Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Morphological and Structural Characterization of Pineapple Leaf Fibers: Implications for Eco-Friendly Textile Applications

Authors

DOI:

10.29303/jppipa.v11i11.10784

Published:

2025-11-25

Downloads

Abstract

Natural fibers from pineapple leaves (Ananas comosus L.) are a potential renewable resource, but their characteristics are highly dependent on their geographical origin. This study aimed to characterize the physico-mechanical properties and morphology of pineapple leaf fibers (PALF) sourced from local farmers in Kediri, East Java. Characterization was conducted at an accredited testing institution using SNI standards, covering fineness, bundle tenacity, and Scanning Electron Microscopy (SEM) observations. The results revealed that the fibers exhibited an average fineness of 33.7 dtex and a tenacity of 23.20 g/tex. Morphological analysis showed a course, multi-cellular, and dense fiber structure. Based on these findings, it is concluded that these PALF demonstrate greater potential for applications in technical textiles and as reinforcement in bio-composite materials rather than as a raw material for apparel yarn.

Keywords:

Eco-friendly Mechanical decortication Pineapple leaf fiber Tensile strength Textile applications

References

Abu, T Yusof. N., Zainol, N., Hazwani Aziz, N., & Shaiful Abdul Karim, M. (2023). Effect Of Fiber Morphology and Elemental Composition Of Ananas Comosus Leaf On Cellulose Content And Permittivity. Current Applied Science And Technology, 23(6). https://doi.org/10.55003/cast.2023.06.23.002

Alam, A., Zakaria, A., Neaz M., Pulak Talukder, & Taslima Rahman. (2022). Analysis Of Physio-Mechanical Properties of Pineapple Leaf Fiber. International Journal of Life Science Research Archive, 3(2), 113–116. https://doi.org/10.53771/Ijlsra.2022.3.2.0127

Dissanayake, T.W.M.I.I. & Samarasinghe, S.A.S.C. (2024). Enhancing Sustainability and Performance Of Pineapple Leaf Fibres In Textile Applications: A Comprehensive Review. Proceedings Of International Forestry and Environment Symposium, 28. https://doi.org/10.31357/aesympo.V28.7109

Esan, M. T., Khairulzan, Y., Zaiton, H., Gambo, M. D., & Hassan, H. (2023). Effect Of Pineapple Leaf Fiber on The Physico-Mechanical Properties of Gypsum Board. Uniosun Journal of Engineering and Environmental Sciences, 5(1). https://doi.org/10.36108/Ujees/3202.50.0120

Fikri, M. A. F., Setiawan, F., & Sofiyan, E. (2024). Analisis Uji Bending Komposit Serat Daun Nanas Dan Partikel Pasir Besi Dengan Metode Vacuum Bagging. Teknika Sttkd: Jurnal Teknik, Elektronik, Engine, 10(2), 158–164. https://doi.org/10.56521/Teknika.V10i2.1139

Fu, S., Wu, H., Zhu, K., Zhao, Z., & Liang, Z. (2023). The Unique Morphology of Coconut Petiole Fibers Facilitates The Fabrication of Plant Composites With High Impact Performance. Polymers, 15(9), 2200. https://doi.org/10.3390/Polym15092200

Gaba, E. W. (2021). Mechanical and Structural Characterization of Pineapple Leaf Fiber. Fibers, 9(8). https://doi.org/10.3390/Fib9080051

Geng, Q., Zhou, C., Nie, K., Lv, W., Ben, H., Han, G., & Jiang, W. (2022). Relationship Between Fiber Fineness and Diameter of Three Bast Fibers. Journal Of Natural Fibers, 19(13), 5496–5503. https://doi.org/10.1080/15440478.2021.1877233

Gundara, G., Nurzein, A. S., Wagiman, A., & Ramadhan, A. R. (2023). Effect Of Alkalized Pineapple Leaf Fiber Direction Variations on Tensile Strength And Bending of Polyester Matrix Composites. In Formosa Journal of Sustainable Research. https://doi.org/10.55927/Fjsr.V2i1.2703

Hapsari, R., Koesriwulandari, K., & Haryanti, E. (2023). Strategi Pengembangan Agribisnis Nanas Varietas Queen Asam Gulas Di Desa Ngancar Kecamatan Ngancar Kabupaten Kediri. Jurnal Ilmiah Sosio Agribis, 23(1), 18. https://doi.org/10.30742/jisa23120232827

Harigovindan, A. D. S., Shenoy, H. G., Namdev, N., & Valukula, B. (2024). Mechanical Behaviour Of Pineapple Leaf Fibers Reinforced Lapox L-12 Epoxy Composites. Brazilian Journal Of Development, 10(11), E74579. https://doi.org/10.34117/bjdv10n11-023

