., & Oludoun, O. Y. (2024). Thermal distribution and viscous heating of electromagnetic radiative Eyring–Powell fluid with slippery wall conditions. International Journal of Thermofluids, 24, 1–8. https://doi.org/10.1016/j.ijft.2024.100841

Aktaibi, A., Hoffman, W. D., & Hall, R. L. (2019). Design and Testing of Magnetohydrodynamic Propulsion System for a Small Vessel Using Powdered Iron Core Electromagnets. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 1–4. https://doi.org/10.1109/CCECE.2019.8861567

Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0

Al-Habahbeh, O. M., Al-Saqqa, M., Safi, M., & Abo Khater, T. (2016). Review of magnetohydrodynamic pump applications. Alexandria Engineering Journal, 55(2), 1347–1358. https://doi.org/10.1016/j.aej.2016.03.001

Awchar, A. D., Naidu, D. H. K., & Ghutke, P. (2018). Salt Water: A Reliable Alternative as Conducting Fluid for Magneto-Hydro Dynamic Power Generation. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 13(3), 41–45. https://doi.org/10.9790/1676-1303034145

Bera, T. K. (2020). A Magnetohydrodynamic (MHD) Power Generating System: A Technical Review. IOP Conference Series: Materials Science and Engineering, 955(1), 1–8. https://doi.org/10.1088/1757-899X/955/1/012075

Budi, S., Hardianto, T., & Hdi, W. (2020). Analisis Pengaruh Lebar Celah dan Jarak Antar Magnet Terhadap Daya dan Jarak Tempuh Kapal pada MHD Channel Tipe Hall. DIELEKTRIKA, 7(2), 118. https://doi.org/10.29303/dielektrika.v7i2.243

Chan, C.-S., Cheng, J.-H., Zeng, C.-H., Pham, T. T., Chao, W.-H., Jeng, J.-T., Liu, T.-L., Pan, K.-C., Li, Y.-H., & Chen. (2020). Design of marine vehicle powered by magnetohydrodynamic thruster. Magnetohydrodynamics, 56(1), 51–66. https://doi.org/10.22364/mhd.56.1.5

Chen, Y.-J., Li, Y.-H., & Chen, C.-Y. (2022). Studying the Effect of Electrode Material and Magnetic Field on Hydrogen Production Efficiency. Magnetochemistry, 8(5), 1–11. https://doi.org/10.3390/magnetochemistry8050053

Dalvi-Isfahan, M., Hamdami, N., Le-Bail, A., & Xanthakis, E. (2016). The principles of high voltage electric field and its application in food processing: A review. Food Research International, 89, 48–62. https://doi.org/10.1016/j.foodres.2016.09.002

Davidson, P. A. (2017). Introduction to Magnetohydrodynamics. Cambridge University Press.

De Luca, R. (2011). Electromotive Force Generation with Hydrogen Release by Salt Water Flow under a Transverse Magnetic Field. Journal of Modern Physics, 2, 1115–1119. https://doi.org/10.4236/jmp.2011.210138

Fithriyah, A. A., & Khotimah, S. N. (2016). Prototipe Kapal Magnetohydrodinamic Propulsion. Prosiding SNIPS 2016, 144–149. Retrieved from https://shorturl.asia/kLlTX

Griffiths, D. J. (2017). Introduction To Elecrtrodyamics: Fourth Edition. Cambridge University Press.

Hunaidah, Takda, A., & Erniwati. (2024). Development of The CinQASE E-Module with a Professional Flip PDF Application on Electromagnetic Induction Material To Improve The Critical Thinking Skills of Class XII Students. Jurnal Penelitian Pendidikan IPA, 10(11), 9759–9769. https://doi.org/10.29303/jppipa.v10i11.8286

Jufri, L, R. F., & Naston, L. (2024). Predicting the Effect of Magnetic Acquisition Using CrowdMag Android App on Fundamental Magnetic Concepts Mastery in Basic Physics. Jurnal Penelitian Pendidikan IPA, 10(12), 10677–10691. https://doi.org/10.29303/jppipa.v10i12.9131

Kabeel, A. E., El-Said, E. M., & Dafea, S. A. (2015). A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renewable and Sustainable Energy Reviews, 45, 830-837. https://doi.org/10.1016/j.rser.2015.02.029

