Morphological and Structural Characterization of Pineapple Leaf Fibers: Implications for Eco-Friendly Textile Applications
DOI:
10.29303/jppipa.v11i11.10784Published:
2025-11-25Downloads
Abstract
Natural fibers from pineapple leaves (Ananas comosus L.) are a potential renewable resource, but their characteristics are highly dependent on their geographical origin. This study aimed to characterize the physico-mechanical properties and morphology of pineapple leaf fibers (PALF) sourced from local farmers in Kediri, East Java. Characterization was conducted at an accredited testing institution using SNI standards, covering fineness, bundle tenacity, and Scanning Electron Microscopy (SEM) observations. The results revealed that the fibers exhibited an average fineness of 33.7 dtex and a tenacity of 23.20 g/tex. Morphological analysis showed a course, multi-cellular, and dense fiber structure. Based on these findings, it is concluded that these PALF demonstrate greater potential for applications in technical textiles and as reinforcement in bio-composite materials rather than as a raw material for apparel yarn.
Keywords:
Eco-friendly Mechanical decortication Pineapple leaf fiber Tensile strength Textile applicationsReferences
Abu, T Yusof. N., Zainol, N., Hazwani Aziz, N., & Shaiful Abdul Karim, M. (2023). Effect Of Fiber Morphology and Elemental Composition Of Ananas Comosus Leaf On Cellulose Content And Permittivity. Current Applied Science And Technology, 23(6). https://doi.org/10.55003/cast.2023.06.23.002
Alam, A., Zakaria, A., Neaz M., Pulak Talukder, & Taslima Rahman. (2022). Analysis Of Physio-Mechanical Properties of Pineapple Leaf Fiber. International Journal of Life Science Research Archive, 3(2), 113–116. https://doi.org/10.53771/Ijlsra.2022.3.2.0127
Dissanayake, T.W.M.I.I. & Samarasinghe, S.A.S.C. (2024). Enhancing Sustainability and Performance Of Pineapple Leaf Fibres In Textile Applications: A Comprehensive Review. Proceedings Of International Forestry and Environment Symposium, 28. https://doi.org/10.31357/aesympo.V28.7109
Esan, M. T., Khairulzan, Y., Zaiton, H., Gambo, M. D., & Hassan, H. (2023). Effect Of Pineapple Leaf Fiber on The Physico-Mechanical Properties of Gypsum Board. Uniosun Journal of Engineering and Environmental Sciences, 5(1). https://doi.org/10.36108/Ujees/3202.50.0120
Fikri, M. A. F., Setiawan, F., & Sofiyan, E. (2024). Analisis Uji Bending Komposit Serat Daun Nanas Dan Partikel Pasir Besi Dengan Metode Vacuum Bagging. Teknika Sttkd: Jurnal Teknik, Elektronik, Engine, 10(2), 158–164. https://doi.org/10.56521/Teknika.V10i2.1139
Fu, S., Wu, H., Zhu, K., Zhao, Z., & Liang, Z. (2023). The Unique Morphology of Coconut Petiole Fibers Facilitates The Fabrication of Plant Composites With High Impact Performance. Polymers, 15(9), 2200. https://doi.org/10.3390/Polym15092200
Gaba, E. W. (2021). Mechanical and Structural Characterization of Pineapple Leaf Fiber. Fibers, 9(8). https://doi.org/10.3390/Fib9080051
Geng, Q., Zhou, C., Nie, K., Lv, W., Ben, H., Han, G., & Jiang, W. (2022). Relationship Between Fiber Fineness and Diameter of Three Bast Fibers. Journal Of Natural Fibers, 19(13), 5496–5503. https://doi.org/10.1080/15440478.2021.1877233
Gundara, G., Nurzein, A. S., Wagiman, A., & Ramadhan, A. R. (2023). Effect Of Alkalized Pineapple Leaf Fiber Direction Variations on Tensile Strength And Bending of Polyester Matrix Composites. In Formosa Journal of Sustainable Research. https://doi.org/10.55927/Fjsr.V2i1.2703
Hapsari, R., Koesriwulandari, K., & Haryanti, E. (2023). Strategi Pengembangan Agribisnis Nanas Varietas Queen Asam Gulas Di Desa Ngancar Kecamatan Ngancar Kabupaten Kediri. Jurnal Ilmiah Sosio Agribis, 23(1), 18. https://doi.org/10.30742/jisa23120232827