Ihsan, M. B. & Ratnawulan. (2023). Effect Of Carboxymethyl Cellulose (Cmc) Addition On The Quality Of Biodegradable Plastic From Corn Cob. Jurnal Penelitian Pendidikan IPA, 9(7), 5117–5125. https://doi.org/10.29303/jppipa.v9i7.4010

Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers In Textile Industries. Biopolymers And Their Industrial Applications, 193–218. Elsevier. https://doi.org/10.1016/b978-0-12-819240-5.00008-0

Jain, J. (2021). Compendious Characterization Of Chemically Treated Natural Fiber From Pineapple Leaves For Reinforcement In Polymer Composites. Journal Of Natural Fibers, 18(6), 845–856. https://doi.org/10.1080/15440478.2019.1658256

Johny, V. (2023). Extraction And Physico-Chemical Characterization Of Pineapple Crown Leaf Fibers (Pclf). Fibers, 11(1). https://doi.org/10.3390/fib11010005

Lee, C. H., Khalina, A., Lee, S. H., Padzil, F. N. M., & Ainun, Z. M. A. (2020). Physical, Morphological, Structural, Thermal and Mechanical Properties Of Pineapple Leaf Fibers. In M. Jawaid, M. Asim, P. Md. Tahir, & M. Nasir (Eds.), Pineapple Leaf Fibers (Pp. 91–121). Springer Singapore. https://doi.org/10.1007/978-981-15-1416-6_6

Liu, F., Pan, L., Liu, Y., Zhai, G., Sha, Z., Zhang, X., Zhang, Z., Liu, Q., Yu, S., Zhu, L., Xiang, H., Zhou, Z., & Zhu, M. (2024). Biobased Fibers From Natural To Synthetic: Processing, Manufacturing, and Application. Matter, 7(6), 1977–2010. https://doi.org/10.1016/j.matt.2024.04.006

Aznar, L. N. (2019). Sustainable Fibers for Textile Applications. Industrial Biotechnology, 15(5), 290–292. https://doi.org/10.1089/ind.2019.29187.nla

Marques, R., Oliveira, C., Araújo, J. C., Chaves, D. M., Ferreira, D. P., Fangueiro, R., Silva, C. J., & Rodrigues, L. (2024). Planting Sustainability: A Comprehensive Review Of Plant Fibres In Needle-Punching Nonwovens. Textiles, 4(4), 530–548. https://doi.org/10.3390/textiles4040031

Mulyati, T. A., Pujiono, F. E., & Farida, U. (2023). Diversification Of Pineapple Waste Through Eco-Enzyme Doing Training At The “Queen” Pineapple Farmer Group Kediri. International Journal Of Engagement and Empowerment (Ije2), 3(2), 128–136. https://doi.org/10.53067/ije2.v3i2.105

Mustafa, Z., Suhairi, H. H., & Md Fadzullah, S. H. S. (2024). Effect Of Eco-Friendly Alkaline Treatment On Tensile Properties Of Pineapple Leaf Fibres. In M. A. Salim, N. S. Khashi’ie, K. W. Chew, & C. Photong (Eds.), Proceedings Of The 9th International Conference And Exhibition On Sustainable Energy And Advanced Materials (Pp. 175–178). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0106-3_28

Nakagaito, A. N., Katsumoto, Y., & Takagi, H. (2024). Analysis Of Morphological Changes Leading To The Enhancement Of Tensile Properties Of Yarns From Manila Hemp Fiber. International Journal Of Modern Physics B, 38(12n13), 2440011. https://doi.org/10.1142/s0217979224400113

Palanisamy, S., Vijayananth, K., Murugesan, T. M., Palaniappan, M., & Santulli, C. (2024). The Prospects Of Natural Fiber Composites: A Brief Review. International Journal of Lightweight Materials and Manufacture, 7(4), 496–506. https://doi.org/10.1016/j.ijlmm.2024.01.003

Patti, A., & Acierno, D. (2022). Towards The Sustainability Of The Plastic Industry Through Biopolymers: Properties And Potential Applications To The Textiles World. Polymers, 14(4), 692. https://doi.org/10.3390/polym14040692

Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety And Growing Condition Effect On The Yield And Tensile Strength Of Flax Fibers. Industrial Crops And Products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736

Rahmah, N., Sujito, & Hariadi, Y. C. (2025). The Effect Of Adding Variations In The Combination Of Anthocyanin Extract And Curcumin Volume Fraction On The Mechanical Properties And Biodegradability Of Seaweed-Based Bioplastic Materials. Jurnal Penelitian Pendidikan IPA, 11(4), 649–656. https://doi.org/10.29303/jppipa.v11i4.9769

Rahman, H. (2019). Effect Of Gamma Radiation On Mechanical Properties Of Pineapple Leaf Fiber (Palf)-Reinforced Low-Density Polyethylene (Ldpe) Composites. International Journal Of Plastics Technology, 23(2), 229–238. https://doi.org/10.1007/s12588-019-09253-4