Karimi-Sibaki, E., Vakhurshev, A., Wu, M., Bohacek, J., & Kharicha, A. (2024). Anumerical study on effects of current density distribution, turbulence, and magnetohydrodynamics (MHD) on electrolytic gas flow with application to alkaline water electrolysis (AWE). Chemical Engineering Research and Design, 208, 731–739. https://doi.org/10.1016/j.cherd.2024.07.042

Li, Y.-H., Zeng, C.-H., & Chen, Y.-J. (2021). Enhancement for magnetic field strength of a magnetohydrodynamic thruster consisting of permanent magnets. AIP Advances, 11(1), 015008. https://doi.org/10.1063/9.0000033

Liu, X., Kiyoshi, T., & Takeda, M. (2006). Simulation of a seawater MHD power generation system. Cryogenics, 46(5), 362–366. https://doi.org/10.1016/j.cryogenics.2005.10.016

Lone, S. A., Anwar, S., Raizah, Z., Kumam, P., Seangwattana, T., & Saeed, A. (2023). Analysis of the Time-Dependent magnetohydrodynamic Newtonian fluid flow over a rotating sphere with thermal radiation and chemical reaction. Heliyon, 9(7), e17751. https://doi.org/10.1016/j.heliyon.2023.e17751

Mathur, D. A. (2015). Conductivity: Water Quality Assesment. International Journal of Engineering Research, 3(03). Retrieved from https://www.ijert.org/research/conductivity-water-quality-assesment-IJERTCONV3IS03028.pdf

Overduin, J., Polyak, V., Rutah, A., Sebastian, T., Selway, J., & Zile, D. (2017). The Hunt for Red October II: A magnetohydrodynamic boat demonstration for introductory physics. The Physics Teacher, 55(8), 460–466. https://doi.org/10.1119/1.5008337

Peng, Y., Zhao, L., Song, S., Sha, C., Li, R., & Xu, Y. (2008). Experimental Study on Alternating Magnetic Field Magnetohydrodynamic Pump. Journal of Hydrodynamics, 20(5), 591–595. https://doi.org/10.1016/S1001-6058(08)60099-2

Setianingrum, N. P., Prasetya, A., & Sarto. (2016). Pengaruh Tegangan dan Jarak antar Elektroda terhadap Pewarna Remazol Red RB dengan Metode Elektroagulasi. Inovasi Teknik Kimia, 1(2), 93–97. https://doi.org/10.31942/inteka.v1i2.1655

Timofeev, V. N., Khatsayuk, M. Y., & Kizhaev, I. V. (2019). Mathematical simulation of electromagnetic and hydrodynamic processes in the MHD pump. Magnetohydrodynamics, 55(3), 337–346. https://doi.org/10.22364/mhd.55.3.6

Torabian, M. M., Jafari, M., & Bazargan, A. (2022). Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Management & Research, 40(4), 402–409. https://doi.org/10.1177/0734242X211022658

Usman, Muh. A., Hasbi, M., & Sudia, B. (2017). Studi Eksperimen Penggunaan Air Garam sebagai Sumber Energi Alternatif. Enthalpy-Jurnal Mahasiswa Teknik Mesin, 2(2), 1–6. Retrieved from https://shorturl.asia/Bj9Rh

Xisto, C. M., Páscoa, J. C., & Oliveira, P. J. (2015). Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters. Acta Astronautica, 112, 89–101. https://doi.org/10.1016/j.actaastro.2015.03.009

Author Biographies

Hawinda Restu Putri, Institut Teknologi Bandung

Bekti Afre Ratri, Institut Teknologi Bandung

Nining Kusumastuti, Institut Teknologi Bandung

Siti Nurul Khotimah, Institut Teknologi Bandung

Downloads

Download data is not yet available.

How to Cite

Putri, H. R., Ratri, B. A., Kusumastuti, N., & Khotimah, S. N. (2025). Simple Magnetohydrodynamics (MHD) System Optimization for Fluid Flow Applications. Jurnal Penelitian Pendidikan IPA, 11(5), 16–22. https://doi.org/10.29303/jppipa.v11i5.10598