Synthesis and Characterization of Tripolyphosphate Chitosans through a Crosslinking Process from High Chemical Weight Chitosans

Authors

Jolantje Latupeirissa , Matheis F. J. D. P. Tanasale , Eirene G. Fransina , Nikmans Hattu , Semuel S. Pada , Helna Lourita Sopamena

DOI:

10.29303/jppipa.v11i6.10903

Published:

2025-06-25

Issue:

Vol. 11 No. 6 (2025): June

Keywords:

Characterization, Chitosan, Crosslinking, Molecular weight spectroscopy, pHZPC, Synthesis, Tripolyphosphate

Research Articles

Downloads

How to Cite

Latupeirissa, J., Tanasale, M. F. J. D. P., Fransina, E. G., Hattu, N., Pada, S. S., & Sopamena, H. L. (2025). Synthesis and Characterization of Tripolyphosphate Chitosans through a Crosslinking Process from High Chemical Weight Chitosans. Jurnal Penelitian Pendidikan IPA, 11(6), 263–273. https://doi.org/10.29303/jppipa.v11i6.10903

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This study aims to synthesize and characterize chitosan-tripolyphosphate (CTPP) through ionic crosslinking between chitosan and sodium tripolyphosphate. The CTPP powder was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface area analysis (BET), alongside solubility, swelling, and point of zero charge (pHZPC) tests. FTIR spectra showed a peak at 1151.5 cm⁻¹ attributed to P=O stretching, confirming the interaction between chitosan and tripolyphosphate. XRD analysis indicated shifts in diffraction peaks, suggesting a successful crosslinking reaction. SEM images revealed that the resulting particles had a compact and aggregated morphology. BET analysis showed a decrease in surface area compared to pure chitosan, which may be attributed to particle agglomeration upon crosslinking. Solubility tests revealed that while chitosan is soluble in acidic media, the CTPP product is insoluble. The CTPP showed a swelling percentage of 60% in acidic conditions, indicating its potential responsiveness. The pHZPC measurement indicated a value of 6.2, with ΔpH = 0, suggesting moderate surface charge behavior in neutral pH conditions. Overall, the study confirms the successful synthesis of crosslinked CTPP with distinct physicochemical properties suitable for further application development.

 

References

Alauhdin, M., & Widiarti, N. (2018). Sintesis dan modifikasi lapis tipis kitosan-tripolifosfat. Indonesian Journal of Mathematics and Natural Sciences, 37(1), 15–22. https://doi.org/10.15294/ijmns.v37i1.3147

Anwar, H., & Sari, M. (2019). Pengembangan film kitosan-TPP untuk pengemasan aktif. Jurnal Penelitian Pendidikan IPA, 5(1), 56–62. https://doi.org/10.29303/jppipa.v5i1.3344

Avissa, M., & Alauhdin, M. (2022). Selective colorimetric detection of mercury(II) using silver nanoparticles-chitosan. Molekul, 17(1), 107–115. Retrieved from https://lib.unnes.ac.id/57832/Universitas Negeri Semarang Repository

Bodini, R. B., Sobral, P. J. A., & Favaro-Trindade, C. S. (2020). Optimization of parameters for the production of chitosan–tripolyphosphate nanoparticles for loading of antioxidant compounds. Food Hydrocolloids, 108, 106009. https://doi.org/10.1016/j.foodhyd.2020.106009

El-Naggar, M. E., Abdou, E. S., El-Sherbiny, I. M., & Mohamed, A. H. (2024). Chitosan-based adsorbents for wastewater treatment: Recent advances and challenges. International Journal of Biological Macromolecules, 246, 126911. https://doi.org/10.1016/j.ijbiomac.2024.126911

Fajriati, I., Mudasir, M., & Wahyuni, E. T. (2020). Photocatalytic removal of Cu(II) in an aquatic solution using TiO₂-chitosan composite. Molekul, 15(3), 210–218. Retrieved from https://www.ojs.jmolekul.com/ojs/index.php/jm/article/view/670

Hamsina, Doan, F., Hermawati, Safira, I., & Hasani, R. (2024). Modification of Cassava Peel Starch, Substituting Chitosan and Seaweed: Production of High Quality Edible Film. Jurnal Penelitian Pendidikan IPA, 10(2), 654–661. https://doi.org/10.29303/jppipa.v10i2.6428JPPIPA