Harigovindan, A. D. S., Shenoy, H. G., Namdev, N., & Valukula, B. (2024). Mechanical Behaviour Of Pineapple Leaf Fibers Reinforced Lapox L-12 Epoxy Composites. Brazilian Journal Of Development, 10(11), E74579. https://doi.org/10.34117/bjdv10n11-023
Ihsan, M. B. & Ratnawulan. (2023). Effect Of Carboxymethyl Cellulose (Cmc) Addition On The Quality Of Biodegradable Plastic From Corn Cob. Jurnal Penelitian Pendidikan IPA, 9(7), 5117–5125. https://doi.org/10.29303/jppipa.v9i7.4010
Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers In Textile Industries. Biopolymers And Their Industrial Applications, 193–218. Elsevier. https://doi.org/10.1016/b978-0-12-819240-5.00008-0
Jain, J. (2021). Compendious Characterization Of Chemically Treated Natural Fiber From Pineapple Leaves For Reinforcement In Polymer Composites. Journal Of Natural Fibers, 18(6), 845–856. https://doi.org/10.1080/15440478.2019.1658256
Johny, V. (2023). Extraction And Physico-Chemical Characterization Of Pineapple Crown Leaf Fibers (Pclf). Fibers, 11(1). https://doi.org/10.3390/fib11010005
Lee, C. H., Khalina, A., Lee, S. H., Padzil, F. N. M., & Ainun, Z. M. A. (2020). Physical, Morphological, Structural, Thermal and Mechanical Properties Of Pineapple Leaf Fibers. In M. Jawaid, M. Asim, P. Md. Tahir, & M. Nasir (Eds.), Pineapple Leaf Fibers (Pp. 91–121). Springer Singapore. https://doi.org/10.1007/978-981-15-1416-6_6
Liu, F., Pan, L., Liu, Y., Zhai, G., Sha, Z., Zhang, X., Zhang, Z., Liu, Q., Yu, S., Zhu, L., Xiang, H., Zhou, Z., & Zhu, M. (2024). Biobased Fibers From Natural To Synthetic: Processing, Manufacturing, and Application. Matter, 7(6), 1977–2010. https://doi.org/10.1016/j.matt.2024.04.006
Aznar, L. N. (2019). Sustainable Fibers for Textile Applications. Industrial Biotechnology, 15(5), 290–292. https://doi.org/10.1089/ind.2019.29187.nla
Marques, R., Oliveira, C., Araújo, J. C., Chaves, D. M., Ferreira, D. P., Fangueiro, R., Silva, C. J., & Rodrigues, L. (2024). Planting Sustainability: A Comprehensive Review Of Plant Fibres In Needle-Punching Nonwovens. Textiles, 4(4), 530–548. https://doi.org/10.3390/textiles4040031
Mulyati, T. A., Pujiono, F. E., & Farida, U. (2023). Diversification Of Pineapple Waste Through Eco-Enzyme Doing Training At The “Queen” Pineapple Farmer Group Kediri. International Journal Of Engagement and Empowerment (Ije2), 3(2), 128–136. https://doi.org/10.53067/ije2.v3i2.105
Mustafa, Z., Suhairi, H. H., & Md Fadzullah, S. H. S. (2024). Effect Of Eco-Friendly Alkaline Treatment On Tensile Properties Of Pineapple Leaf Fibres. In M. A. Salim, N. S. Khashi’ie, K. W. Chew, & C. Photong (Eds.), Proceedings Of The 9th International Conference And Exhibition On Sustainable Energy And Advanced Materials (Pp. 175–178). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0106-3_28
Nakagaito, A. N., Katsumoto, Y., & Takagi, H. (2024). Analysis Of Morphological Changes Leading To The Enhancement Of Tensile Properties Of Yarns From Manila Hemp Fiber. International Journal Of Modern Physics B, 38(12n13), 2440011. https://doi.org/10.1142/s0217979224400113
Palanisamy, S., Vijayananth, K., Murugesan, T. M., Palaniappan, M., & Santulli, C. (2024). The Prospects Of Natural Fiber Composites: A Brief Review. International Journal of Lightweight Materials and Manufacture, 7(4), 496–506. https://doi.org/10.1016/j.ijlmm.2024.01.003
Patti, A., & Acierno, D. (2022). Towards The Sustainability Of The Plastic Industry Through Biopolymers: Properties And Potential Applications To The Textiles World. Polymers, 14(4), 692. https://doi.org/10.3390/polym14040692
Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety And Growing Condition Effect On The Yield And Tensile Strength Of Flax Fibers. Industrial Crops And Products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736
