Vol. 11 No. 8 (2025): August
Open Access
Peer Reviewed

Application of ChatGPT Plus in Predictive Analysis of Particulate Matter Levels in Industrial Environment of Glucose Syrup and Maltodextrin

Authors

Made Widiantoro , Juwarin Pancawati , Najmi Firdaus

DOI:

10.29303/jppipa.v11i8.10853

Published:

2025-08-25

Downloads

Abstract

This study examines the variation of Particulate Matter levels in eight work areas and evaluates the correlation between Particulate Matter levels and measurement time. The observed areas include starch warehouse, starch damping, coal storage, finished goods, load out, maintenance workshop, chemical warehouse, and bagging house. Data collection was conducted periodically over six quarters from 2021 to 2022. The analysis results showed significant variations in Particulate Matter levels between work areas. A strong positive correlation was found in the ‘load out’ area (r=0.791), but it was not statistically significant (p=0.061). In contrast, the ‘starch warehouse’ area showed a strong negative correlation (r=-0.662), but was also not significant (p=0.152). The use of ChatGPT Plus in this study facilitated data analysis and prediction of Particulate Matter levels. This Artificial Intelligence technology is able to process historical data, perform exploratory analyses, and develop prediction models such as AutoRegressive Integrated Moving Average and linear regression. Further research with long-term data is needed to understand the dynamics of air pollution in industrial environments. This research contributes to the understanding of the impact of air quality on workers' health and demonstrates the potential use of AI technology in environmental data analysis and air pollution prediction.

Keywords:

Air quality ChatGPT plus Industrial pollution Particulate matter

References

Arowosegbe, O. O., Röösli, M., Künzli, N., Saucy, A., Adebayo-Ojo, T. C., Jeebhay, M. F., … Hoogh, K. de. (2021). Comparing methods to impute missing daily ground-level pm10 concentrations between 2010–2017 in South Africa. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/ijerph18073374

Azhar, K., Dharmayanti, I., & Mufida, I. (2016). Kadar Debu Partikulat (PM2,5) dalam Rumah dan Kejadian ISPA pada Balita di Kelurahan Kayuringin Jaya, Kota Bekasi Tahun 2014. Media Penelitian Dan Pengembangan Kesehatan, 26(1). https://doi.org/10.22435/mpk.v26i1.4903.45-52

Chung, C. Y., Yang, J., Yang, X., & He, J. (2022). Mathematical modeling in the health risk assessment of air pollution-related disease burden in China: A review. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1060153

Daniro Jyoti, M., Ira Setiawati, dan, Riset dan Standardisasi Industri Bandar Lampung Jl by pass Soekarno Hatta, B. K., Besar Kimia Kemasan, B., & Balai Kimia No, J. (2019). Identifikasi Dan Analisis Kadar Total Partikulat Debu Dari Emisi Cerobong Industri Di Lampung Identification And Analysis Of Total Particulate Matter From Industry Chimneys Emission In Lampung. Majalah Teknologi Agro Industri (Tegi), 11(1), 22–26.

Decy Arwini, N. P. (2020). Dampak Pencemaran Udara Terhadap Kualitas Udara Di Provinsi Bali. Jurnal Ilmiah Vastuwidya, 2(2), 20–30. https://doi.org/10.47532/jiv.v2i2.86

Greenstone, M., & Fan, Q. (Claire). (2019). Kualitas udara Indonesia yang memburuk dan dampaknya terhadap harapan hidup. Air Quality Life Index, 1–10.

Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089

I Made Budi Artawa1 dan I G A A Pt.Swastini2. (2011). Perbedaan Terjadinya Karang Gigi Pada MasyarakatPengkonsumsi Air Sumur Dengan Bukan Air Sumur. Jurnal Skala Husada, 2(September), 167–171.

Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005

Kurniawan, A. (2018). Pengukuran Parameter Kualitas Udara (Co, No2, So2, O3 Dan Pm10) Di Bukit Kototabang Berbasis Ispu. Jurnal Teknosains, 7(1), 1. https://doi.org/10.22146/teknosains.34658

Li, C., Hammer, M. S., Zheng, B., & Cohen, R. C. (2022). Accelerated reduction of air pollutants in China, 2017-2020. Science of the Total Environment, 803, 150011. https://doi.org/10.1016/j.scitotenv.2021.150011

Markandeya, Verma, P. K., Mishra, V., Singh, N. K., Shukla, S. P., & Mohan, D. (2021). Spatio-temporal assessment of ambient air quality, their health effects and improvement during COVID-19 lockdown in one of the most polluted cities of India. Environmental Science and Pollution Research, 28(9), 10536–10551. https://doi.org/10.1007/s11356-020-11248-3

Mas Udi, M., & Sugito, B. (2018). Pengolahan Limbah Radioaktif Resin Bekas. 119–125.

Mohammadyan, M., Ghoochani, M., Kloog, I., Abdul-Wahab, S. A., Yetilmezsoy, K., Heibati, B., & Godri Pollitt, K. J. (2017). Assessment of indoor and outdoor particulate air pollution at an urban background site in Iran. Environmental Monitoring and Assessment, 189(5), 1–9. https://doi.org/10.1007/s10661-017-5951-1

Morawska, L., Ayoko, G. A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Clifford, S., … Wierzbicka, A. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 108(July), 75–83. https://doi.org/10.1016/j.envint.2017.07.025

MS, A. K., Sasmita, M. A., & Saputra, A. H. (2023). Prediksi Particulate Matter (PM 2.5) di DKI Jakarta Menggunakan XGBoost. Jurnal Aplikasi Meteorologi, 2(1), 1–9. https://doi.org/10.36754/jam.v2i1.355

Organization, W. H. (2021). WHO global air quality guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide., 1–360.