Rahman, H. (2024a). Physically Processed Waste Pineapple Leaf Fibre For High Performance Composite With Polypropylene. Cellulose, 31(5), 2881–2901. https://doi.org/10.1007/s10570-023-05708-5

Rahman, H. (2024b). Studies On Interfacial Shear Strength Of Pineapple Leaf Fibre From Agro-Waste Reinforced Polypropylene Composites: Influence Of Fibre Length And Carding Parameters. Journal Of Thermoplastic Composite Materials, 37(5), 1748–1773. Https://doi.org/10.1177/08927057231200008

Sadeghi, P., Cao, Q., Abouzeid, R., Shayan, M., Koo, M., & Wu, Q. (2024). Experimental And Statistical Investigations For Tensile Properties Of Hemp Fibers. Fibers, 12(11), 94. https://doi.org/10.3390/fib12110094

Santi, S. S., Puspitawati, I. N., & Pasang, T. (2024). Characterization Bio-Based Edible Film From Mango Seed Starch And Semi-Refined Carrageenan (Euchema Cottonii) Using Sorbitol Plasticizer For Potential Food Contact Materials. Jurnal Penelitian Pendidikan IPA, 10(10), 7976–7983. https://doi.org/10.29303/jppipa.v10i10.8601

Sayeed, M. M. A. (2023). Assessing Mechanical Properties Of Jute, Kenaf, And Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment And Modelling. Polymers, 15(4). https://doi.org/10.3390/polym15040830

Singha, K., Pandit, P., & Shrivastava, S. (2020). Anatomical Structure Of Pineapple Leaf Fiber. In M. Jawaid, M. Asim, P. Md. Tahir, & M. Nasir (Eds.), Pineapple Leaf Fibers: Processing, Properties And Applications (Pp. 21–39). Springer. https://doi.org/10.1007/978-981-15-1416-6_2

Surajarusarn, B., Traiperm, P., & Amornsakcha, T. (2019). Revisiting The Morphology, Microstructure, And Properties Of Cellulose Fiber From Pineapple Leaf So As To Expand Its Utilization. Sains Malaysiana, 48(1), 145–154. https://doi.org/10.17576/jsm-2019-4801-17

Todkar, S. S. (2019). Review On Mechanical Properties Evaluation Of Pineapple Leaf Fibre (Palf) Reinforced Polymer Composites. Composites Part B: Engineering, 174(Query Date: 2025-02-24 12:28:54). https://doi.org/10.1016/j.compositesb.2019.106927

Wang, C., Meng, J., Qian, S., Zhou, L., Jiang, S., Jiang, R., Zhan, H., Fang, X., Liu, Y., Ding, Z., & Liu, Z. (2023). Quantification Methodologies On Organization And Morphology Features Of Fiber-Like Structures: A Review. Journal Of Innovative Optical Health Sciences, 16(04), 2230012. https://doi.org/10.1142/s1793545822300129

Yanti, N. R., Nugroho, A., Fatah, L., & Heryani, H. (2025). Characterization of Pineapple Leaf Fiber (Ananas Comosus (L.) Merr.) And The Potential Of Added Value as a Composite Material To Support Sustainable Development Goals. Journal Of Lifestyle And Sdgs Review, 5(8), E07292. https://doi.org/10.47172/2965-730x.sdgsreview.v5.n08.pe07292

Yusuf, J. A., & Ojedokun, R. O. (2024). The Role Of Bio-Based Innovations In Circular Economy: A Biochemical And Economic Perspective. Journal Of Medical Science, Biology, And Chemistry, 1(1), 21–27. https://doi.org/10.69739/jmsbc.v1i1.148

Zolkifflee, N. H., Roslan, M. N., Abdul Halip, J., Kamarudin, K., Shaari, M. F., & Aziz, A. N. (2024). The Effect Of Spinning Parameters And Fiber Blending Ratio On The Physical Properties Of Pineapple Leaf Fiber (Palf)-Cotton Yarns. Pertanika Journal Of Science And Technology, 32(3), 41–55. https://doi.org/10.47836/pjst.32.s3.04

Author Biographies

Ahmad Darmawi, Akademi Komunitas Industri Tekstil dan Produk Tekstil Surakarta

Author Origin : Indonesia

Sih Parmawati, Akademi Komunitas Industri Tekstil dan Produk Tekstil Surakarta

Author Origin : Indonesia

Nurfadilah Ikhsani, Akademi Komunitas Industri Tekstil dan Produk Tekstil Surakarta

Author Origin : Indonesia

Fahad, Akademi Komunitas Industri Tekstil dan Produk Tekstil Surakarta

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Darmawi, A., Parmawati, S., Ikhsani, N., & Fahad. (2025). Morphological and Structural Characterization of Pineapple Leaf Fibers: Implications for Eco-Friendly Textile Applications. Jurnal Penelitian Pendidikan IPA, 11(11), 784–789. https://doi.org/10.29303/jppipa.v11i11.10784