Rahmah, N., Sujito, & Hariadi, Y. C. (2025). The Effect Of Adding Variations In The Combination Of Anthocyanin Extract And Curcumin Volume Fraction On The Mechanical Properties And Biodegradability Of Seaweed-Based Bioplastic Materials. Jurnal Penelitian Pendidikan IPA, 11(4), 649–656. https://doi.org/10.29303/jppipa.v11i4.9769
Rahman, H. (2019). Effect Of Gamma Radiation On Mechanical Properties Of Pineapple Leaf Fiber (Palf)-Reinforced Low-Density Polyethylene (Ldpe) Composites. International Journal Of Plastics Technology, 23(2), 229–238. https://doi.org/10.1007/s12588-019-09253-4
Rahman, H. (2024a). Physically Processed Waste Pineapple Leaf Fibre For High Performance Composite With Polypropylene. Cellulose, 31(5), 2881–2901. https://doi.org/10.1007/s10570-023-05708-5
Rahman, H. (2024b). Studies On Interfacial Shear Strength Of Pineapple Leaf Fibre From Agro-Waste Reinforced Polypropylene Composites: Influence Of Fibre Length And Carding Parameters. Journal Of Thermoplastic Composite Materials, 37(5), 1748–1773. Https://doi.org/10.1177/08927057231200008
Sadeghi, P., Cao, Q., Abouzeid, R., Shayan, M., Koo, M., & Wu, Q. (2024). Experimental And Statistical Investigations For Tensile Properties Of Hemp Fibers. Fibers, 12(11), 94. https://doi.org/10.3390/fib12110094
Santi, S. S., Puspitawati, I. N., & Pasang, T. (2024). Characterization Bio-Based Edible Film From Mango Seed Starch And Semi-Refined Carrageenan (Euchema Cottonii) Using Sorbitol Plasticizer For Potential Food Contact Materials. Jurnal Penelitian Pendidikan IPA, 10(10), 7976–7983. https://doi.org/10.29303/jppipa.v10i10.8601
Sayeed, M. M. A. (2023). Assessing Mechanical Properties Of Jute, Kenaf, And Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment And Modelling. Polymers, 15(4). https://doi.org/10.3390/polym15040830
Singha, K., Pandit, P., & Shrivastava, S. (2020). Anatomical Structure Of Pineapple Leaf Fiber. In M. Jawaid, M. Asim, P. Md. Tahir, & M. Nasir (Eds.), Pineapple Leaf Fibers: Processing, Properties And Applications (Pp. 21–39). Springer. https://doi.org/10.1007/978-981-15-1416-6_2
Surajarusarn, B., Traiperm, P., & Amornsakcha, T. (2019). Revisiting The Morphology, Microstructure, And Properties Of Cellulose Fiber From Pineapple Leaf So As To Expand Its Utilization. Sains Malaysiana, 48(1), 145–154. https://doi.org/10.17576/jsm-2019-4801-17
Todkar, S. S. (2019). Review On Mechanical Properties Evaluation Of Pineapple Leaf Fibre (Palf) Reinforced Polymer Composites. Composites Part B: Engineering, 174(Query Date: 2025-02-24 12:28:54). https://doi.org/10.1016/j.compositesb.2019.106927
Wang, C., Meng, J., Qian, S., Zhou, L., Jiang, S., Jiang, R., Zhan, H., Fang, X., Liu, Y., Ding, Z., & Liu, Z. (2023). Quantification Methodologies On Organization And Morphology Features Of Fiber-Like Structures: A Review. Journal Of Innovative Optical Health Sciences, 16(04), 2230012. https://doi.org/10.1142/s1793545822300129
Yanti, N. R., Nugroho, A., Fatah, L., & Heryani, H. (2025). Characterization of Pineapple Leaf Fiber (Ananas Comosus (L.) Merr.) And The Potential Of Added Value as a Composite Material To Support Sustainable Development Goals. Journal Of Lifestyle And Sdgs Review, 5(8), E07292. https://doi.org/10.47172/2965-730x.sdgsreview.v5.n08.pe07292
Yusuf, J. A., & Ojedokun, R. O. (2024). The Role Of Bio-Based Innovations In Circular Economy: A Biochemical And Economic Perspective. Journal Of Medical Science, Biology, And Chemistry, 1(1), 21–27. https://doi.org/10.69739/jmsbc.v1i1.148
Zolkifflee, N. H., Roslan, M. N., Abdul Halip, J., Kamarudin, K., Shaari, M. F., & Aziz, A. N. (2024). The Effect Of Spinning Parameters And Fiber Blending Ratio On The Physical Properties Of Pineapple Leaf Fiber (Palf)-Cotton Yarns. Pertanika Journal Of Science And Technology, 32(3), 41–55. https://doi.org/10.47836/pjst.32.s3.04
License
Copyright (c) 2025 Ahmad Darmawi, Sih Parmawati, Nurfadilah Ikhsani, Fahad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