Passi, A., Nagendra, S. M. S., & Maiya, M. P. (2021). Characteristics of indoor air quality in underground metro stations: A critical review. Building and Environment, 198(February), 107907. https://doi.org/10.1016/j.buildenv.2021.107907

Patihawa, A., Ibrahim, G. A., Hamni, A., Supriyadi, E. A., & Saputra, E. (2019). Analisa statistik nilai kekasaran permukaan dan profil permukaan Ti6AL-4V ELI pada pemesinan micro-milling. Sinta, 93–99.

Priyankara, S., Senarathna, M., Jayaratne, R., Morawska, L., Abeysundara, S., Weerasooriya, R., … Bowatte, G. (2021). Ambient pm2.5 and pm10 exposure and respiratory disease hospitalization in kandy, sri lanka. International Journal of Environmental Research and Public Health, 18(18), 1–13. https://doi.org/10.3390/ijerph18189617

Rovelli, S., Cattaneo, A., Nuzzi, C. P., Spinazzè, A., Piazza, S., Carrer, P., & Cavallo, D. M. (2014). Airborne particulate matter in school classrooms of northern Italy. International Journal of Environmental Research and Public Health, 11(2), 1398–1421. https://doi.org/10.3390/ijerph110201398

Sarkodie, S. A., Strezov, V., Jiang, Y., & Evans, T. (2019). Proximate determinants of particulate matter (PM2.5) emission, mortality and life expectancy in Europe, Central Asia, Australia, Canada and the US. Science of the Total Environment, 683, 489–497. https://doi.org/10.1016/j.scitotenv.2019.05.278

Scibor, M. (2019). Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2.5 and to characteristics of homes. Sustainable Cities and Society, 48(April), 101537. https://doi.org/10.1016/j.scs.2019.101537

Shi, Y., Du, Z., Zhang, J., Han, F., Chen, F., Wang, D., … Sui, S. (2023). Construction and evaluation of hourly average indoor PM2.5 concentration prediction models based on multiple types of places. Frontiers in Public Health, 11(August), 1–11. https://doi.org/10.3389/fpubh.2023.1213453

Sunaryo, M., & Rhomadhoni, M. N. (2021). Analisis Kadar Debu Respirabel Terhadap Keluhan Kesehatan Pada Pekerja. Jurnal Kesmas (Kesehatan Masyarakat) Khatulistiwa, 8(2), 63. https://doi.org/10.29406/jkmk.v8i2.2480

Syihabuddin Azmil Umri, S. (2021). Analisis Dan Komparasi Algoritma Klasifikasi Dalam Indeks Pencemaran Udara Di Dki Jakarta. JIKO (Jurnal Informatika Dan Komputer), 4(2), 98–104. https://doi.org/10.33387/jiko.v4i2.2871

Taushiba, A., Dwivedi, S., Zehra, F., Shukla, P. N., & Lawrence, A. J. (2023). Assessment of indoor air quality and their inter-association in hospitals of northern India—a cross-sectional study. Air Quality, Atmosphere and Health, 16(5), 1023–1036. https://doi.org/10.1007/s11869-023-01321-4

Udi, M., Sugito, B., & Bernadi, Y. (2017). Pengolahan limbah resin bekas dengan metode sementasi. Prosiding Hasil Penelitian Dan Kegiatan PTLR 2017, 15–22.

Waworundeng, J. M. S., & Lengkong, O. (2018). Sistem Monitoring dan Notifikasi Kualitas Udara dalam Ruangan dengan Platform IoT. CogITo Smart Journal, 4(1), 94–103. https://doi.org/10.31154/cogito.v4i1.105.94-103

Yang, S., Yuk, H., Yun, B. Y., Kim, Y. U., Wi, S., & Kim, S. (2022). Passive PM2.5 control plan of educational buildings by using airtight improvement technologies in South Korea. Journal of Hazardous Materials, 423(PA), 126990. https://doi.org/10.1016/j.jhazmat.2021.126990

Zhang, H., Li, N., Tang, K., Liao, H., Shi, C., Huang, C., … Hu, J. (2022). Estimation of secondary PM2.5in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 22(8), 5495–5514. https://doi.org/10.5194/acp-22-5495-2022

Zhong, X., Zhang, Z., Wu, W., & Ridley, I. (2020). Comprehensive evaluation of energy and indoor-PM2.5-exposure performance of residential window and roller blind control strategies. Energy and Buildings, 223, 110206. https://doi.org/10.1016/j.enbuild.2020.110206

Author Biographies

Made Widiantoro, Sultan Ageng Tirtayasa University

Author Origin : Indonesia

Juwarin Pancawati, Sultan Ageng Tirtayasa University

Author Origin : Indonesia

Najmi Firdaus, Sultan Ageng Tirtayasa University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Widiantoro, M., Pancawati, J., & Firdaus, N. (2025). Application of ChatGPT Plus in Predictive Analysis of Particulate Matter Levels in Industrial Environment of Glucose Syrup and Maltodextrin. Jurnal Penelitian Pendidikan IPA, 11(8), 254–263. https://doi.org/10.29303/jppipa.v11i8.10853