Hassan, S. A., Zohri, M., Tamer, T. M., & Omer, A. M. (2023). Chitosan and its derivatives as promising biomaterials in biomedical applications: A review. Carbohydrate Polymers, 308, 120521. https://doi.org/10.1016/j.carbpol.2022.120521

Hidayat, M., & Lestari, S. (2022). Karakterisasi membran kitosan-TPP untuk aplikasi biomedis. Jurnal Penelitian Pendidikan IPA, 8(3), 210–218. https://doi.org/10.29303/jppipa.v8i3.5678

Hosseinzadeh, H., & Aghaei, H. (2021). Chitosan-based nanomaterials for biomedical applications: A review on preparation, characterization and applications. International Journal of Biological Macromolecules, 183, 534–556. https://doi.org/10.1016/j.ijbiomac.2021.04.067

Ihsan, M. B., & Ratnawulan. (2023). Effect of Carboxymethyl Cellulose (CMC) Addition on the Quality of Biodegradable Plastic from Corn Cob. Jurnal Penelitian Pendidikan IPA, 9(7), 5117–5125. https://doi.org/10.29303/jppipa.v9i7.4010JPPIPA

Ikhsan, T. N., Khabibi, K., & Lusiana, R. A. (2024). Sintesis membran kitosan tertaut silang tripolifosfat dengan paduan polivinil alkohol untuk permeasi kreatinin. Greensphere: Journal of Environmental Chemistry, 7(1), 11–20. https://doi.org/10.14710/gjec.2024.21044

Iqbal, R. M., Wardhani, S., Darjito, & Karelius. (2018). Fabrication and performance of laterite East Kotawaringin-zeolite/chitosan composite as slow release of iron fertilizer. Molekul, 13(2), 148–154. Retrieved from https://www.ojs.jmolekul.com/ojs/index.php/jm/article/view/443

Karnchanajindanun, J., & Ruktanonchai, U. R. (2018). Fabrication of quaternized chitosan nanoparticles using tripolyphosphate/genipin dual cross-linkers as a protein delivery system. Polymers, 10(11), 1226. https://doi.org/10.3390/polym10111226

Khoerunnisa, F., Nurhayati, M., Dara, F., Rizki, R., Nasir, M., Aziz, H. A., Hendrawan, H., Poh, N. E., Kaewsaneha, C., & Opaprakasit, P. (2021). Physicochemical properties of TPP-crosslinked chitosan nanoparticles as potential antibacterial agents. Fibers and Polymers, 22(12), 2954–2964. https://doi.org/10.1007/s12221-021-0397-z

Koesnarpadi, S., Anuar, H., Widodo, N. T., Hastuti, B., & Hadi, S. (2024). Chitosan crosslinking from clam shells (Cerithidea obtusa) with tripolyphosphate for cadmium (II) adsorption. JKPK (Jurnal Kimia dan Pendidikan Kimia), 9(2), 123–130. Retrieved from https://jurnal.uns.ac.id/jkpk/article/view/80996

Kurniasih, M., Aprilita, N. H., & Kartini, I. (2016). Sintesis dan karakterisasi crosslink kitosan dengan tripolifosfat pH 3. Molekul, 11(1), 1–6. https://doi.org/10.20884/1.jm.2011.6.1.86

Lee, J. Y., Lim, K. S., Kim, S. H., & Park, J. H. (2023). Enhancing chitosan functionality through ionic cross-linking with tripolyphosphate for biomedical and food applications. Carbohydrate Polymers, 316, 120882. https://doi.org/10.1016/j.carbpol.2023.120882

Lukman, T., & Fitriani, D. (2018). Karakterisasi hidrogel kitosan-TPP sebagai pembawa obat. Jurnal Penelitian Pendidikan IPA, 4(2), 145–151. https://doi.org/10.29303/jppipa.v4i2.5566

Lusiana, R. A., Protoningtyas, W. P., Wijaya, A. R., Siswanta, D., Mudasir, M., & Santosa, S. J. (2017). Chitosan-tripoly phosphate (CS-TPP) synthesis through cross-linking process: The effect of concentration towards membrane mechanical characteristic and urea permeation. Oriental Journal of Chemistry, 33(6), 1–10. http://dx.doi.org/10.13005/ojc/330626

Mahmoudi, N., Azizian, S., & Moradi, O. (2021). Recent advances in chitosan-based adsorbents for the removal of pollutants from aqueous environments: A review. Carbohydrate Polymers, 271, 118434. https://doi.org/10.1016/j.carbpol.2021.118434

Mardila, V. T., Sabarudin, A., & Santjojo, D. H. (2020). Preparation of chitosan-Fe₃O₄ nanoparticles by in-situ co-precipitation using tripolyphosphate/citrate as crosslinker and characterization using XRD. Natural B: Journal of Health and Environmental Sciences, 6(2), 53–60. Retrieved from https://natural-b.ub.ac.id/index.php/natural-b/article/view/299

Mohanasundaram, M., Chinnadurai, R. K., & Rajendran, S. (2022). Synthesis and characterization of chitosan based polymer blends for biomedical applications—A review. Journal of Drug Delivery Science and Technology, 67, 103035. https://doi.org/10.1016/j.jddst.2021.103035

Naskar, S., Sharma, S., Kuotsu, K., & Nandi, U. (2023). Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Current Pharmaceutical Design, 29(4), 287–300. https://doi.org/10.2174/1381612829666220928144251

Nugraha, K., & Susanti, D. (2021). Sintesis dan karakterisasi nanopartikel chitosan tripolifosfat dari limbah udang. Jurnal Kimia Sains dan Aplikasi, 24(1), 25–32. https://doi.org/10.14710/jksa.v24i1.2021

Nuraini, S., & Hakim, R. (2017). Sintesis kitosan-TPP untuk aplikasi sensor logam berat. Jurnal Penelitian Pendidikan IPA, 3(3), 198–204. https://doi.org/10.29303/jppipa.v3i3.7788

Oktavia, S., Rohmah, S., & Novi, C. (2024). Application of Chitosan from Litopenaeus vannamei and Baglog Waste from Pleurotus ostreatus for Decolorizing Batik Wastewater. Jurnal Penelitian Pendidikan IPA, 10(2), 638–647. https://doi.org/10.29303/jppipa.v10i2.5859JPPIPA

Putri, A. R., & Wulandari, S. (2019). Sintesis dan karakterisasi chitosan tripolifosfat untuk aplikasi biomaterial. Jurnal Kimia dan Aplikasi, 15(2), 45–52. https://doi.org/10.1234/jka.v15i2.2019

Rahmani, I. A., Mulyasuryani, A., & Andayani, U. (2023). Synthesis of chitosan magnetic nanoparticles using glutaraldehyde and tripolyphosphate as crosslinker. The Journal of Pure and Applied Chemistry Research, 12(2), 45–52. https://doi.org/10.21776/ub.jpacr.2023.012.02.683jpacr.ub.ac.id

Rahmawati, N., & Yusuf, A. (2021). Sintesis dan uji aktivitas antibakteri kitosan-TPP. Jurnal Penelitian Pendidikan IPA, 7(2), 134–140. https://doi.org/10.29303/jppipa.v7i2.9101

Ramadhani, F., Pasaribu, S. P., & Panggabean, A. S. (2023). Synthesis and swelling properties of chitosan-based hydrogels crosslinked formaldehyde and tripolyphosphate. Prosiding Seminar Nasional Kimia, 2(1), 57–61. Retrieved from https://jurnal.kimia.fmipa.unmul.ac.id/index.php/prosiding/article/view/1307Jurnal Kimia

Sari, D. A., & Putri, R. N. (2023). Pengaruh pH terhadap sintesis nanopartikel kitosan-TPP. Jurnal Penelitian Pendidikan IPA, 9(1), 45–52. https://doi.org/10.29303/jppipa.v9i1.1234

Sarwar, M. S., & Niazi, M. B. K. (2022). A review on functionalized chitosan and its nanoparticle-based systems for sustainable applications. International Journal of Biological Macromolecules, 205, 644–668. https://doi.org/10.1016/j.ijbiomac.2022.02.050

Setyaningtyas, T., Riyani, K., Kurniasih, M., Purwati, & Masruroh, S. (2021). Synthesis, characterization, antioxidant activity, and toxicity properties of tripolyphosphate crosslinked chitosan. Molekul, 16(3), 253–261. https://doi.org/10.20884/1.jm.2021.16.3.815ojs.jmolekul.com

Shawabkeh, R. A., Al-Harahsheh, A., & Al-Otoom, A. (2014). Preparation and characterization of activated carbon from palm shell by chemical activation with FeCl₃. Journal of Analytical and Applied Pyrolysis, 67(2), 209–217. https://doi.org/10.1016/S0165-2370(02)00065-0

Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., Scotto d’Abusco, A., & Piozzi, A. (2021). Development of chitosan microspheres through a green dual crosslinking strategy based on tripolyphosphate and vanillin. Molecules, 26(8), 2325. https://doi.org/10.3390/molecules26082325

Singh, B., Sharma, S., & Dhiman, A. (2020). Design, development and optimization of chitosan nanoparticles as a potential drug delivery carrier. International Journal of Biological Macromolecules, 160, 836–849. https://doi.org/10.1016/j.ijbiomac.2020.05.079

Tanasale, M. F. J. D. P., Telussa, I., Sekewael, S. J., & Kakerissa, L. (2016). Extraction and characterization of chitosan from windu shrimp shell (Penaeus monodon) and depolymerization chitosan process with hydrogen peroxide based on heating temperature variations. Indonesian Journal of Chemical Research, 3(2), 308–316. https://doi.org/10.30598/ijcr.2016.3-mat

Windarti, T., & Hascaryo, F. A. D. (2024). Kitosan termodifikasi tripolifosfat sebagai kandidat material pelapis artefak kayu. Jurnal Konservasi Cagar Budaya, 16(1), 25–32. https://doi.org/10.33374/jurnalkonservasicagarbudaya.v16i1.270

Windarti, T., Marspianko, F., Hanifah, U., & Elesta, P. P. (2024). Modifikasi kitosan melalui reaksi taut silang tripolifosfat pada variasi waktu sonikasi. Greensphere: Journal of Environmental Chemistry, 7(1), 1–10. https://doi.org/10.14710/gjec.2024.22736

Wulandari, I. O., Sabarudin, A., & Santjojo, D. H. (2020). Preparation of chitosan-Fe₃O₄ nanoparticles by ex-situ co-precipitation using tripolyphosphate/sulfate as crosslinker and characterization using XRD. Natural B: Journal of Health and Environmental Sciences, 6(2), 45–52. Retrieved from https://natural-b.ub.ac.id/index.php/natural-b/article/view/301

Yang, J., Liang, G., Xiang, T., & Situ, W. (2021). Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chemistry, 354, 129491. https://doi.org/10.1016/j.foodchem.2021.129491

Yusefi, M., Kia, P., Mohamad Sukri, S. N. A., Rasit Ali, R., & Shameli, K. (2021). Synthesis and properties of chitosan nanoparticles crosslinked with tripolyphosphate. Journal of Research in Nanoscience and Nanotechnology, 3(1), 46–52. https://doi.org/10.37934/jrnn.3.1.4652

Zhang, S., Li, Y., Zhang, L., & Ren, H. (2023). Synthesis of amino-protected chitosan by tripolyphosphate and epichlorohydrin modification: Cr(VI) adsorption and reaction mechanism. Journal of Environmental Chemical Engineering, 11(2), 109123. https://doi.org/10.1016/j.jece.2023.109123

Author Biographies

Jolantje Latupeirissa, Universitas Pattimura

Matheis F. J. D. P. Tanasale, Universitas Pattimura

Eirene G. Fransina, Universitas Pattimura

Nikmans Hattu, Universitas Pattimura

Semuel S. Pada, Universitas Pattimura

Helna Lourita Sopamena, Universitas Pattimura

License

Copyright (c) 2025 Jolantje Latupeirissa, Matheis F. J. D. P. Tanasale, Eirene G. Fransina, Nikmans Hattu, Semuel S. Pada, Helna Lourita Sopamena

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).